• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect

    2024-03-25 09:30:28DaxingLi李大星KaizhuLiu劉凱柱ChunlongYu余春龍KuoZhang張括YueqinLiu劉躍欽andShuaiFeng馮帥
    Chinese Physics B 2024年3期

    Daxing Li(李大星), Kaizhu Liu(劉凱柱), Chunlong Yu(余春龍), Kuo Zhang(張括),Yueqin Liu(劉躍欽), and Shuai Feng(馮帥),?

    1School of Science,Minzu University of China,Beijing 100081,China

    2Optoelectronics Research Center,Minzu University of China,Beijing 100081,China

    3Engineering Research Center of Photonic Design Software,Ministry of Education,Beijing 100081,China

    4School of Optoelectronic Engineering and Instrumentation Science,Dalian University of Technology,Dalian 116024,China

    Keywords: photonic crystal,all-optical diode,Fano cavity,unidirectional transmission

    1.Introduction

    All-optical devices have significant applications in the fields of optical communication, quantum computing, etc.A photonic crystal (PhC) is an artificial structure composed of two or more materials with different dielectric constants arranged periodically in space.[1,2]In PhCs, it is well known that the absence of transmission is mostly the consequence of the presence of photonic band gaps [frequency ranges of the forbidden(not allowed)modes].[3]The photonic band gap can be applied to achieve near-perfect reflection[4,5]and sophisticated modulation[6,7]of light polarization.An important feature of PhCs is photon localization.When the periodic structure of the PhC is disrupted,a defect mode is stimulated within the photonic band gap, causing photons at, particular frequencies, to be localized within the defect region, while photons with frequencies deviating from the defect mode will be strongly scattered.Based on the photon localization property of PhCs, various optical devices have been developed,such as switches,[8-12]beam splitters,[13-15]diodes[16-28]and logic gates.[29-32]

    All-optical diodes(AODs)allow the light beam to propagate along one direction,while the opposite directional transmission is blocked.Many kinds of AODs have been achieved through using magnetic-optical materials,optical nonlinear effects, chiral metamaterials, etc.In 1994, Scaloraet al.proposed a nonlinear PhC AOD.[16]For different incident directions,there is a pronounced contrast between the spatial electric field distributions near the bandgap edge since the bandgap position varies with the medium’s refractive index and the medium’s refractive index varies with light intensity.Oneway transmission can be achieved by using the band-gap edge as the working wavelength and employing the bandgap’s displacements for different incident directions.However, AODs leveraging band gaps have limitations since PhCs only have two top and bottom bandgap edges, restricting the working wavelength to the bandgap edge and narrowing the AOD’s applicability.This led to researchers focusing more on AODs composed of PhC defects.In 2014, Bulgakovet al.introduced an AOD based on Kerr micro-cavity dipole modes in an asymmetric L-shaped PhC waveguide,and a response time of approximately 177 fs with 90%forward transmittance was achieved.[17]In 2016, Liuet al.proposed a high-efficiency AOD based on a PhC waveguide.[18]This AOD attained a response time of around 50 ps with approximately 75%forward transmittance.In 2017, Satoet al.presented a high-forwardtransmission AOD based on a cascaded side-coupled PhC L3-type micro-cavity.[19]This AOD achieved a response time of about 250 ps with a forward transmittance of 99.8% and a reverse transmittance of-53 dB, thereby improving forward and reverse transmission contrast, although it resulted in increased response time.

    Nonlinear PhCs are among the most promising structural types for designing AODs, due to their small size and low power requirements.In this paper, we have designed a high-transmittance,short-response-time AOD based on a twodimensional (2D) square-lattice PhC structure.The structure consists of a W1-type channel, an asymmetric point defect,an elliptical side-coupling cavity and a reflection pillar.By changing the intensity of the pump light, this structure controls forward propagation and reverse cut-off of the signal light within the PhC structure.It also reduces the response time to a certain extent while maintaining high transmittance contrast for forward and reverse propagation.

    2.Structure design

    In this paper,we designed a 2D square lattice PhC structure consisting of dielectric rods immersed in an air background, whose refractive index is set at 3.1 for the nearinfrared wavelength of around 1550 nm.The lattice constant of the PhCa=600 nm,and the radius of the pillarsr=0.2a.We used the finite-difference time-domain(FDTD)method to calculate the band structure diagram of the perfect PhC [in Fig.1(a)],the light transmission and spatial electric field distribution through the finite PhC structure.The TM-polarized mode is selected as the incident light,whose electric field distribution is parallel to the central axis of the pillar.As shown in Fig.1(b), the photonic band gap of the afore-mentioned PhC ranges from 0.312a/λto 0.437a/λ.When one row of pillars is removed along theΓ-Xdirection of the PhC[in Fig.1(c)],a W1-type waveguide is constructed,whose guiding band spans the frequencies of 0.315a/λand 0.437a/λ(1373.00 nm-1904.76 nm),as shown in Fig.1(d).

    Based on the above waveguide, we constructed a simple micro-cavity by removing a pillar and keeping its adjacent one and two pillars unchanged on the left and right sides,respectively, as shown in Fig.2(a).The corresponding transmission spectrum is shown by the black line in Fig.2(b),where a symmetric transmission peak appears at the wavelength of 1540.26 nm.In addition, two weak transmission peaks exist at the wavelengths of 1472.42 nm and 1582.94 nm.Keeping other structural parameters constant,we changed the radius of the circular pillar(located below the removed column,as indicated by the red curve in Fig.2(a))from 120 nm to 140 nm and 160 nm.The corresponding transmission spectra are shown by the red and blue curves in Fig.2(b), respectively.The transmission peak moves to the longer wavelength as the pillar’s size increases, shifting from 1540.26 nm to 1552.37 nm and 1590.53 nm in the case whereRis equal to 140 nm and 160 nm.TheQfactors of the defective modes are all very small,which is defined byQ=λres/λFWHM,whereλresis the resonant wavelength of the localized mode andλFWHMis the full width at half maximum of the transmission peak.To enhance theQfactor of the defect mode, the shape of the pillar mentioned above is changed from a circle to an ellipse,as shown by the red curve in Fig.2(c).As shown in Fig.2(b),we calculated the transmission spectra for different long-axis radiiR1, with the short-axis radiusR2fixed at 120 nm.The black,red,blue,and green curves in the figure represent the long-axis radii ofR1equal to 210 nm,216 nm,222 nm and 228 nm,respectively.This shows that the light transmittance through the elliptical micro-cavity structure is significantly enhanced compared to that of the circular micro-cavity structure.The Fanoresonance between the localized defect mode and the guiding mode of the waveguide also becomes much higher,characterized by the asymmetric transmission peak with higher transmittance andQfactor.This shows that both the transmission peak and valley shift with the alteration of the ellipse’s long axis, and the relative location of the transmission peak and valley can also be adjusted.Finally, we introduced a reflective column on the right side of the waveguide to enhance the structural asymmetry for the realization of unidirectional light propagation.The Fano cavity, which contains the nonlinear Kerr medium, is asymmetrically coupled to the F-P cavity(constructed by the micro-cavity and reflective pillar) in the W1-type waveguide, as depicted in Fig.2(e).Figure 2(f) exhibits the transmission spectra in the case of various reflective column positions, where the transmission peak is sensitive to the alteration of the reflector location, and the transmission valley(reflection peak)remains unchanged.

    The AOD is based on the nonlinear Kerr effect that the spatial electric field strength(E0)at the defect should be somewhat different when light is incident from different directions.According to the formula Δn=n2I=χ(3)|E0|2/n0,wheren2is the Kerr coefficient associated withχ(3),χ(3)is the thirdorder nonlinear coefficient, andIis the intensity of light,[34]the difference in spatial electric field intensity would lead to a difference in refractive index(Δn).This,in turn,would cause the shift of the transmission peak along the long wavelength direction to be inconsistent.This means that the wavelength near the transmission peak could only pass in one direction,thus achieving unidirectional propagation.In the above case,it is known from formulan=n0+Δnthat when the intensity of the pump light increases, the total refractive index of the material (n) will increase, which means that the defect mode will move in the long wavelength direction.Therefore, the pump light intensity is not strong enough to excite the nonlinear Kerr effect of the material when the working wavelength is selected at the trough position, and the AOD maintains in the cutoff state,with the peak of the transmission peak located on the left side of the trough.As the defect mode moves,the optical signal at the working wavelength can be switched from the cutoff state to the propagation state.In order to improve the forward transmission efficiency of the AOD,the transmission spectrum was calculated by adjusting the position of the reflecting column along the horizontal axis (X-axis), and the results are shown in Fig.3.This shows that when the reflecting pillar is located atX1=5.8 μm, the resonant transmission peak is located at the wavelength of 1548.73 nm, with the highest transmittance of 0.99.TheQfactor of this mode is 928,and the resonant transmission peak is located at the wavelength of 1550.47 nm with the corresponding transmittance of-57.66 dB.When the reflective pillar’s location is changed to 5.9 μm, 6.0 μm and 6.1 μm, the corresponding resonant peaks move to 1550.10 nm,1550.59 nm and 1550.77 nm,with the transmittance of 0.65, 0.11 and 0.87, and theQfactor of 7045, 3782 and 19384, respectively.It is found that both the wavelength location and transmittance are sensitive to the alteration of the reflective pillar, while the transmission valley remains unchanged.The transmission valley in the four cases shown in Fig.3 is at 1550.47 nm with the highest transmittance value of-40.14 dB.Therefore, we select the wavelength of 1550.47 nm as the working wavelength.

    Fig.3.Transmission spectra through the AOD for the reflecting rod located at different positions.(a) X1 = 5.8 μm.(b) X2 = 5.9 μm.(c)X3=6.0μm.(d)X4=6.1μm.

    3.Result analysis

    We chose the wavelength of the pump light beam to be 637 nm, which is significantly different from the signal light beam of around 1550 nm and it is also in a higher directional band gap.This means that its main energy can be localized in the waveguide.We change the material of the elliptical column from a perfect dielectric to a nonlinear material, AlGaAs, whose linear refractive index isn0=3.1, andn2=2.1×10-12cm2/W.[33,34]The spatial electric field’s amplitudes in the region of the elliptical defect are calculated at the rightwards and leftwards incidences.The ratio of the field amplitudes of the left and right generators reaches 17.86 whenX1= 5.8 μm is pumped with an intensity of 3.97 W/μm2,while the ratio of the field amplitudes is about 4.75 whenX2=5.9μm is pumped with an intensity of 1.13 W/μm2.We know that the intensity of light is proportional to the square of the amplitude.The intensity of the pump light in the elliptical microcavity is much higher when the pump light is incident to the right side than when it is incident to the left side,showing good unidirectionality.In Figs.4 and 5, the red curves represent that the signal light and pump light are incident from the left side simultaneously,while the blue curves correspond to the signal light and pump light incident from the right side of the waveguide.The vertical blue dotted line indicates the optimal incident intensity value,and the vertical orange dotted line represents the location of the working wavelength.The solid black line indicates the normalized power versus time of the pump light,and the black arrows indicate the direction of incidence of the signal and pump light.

    When theX-axis position of the AOD reflective pillar is 5.8 μm, we can see from Fig.4(a) that transmittance for the light beam traveling rightwards becomes higher with the increase in pump light intensity and achieves a maximum value of-1.14 dB.The lowest transmittance for the signal light incident from the right side is-57.66 dB when the pump light intensity is 3.92 W/μm2.When the pump light intensity increases further,both the forward and backward transmittances deviate slightly from optimal performance.This indicates that the device can maintain its functionality over a wide range of pump beam intensities.The light transmission curves are calculated for the rightward and leftward incidence cases and the results are shown in Fig.4(b).Due to the large difference in the light intensity around the nonlinear micro-cavity, the forward transmission peak moves to the location of 1550.00 nm with a transmittance value of 0.889.For the working wavelength of 1550.47 nm,its transmittance is 0.768.In the backward transmission, the transmission peak is located at 1548.74 nm, and the corresponding transmittance is 0.95, almost the same as those without the pump beam.The time response of the signal light beam influenced by the switch of the pump light beam is also studied,and the result is shown in Fig.4(c).When the pump light of a certain intensity (3.97 W/μm2) is launched,the signal light incident continuously from the left side of the PhC structure is shifted during propagation in the microcavity region due to the nonlinear material.It eventually propagates to the right side in the waveguide and is detected by the monitor at the right edge of the PhC structure.When the pump light is turned off, the incident signal light propagating both to the right and to the left is blocked, and the time required for the signal light incident to the right to go from on to off is about 10 ps.The transmission contrastCof the all-optical diode is calculated asC=(TForward-TBackward)/(TForward+TBackward).As shown in Fig.4(d), this all-optical diode has a high contrast of transmittance under optimal pump light incidence conditions, proving its high efficiency.When the pump light intensity reaches the optimal value, the spatial electric field’s amplitude distribution of the signal light transmits rightwards and leftwards, as shown in Fig.4(e).It is evident that when the light is incident from one direction,it propagates along the W1-type waveguide and is blocked when the light is incident from the other direction.

    When the location of the reflective pillar changed to 5.9 μm, the light transmittance and time response influenced by the pump light beam were also studied and the results are shown in Fig.5.It can be seen from Fig.5(a) that the value of light transmittance for both the light beam traveling rightwards and leftwards becomes higher with the increase in pump light intensity within the range of 0-1.2 W/μm2.The maximum value of the transmittance contrast ratio when the pump light intensity is 1.13 W/μm2, where the forward light transmittance reaches-2.04 dB and the backward transmittance is only-40.14 dB.When the pump light intensity increases further,the forward light transmittance decreases to a small extent and the backward transmittance increases to a much greater extent.Compared to Fig.4(a), this AOD device works well with a much lower requirement of pump light intensity.Figure 5(b)shows the calculated light transmission curves for the rightward and leftward incidence cases.It shows that the forward transmission peak moves to the location of 1550.47 nm with a transmittance value of 0.62, the transmission valley moves to 1550.94 nm with a transmittance of-40.14 dB.For backward transmission, the transmission peak is located at 1550.10 nm, and the corresponding transmittance is 0.65.The time response of the signal light beam influenced by the pump light beam’s switch is depicted in Fig.5(c), and it can be inferred that the time required for the signal light beam to reach a stable working status is approximately 50 ps.In Fig.5(d), the transmission contrast of the all-optical diode is demonstrated under optimal pump light incidence conditions.When the pump light intensity reaches the optimal value, the spatial electric field’s amplitude distribution along two opposite incident directions, as shown in Fig.5(e).It is evident that the light incident from the left can propagate along the W1-type waveguide,while it is cut off for light incident from the right side.Comparing the above two AOD structures, it can be observed that although the structure with the reflective pillar at theX-axis position of 5.8 μm requires higher pump power than the one at 5.9μm,it offers a higher forward transmission transmittance, a lower reverse cut-off transmittance,and a shorter response time.Therefore, we can choose the PhC structure with the reflective pillar at theX-axis position of 5.8μm to achieve superior performance,both in the transmittance contrast and quick response time, but a stronger pump light intensity is needed.

    Fig.5.Coordinate of the AOD for the reflective pillar located at X =5.9μm.(a)Forward and backward light transmittance influenced by the pump intensity at the working wavelength of λ =1550.47 nm.(b)Light transmission spectra in two opposite propagation directions at the pump light intensity of 1.13 W/μm2.(c) Time response of the signal light influenced by the alteration of the pump light intensity.(d) Transmission contrast over time.(e)Spatial electric field amplitude distributions when the signal light beam transmits leftwards and rightwards,respectively.

    4.Conclusion

    In summary,we have designed an AOD based on the nonlinear side-coupled elliptical defect and a reflective pillar in the PhC waveguide.The reflective pillar is introduced to construct an F-P cavity with the elliptical defect and to enhance the asymmetric propagation for the signal light traveling rightwards and leftwards, respectively.Through designing the ellipse’s size and optimizing the position of the reflective pillar,an AOD device possessing the performance of a quick response time of about 10 ps, a forward light transmittance of-1.14 dB and a reverse cut-off transmittance of-57.66 dB is achieved.Furthermore,our proposed device’s size is about 17.4 μm×9.6 μm.With the advantages of small size, hightransmittance-contrast ratio and short response time,our AOD could be utilized for future all-optical integration.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at the following link https://doi.org/10.57760/sciencedb.j00113.00160

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)and the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).

    日本精品一区二区三区蜜桃| 国产男女超爽视频在线观看| 汤姆久久久久久久影院中文字幕| 国产男女内射视频| 亚洲午夜理论影院| 飞空精品影院首页| 国产伦理片在线播放av一区| a在线观看视频网站| 亚洲成a人片在线一区二区| 午夜免费鲁丝| 黄色视频在线播放观看不卡| av欧美777| 精品国产一区二区三区久久久樱花| 国产成人影院久久av| 婷婷丁香在线五月| av不卡在线播放| 国产精品久久久久久精品古装| 欧美黑人精品巨大| 亚洲黑人精品在线| 自拍欧美九色日韩亚洲蝌蚪91| 脱女人内裤的视频| 每晚都被弄得嗷嗷叫到高潮| 91精品三级在线观看| 免费看十八禁软件| 亚洲精品国产一区二区精华液| 欧美日韩国产mv在线观看视频| 欧美成人午夜精品| 男女无遮挡免费网站观看| 精品国产超薄肉色丝袜足j| 涩涩av久久男人的天堂| 一个人免费在线观看的高清视频| 一进一出抽搐动态| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| kizo精华| 在线观看免费日韩欧美大片| 黄色a级毛片大全视频| 变态另类成人亚洲欧美熟女 | a级毛片在线看网站| 一本色道久久久久久精品综合| 免费一级毛片在线播放高清视频 | 成年人黄色毛片网站| 免费av中文字幕在线| 国产精品久久久久成人av| 好男人电影高清在线观看| 亚洲久久久国产精品| 超色免费av| 夫妻午夜视频| 又紧又爽又黄一区二区| kizo精华| 亚洲色图 男人天堂 中文字幕| 成人18禁在线播放| 亚洲五月色婷婷综合| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 日韩一卡2卡3卡4卡2021年| 国产99久久九九免费精品| 久久久久久免费高清国产稀缺| 考比视频在线观看| 国产男女超爽视频在线观看| 日韩有码中文字幕| 大片免费播放器 马上看| 国产高清视频在线播放一区| 美女高潮到喷水免费观看| 久久午夜亚洲精品久久| 一级毛片精品| 久久久久久人人人人人| 亚洲精品美女久久av网站| 又大又爽又粗| 人人妻人人添人人爽欧美一区卜| 老司机靠b影院| 欧美黄色片欧美黄色片| av福利片在线| 亚洲午夜理论影院| 国产日韩欧美在线精品| 久久亚洲真实| 国产亚洲午夜精品一区二区久久| 色婷婷av一区二区三区视频| 日本一区二区免费在线视频| 成人国语在线视频| 不卡av一区二区三区| 色在线成人网| 亚洲国产欧美一区二区综合| 法律面前人人平等表现在哪些方面| 成年人午夜在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 国产又色又爽无遮挡免费看| 欧美精品人与动牲交sv欧美| 国产aⅴ精品一区二区三区波| 成年人午夜在线观看视频| 国产xxxxx性猛交| 一夜夜www| 一本色道久久久久久精品综合| 又黄又粗又硬又大视频| 日韩 欧美 亚洲 中文字幕| 国产有黄有色有爽视频| 亚洲五月婷婷丁香| 免费看十八禁软件| xxxhd国产人妻xxx| 中文字幕高清在线视频| 一本综合久久免费| 动漫黄色视频在线观看| 黄网站色视频无遮挡免费观看| 久久人人97超碰香蕉20202| 国产淫语在线视频| 巨乳人妻的诱惑在线观看| avwww免费| 亚洲av美国av| 免费观看人在逋| 69精品国产乱码久久久| 熟女少妇亚洲综合色aaa.| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 成人国产一区最新在线观看| 久久久精品免费免费高清| 国产亚洲欧美在线一区二区| 一级片免费观看大全| 日本一区二区免费在线视频| svipshipincom国产片| 久久久久久久久久久久大奶| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 国产午夜精品久久久久久| 一进一出抽搐动态| 国产精品国产高清国产av | 两个人免费观看高清视频| 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 丁香欧美五月| 亚洲精华国产精华精| 国产日韩一区二区三区精品不卡| 不卡一级毛片| 精品国产乱码久久久久久男人| 亚洲第一欧美日韩一区二区三区 | 国产精品九九99| 色婷婷av一区二区三区视频| 黑人巨大精品欧美一区二区mp4| 国产又色又爽无遮挡免费看| 国产精品成人在线| 国产成+人综合+亚洲专区| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 在线播放国产精品三级| 12—13女人毛片做爰片一| 日韩熟女老妇一区二区性免费视频| 国产成人免费观看mmmm| 中文亚洲av片在线观看爽 | 欧美日韩视频精品一区| 国产在视频线精品| 亚洲,欧美精品.| 后天国语完整版免费观看| 黄色毛片三级朝国网站| 国产又色又爽无遮挡免费看| 欧美日韩福利视频一区二区| 午夜福利影视在线免费观看| 日韩欧美三级三区| 久久午夜亚洲精品久久| 伦理电影免费视频| 亚洲精品中文字幕在线视频| 日韩视频一区二区在线观看| www.熟女人妻精品国产| 少妇 在线观看| 韩国精品一区二区三区| 亚洲av欧美aⅴ国产| 一区二区av电影网| 国产亚洲精品一区二区www | 高清黄色对白视频在线免费看| 欧美另类亚洲清纯唯美| 国产亚洲一区二区精品| 少妇裸体淫交视频免费看高清 | 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 999久久久精品免费观看国产| 成人免费观看视频高清| 一本色道久久久久久精品综合| 亚洲欧美精品综合一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | www.精华液| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| svipshipincom国产片| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 老司机福利观看| 搡老熟女国产l中国老女人| 黄色片一级片一级黄色片| av网站免费在线观看视频| 亚洲五月婷婷丁香| 国产成人欧美在线观看 | 久久这里只有精品19| 午夜老司机福利片| 9色porny在线观看| 水蜜桃什么品种好| 丁香欧美五月| 叶爱在线成人免费视频播放| 亚洲国产av新网站| 国产免费视频播放在线视频| 美女视频免费永久观看网站| 欧美激情 高清一区二区三区| 久久精品成人免费网站| 狂野欧美激情性xxxx| 亚洲精品成人av观看孕妇| av有码第一页| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| 男女免费视频国产| 国产一区二区 视频在线| 国产视频一区二区在线看| 美女高潮到喷水免费观看| 精品午夜福利视频在线观看一区 | 国内毛片毛片毛片毛片毛片| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人国产一区在线观看| 久久精品国产99精品国产亚洲性色 | 99国产极品粉嫩在线观看| 一级片免费观看大全| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 成人黄色视频免费在线看| 色综合婷婷激情| 亚洲欧美激情在线| 亚洲伊人色综图| 久久久精品94久久精品| 色播在线永久视频| 中文字幕制服av| 午夜福利欧美成人| 国产一区二区三区在线臀色熟女 | 好男人电影高清在线观看| 美女高潮到喷水免费观看| 日韩一卡2卡3卡4卡2021年| 成人永久免费在线观看视频 | 精品免费久久久久久久清纯 | 日韩一卡2卡3卡4卡2021年| 色综合婷婷激情| 亚洲伊人色综图| 老司机影院毛片| 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 18禁观看日本| 亚洲精品国产精品久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 美女高潮到喷水免费观看| 18禁黄网站禁片午夜丰满| 美女福利国产在线| 久久精品熟女亚洲av麻豆精品| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频| 国产精品免费一区二区三区在线 | 老司机福利观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影观看| 美女国产高潮福利片在线看| 久久人妻福利社区极品人妻图片| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 99久久精品国产亚洲精品| 成人特级黄色片久久久久久久 | 国产av国产精品国产| 在线观看免费视频网站a站| 国产精品美女特级片免费视频播放器 | 国产又爽黄色视频| e午夜精品久久久久久久| 国产无遮挡羞羞视频在线观看| 国产免费福利视频在线观看| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 怎么达到女性高潮| kizo精华| 夫妻午夜视频| av在线播放免费不卡| 亚洲国产av新网站| 亚洲专区中文字幕在线| 波多野结衣一区麻豆| 9热在线视频观看99| 久久久国产精品麻豆| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 亚洲成a人片在线一区二区| 亚洲精品国产区一区二| a级毛片在线看网站| av电影中文网址| 国产在线视频一区二区| 久久热在线av| 另类亚洲欧美激情| 夫妻午夜视频| av欧美777| e午夜精品久久久久久久| 飞空精品影院首页| tocl精华| 黄网站色视频无遮挡免费观看| 国产免费现黄频在线看| 日韩大片免费观看网站| 侵犯人妻中文字幕一二三四区| 另类亚洲欧美激情| 麻豆国产av国片精品| 午夜老司机福利片| 国产精品久久久久成人av| 亚洲成人国产一区在线观看| 黄片大片在线免费观看| 18禁裸乳无遮挡动漫免费视频| 九色亚洲精品在线播放| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 日韩免费高清中文字幕av| 久久狼人影院| 欧美精品一区二区免费开放| 丁香六月欧美| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 国产午夜精品久久久久久| 成人国产av品久久久| 亚洲国产成人一精品久久久| 国产三级黄色录像| 日韩一卡2卡3卡4卡2021年| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院| 成年人黄色毛片网站| 亚洲国产欧美网| 国产不卡一卡二| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 午夜福利乱码中文字幕| 黄片大片在线免费观看| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 18禁国产床啪视频网站| 高清在线国产一区| 少妇被粗大的猛进出69影院| 高清在线国产一区| 他把我摸到了高潮在线观看 | 久久中文看片网| 夫妻午夜视频| 在线永久观看黄色视频| √禁漫天堂资源中文www| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 久久久久久久大尺度免费视频| 成年人黄色毛片网站| 中文亚洲av片在线观看爽 | 欧美另类亚洲清纯唯美| avwww免费| 十分钟在线观看高清视频www| 久久精品国产a三级三级三级| 成年人黄色毛片网站| 一区二区三区乱码不卡18| 人妻一区二区av| 久久ye,这里只有精品| 考比视频在线观看| av天堂久久9| 国产精品国产av在线观看| 免费久久久久久久精品成人欧美视频| 国产又色又爽无遮挡免费看| www.精华液| 精品视频人人做人人爽| 黑人猛操日本美女一级片| 久热这里只有精品99| 免费久久久久久久精品成人欧美视频| 美女午夜性视频免费| 一本色道久久久久久精品综合| 国产亚洲精品第一综合不卡| 十分钟在线观看高清视频www| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 久久精品国产a三级三级三级| 三级毛片av免费| 好男人电影高清在线观看| 操出白浆在线播放| 国产精品影院久久| 最新在线观看一区二区三区| 国产又爽黄色视频| 欧美另类亚洲清纯唯美| 国产高清激情床上av| 欧美中文综合在线视频| 热99久久久久精品小说推荐| 国产一区二区 视频在线| 国产精品免费一区二区三区在线 | 日日摸夜夜添夜夜添小说| 成年人免费黄色播放视频| 精品国产乱子伦一区二区三区| 免费在线观看完整版高清| 黑人欧美特级aaaaaa片| 午夜福利,免费看| 青青草视频在线视频观看| 亚洲男人天堂网一区| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 色视频在线一区二区三区| 十八禁网站网址无遮挡| 一区二区三区国产精品乱码| 大陆偷拍与自拍| 国产在视频线精品| 大型av网站在线播放| 下体分泌物呈黄色| 最近最新免费中文字幕在线| 国产亚洲一区二区精品| 中文字幕人妻熟女乱码| 亚洲精品在线观看二区| 亚洲精品乱久久久久久| 久久精品熟女亚洲av麻豆精品| 国产精品久久电影中文字幕 | 精品少妇黑人巨大在线播放| 日日爽夜夜爽网站| 99国产综合亚洲精品| 日韩免费高清中文字幕av| 日本a在线网址| 女性被躁到高潮视频| 久久亚洲真实| 精品国产超薄肉色丝袜足j| 欧美日韩视频精品一区| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色 | 国产在线免费精品| 欧美乱码精品一区二区三区| 久久精品国产综合久久久| 90打野战视频偷拍视频| 超碰成人久久| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 人人妻人人澡人人看| 极品少妇高潮喷水抽搐| av网站在线播放免费| 考比视频在线观看| 亚洲精品久久午夜乱码| 视频区欧美日本亚洲| 91九色精品人成在线观看| 国产有黄有色有爽视频| 欧美性长视频在线观看| 高清视频免费观看一区二区| 多毛熟女@视频| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| 下体分泌物呈黄色| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| 伦理电影免费视频| h视频一区二区三区| 性少妇av在线| 欧美 日韩 精品 国产| 中亚洲国语对白在线视频| 香蕉久久夜色| 亚洲av电影在线进入| 国产黄色免费在线视频| 亚洲一区中文字幕在线| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 天堂动漫精品| 在线播放国产精品三级| 日韩精品免费视频一区二区三区| 久久精品国产99精品国产亚洲性色 | 一本综合久久免费| 欧美精品人与动牲交sv欧美| 精品国产亚洲在线| 国产精品美女特级片免费视频播放器 | 国产有黄有色有爽视频| 午夜激情av网站| 超色免费av| 老熟妇仑乱视频hdxx| 99久久精品国产亚洲精品| 国产真人三级小视频在线观看| 久久久久精品国产欧美久久久| 亚洲久久久国产精品| 大片免费播放器 马上看| 天堂中文最新版在线下载| 国产精品1区2区在线观看. | 国产成人一区二区三区免费视频网站| 精品亚洲成a人片在线观看| 91麻豆av在线| 人妻一区二区av| 久热这里只有精品99| 精品午夜福利视频在线观看一区 | 日本a在线网址| 亚洲午夜理论影院| 亚洲精品国产精品久久久不卡| 色视频在线一区二区三区| 人人妻人人爽人人添夜夜欢视频| 2018国产大陆天天弄谢| 天天影视国产精品| 国产成人免费观看mmmm| 好男人电影高清在线观看| 久久九九热精品免费| 国产视频一区二区在线看| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 国产成人免费无遮挡视频| www.999成人在线观看| 国产aⅴ精品一区二区三区波| av视频免费观看在线观看| 黑人猛操日本美女一级片| 男女无遮挡免费网站观看| av又黄又爽大尺度在线免费看| 亚洲成人免费av在线播放| 日本vs欧美在线观看视频| 成人国产一区最新在线观看| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| a在线观看视频网站| 少妇 在线观看| 老鸭窝网址在线观看| 国产精品久久久久久精品电影小说| 中文字幕人妻丝袜制服| 丰满少妇做爰视频| 亚洲精品中文字幕一二三四区 | 国产极品粉嫩免费观看在线| 美女午夜性视频免费| 黄片播放在线免费| 极品教师在线免费播放| 黄色成人免费大全| 国产国语露脸激情在线看| 美女午夜性视频免费| 黄片播放在线免费| 肉色欧美久久久久久久蜜桃| 成人特级黄色片久久久久久久 | 在线观看www视频免费| 国产成人一区二区三区免费视频网站| av欧美777| 亚洲色图综合在线观看| 最近最新中文字幕大全免费视频| 婷婷成人精品国产| 亚洲国产欧美在线一区| 一二三四社区在线视频社区8| 欧美乱码精品一区二区三区| 亚洲av国产av综合av卡| 亚洲欧美激情在线| 99热网站在线观看| 久久天堂一区二区三区四区| 丝袜美足系列| 免费看十八禁软件| 午夜免费成人在线视频| 正在播放国产对白刺激| 亚洲性夜色夜夜综合| 女同久久另类99精品国产91| 性少妇av在线| 国产91精品成人一区二区三区 | 满18在线观看网站| 欧美 日韩 精品 国产| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品二区激情视频| 欧美国产精品va在线观看不卡| 在线观看免费日韩欧美大片| 色在线成人网| 我的亚洲天堂| 一夜夜www| 老汉色∧v一级毛片| 91麻豆av在线| 国产午夜精品久久久久久| 美女国产高潮福利片在线看| 免费在线观看黄色视频的| av欧美777| 午夜福利视频精品| 久久精品91无色码中文字幕| av线在线观看网站| 欧美大码av| 国产男女超爽视频在线观看| 国产视频一区二区在线看| 亚洲成a人片在线一区二区| 久久中文看片网| 一本大道久久a久久精品| 国产精品偷伦视频观看了| 少妇精品久久久久久久| 一级毛片女人18水好多| 精品福利永久在线观看| 嫩草影视91久久| av一本久久久久| 极品教师在线免费播放| 另类精品久久| av又黄又爽大尺度在线免费看| 国产在线视频一区二区| 老司机在亚洲福利影院| 精品国产一区二区久久| 18禁国产床啪视频网站| 我要看黄色一级片免费的| 麻豆国产av国片精品| 久久精品熟女亚洲av麻豆精品| 午夜福利视频精品| 日韩大码丰满熟妇| 午夜福利视频在线观看免费| xxxhd国产人妻xxx| 老鸭窝网址在线观看| av天堂在线播放| 黄片播放在线免费| 男女下面插进去视频免费观看| 久久久久久人人人人人| 在线播放国产精品三级| 精品国产乱码久久久久久男人| 婷婷成人精品国产| 国产精品免费大片| 午夜福利免费观看在线| 一区二区三区激情视频| 欧美成人免费av一区二区三区 | 国产精品自产拍在线观看55亚洲 | 国产亚洲一区二区精品| 亚洲全国av大片| 久久精品亚洲av国产电影网| 女人被躁到高潮嗷嗷叫费观| 国产成人av教育| 日本五十路高清|