• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Decoupling of temporal/spatial broadening effects in Doppler wind LiDAR by 2D spectral analysis

    2024-03-25 09:30:28ZhenLiu劉珍YunPengZhang張云鵬XiaoPengZhu竹孝鵬JiQiaoLiu劉繼橋DeCangBi畢德倉andWeiBiaoChen陳衛(wèi)標
    Chinese Physics B 2024年3期

    Zhen Liu(劉珍), Yun-Peng Zhang(張云鵬), Xiao-Peng Zhu(竹孝鵬), Ji-Qiao Liu(劉繼橋),De-Cang Bi(畢德倉), and Wei-Biao Chen(陳衛(wèi)標),?

    1Space Laser Engineering Department,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: Doppler wind LiDAR,spectral analysis,hardware efficiency,spectrum broadening effects

    1.Introduction

    Wind data is important in fields such as environmental monitoring,[1]aviation safety,[2,3]wind energy site selection,[4]and weather forecasting.[1,5]For example,the numerical meteorological model is composed of fundamental components, such as wind, humidity, temperature, and pressure,where high-accuracy wind information within the lower atmosphere is one of the most important parameters.[6,7]Li-DAR (light detection and ranging), a widely used optical remote sensing tool, plays an increasingly important role.[8-12]Coherent detection and direct detection are two schemes used in Doppler LiDAR to obtain wind information.[13]The main difference between these two methods lies in the extraction of Doppler frequency shifts.Compared with direct detection,[14]coherent detection has the advantages of a high signal-to-noise ratio, high detection sensitivity, insensitivity to background sunlight,and superior measurement accuracy.[15-17]

    To improve the accuracy of wind retrieval,it is necessary to perform an incoherent accumulation of echo pulses.[18]It is commonly assumed that the wind speed remains constant in this process.[18-20]In fact, wind speed may vary with time domain or space domain,leading the spectrum to broaden.[21]Therefore,the constant-wind assumption is not valid in certain situations, particularly in the presence of wind shear.Lowlevel wind shear, which is characterized by sudden temporal shift,spatial shift,and high intensity,is a hazardous meteorological phenomenon.[21,22]Global statistics from 1980 to 1996 recorded 621 significant aviation accidents,46%of which occurred during landings.Wind shear is a major cause of severe accidents.The main reason for this is the lack of highly accurate wind data.Therefore, it is imperative to consider the influence of wind shear on wind retrieval.

    To address this issue,we propose a two-dimensional(2D)spectral analysis method that partially relaxes the constantwind assumption and determines the optimal accumulation time for wind retrieval.Meanwhile,a field-programmable gate array(FPGA)-compatible algorithm called interpolated crosscorrelation (ICC) is employed in the processing of backscattered spectra,which improves the wind retrieval performance.By providing a finer digital spectrum shape, this method results in better spectrum moment accuracy and an extended detection range.Furthermore,we develop a strategy to decouple the temporal broadening effect and spatial broadening effect of the spectrum based on the relationship between the spectral width and accumulation time,facilitating an understanding of the causes of spectrum broadening.

    The rest of this paper is organized as follows.In Section 2, the principle of coherent Doppler wind LiDAR and the interpolated cross-correlation method are reviewed.In Section 3, the optimal accumulation time of pulse echo signal is discussed and the strategy that can decouple the temporal broadening effect and spatial broadening effect is presented.Finally, in Section 4, the conclusions are drawn from the present study.

    2.Principle of coherent Doppler wind LiDAR and interpolated cross-correlation method

    Figure 1 shows a schematic of the experimental setup for the coherent Doppler wind LiDAR, which is composed of a laser,transmit and receive optical path,telescope,heterodyne detection unit, data acquisition unit, and processing unit.[17]The single-frequency laser is operated at a central wavelength of 1540 nm.It is split into local oscillator (LO) and seed light by using a beam splitter(BS).The seed light is chopped and frequency-shifted by 160 MHz by using an acousto-optic modulator(AOM)to produce pulsed light with a pulse width of 400 ns and a repetition frequency of 5 kHz.After being amplified by using an erbium-doped fiber amplifier(EDFA),the laser pulses are transmitted to the circulator and emitted into the atmosphere through a telescope with an aperture of about 100 mm.Because the system employs a coaxial transceiver,the telescope also acts as a collector and receives backscattered signals from atmospheric aerosols.The received signal is combined with LO light by using a 2×2 mixer and detected by using a balanced detector(BD)with a bandwidth of 350 MHz.Finally,the received signal is processed by using an analog-todigital converter(ADC),FPGA,and personal computer(PC).

    Fig.1.Schematic diagram of coherent Doppler wind LiDAR experimental setup.

    In practical applications, to ensure the calculation speed of the hardware, the fast Fourier transform(FFT)point number in the FPGA is typically set to 512 or 1024.[23]When the sampling rate is high,the consequent high-frequency sampling interval leads the wind retrieval accuracy to deteriorate.Similarly, if the spectral width is calculated, the corresponding calculation error increases.The zero-padding method can be used to increase the number of fast FFT points.[24,25]Although it can effectively improve the sampling frequency of the spectrum, a significant computational load is introduced,which affects the real-time measurement capability.Data fitting[26]and cross-correlation.[27-30]are usually used to enhance the peak identification capability of signals interfered by noise.However, nonlinear fitting is often subject to initial value dependency,and the iterative progress is unfriendly to the FPGA.Thus, we develop a hardware-efficient center frequency retrieval algorithm, which combines the crosscorrelation method and interpolation method.Furthermore,by reducing the sampling interval in the frequency domain, the accuracy of the spectral width calculation can be improved,especially in the scenarios with low signal-to-noise ratio or narrow spectral width.Then, we use the FFT properties for interpolation after cross-correlation.This method utilizes high hardware efficiency.

    The cross-correlation in the frequency domain is equivalent to multiplication in the time domain, and interpolation can be realized with zero padding during the FFT.[31]Therefore,the ICC algorithm inherits the hardware efficiency of the FFT algorithm.The reference spectrum used in the crosscorrelation is derived from a pulsed laser.We perform an FFT on a Gaussian pulse to obtain the corresponding reference spectrum.Because a Gaussian pulse is a real symmetrical signal,the reference spectrum is also real and symmetrical.

    Fig.2.(a) Backscattered spectrum at 4400 m and (b) wind retrieval results before and after interpolated cross-correlation(ICC).

    First, an inverse fast Fourier transform (IFFT) is performed on the backscattered and reference spectra to obtain their equivalent time-domain signals (ETS).The ETS of the cross-correlation of spectrum is obtained by multiplying the two equivalent time domain signals, namely, the backscattering spectrum and reference spectrum.Finally, the crosscorrelation spectrum is obtained from the magnitude of the Fourier-transformed ETS, and zero padding is performed in the last FFT process to realize interpolation.The entire process can be expressed by

    where PSD stands for the power spectral density and the subscripts m,ref,andxcorr refer to the measured signal,reference signal,and their cross-correlation,respectively.The advantage of this method in computational complexity is that only one zero padding is needed on the cumulative spectrum instead of the echo of each pulse.

    To better illustrate the effectiveness of this approach,the backscattered spectra before and after ICC at a detection distance of 4400 m are shown in Fig.2(a)as an example.The frequency sampling intervals before and after ICC are 0.98 MHz and 0.03 MHz, respectively.It is evident that the signal peak becomes more prominent and the spectrum becomes smoother after ICC,which can be beneficial to Doppler frequency shift and spectral width retrieval.Figure 2(b)presents the wind retrieval results before and after ICC,demonstrating that a finer wind-field structure can be obtained after ICC.In addition,some wind retrieval fluctuations occur about 4800 m before the ICC, whereas they do not occur after the ICC.This indicates that the ICC method can improve detection performance to a certain extent.

    3.Results and discussion

    The accumulation time can be optimized by using the ICC algorithm.Considering the potential temporal or spatial variability of the wind field,pulse accumulation time should be as short as possible.However, if the pulse accumulation number is too small,the signal is seriously disturbed by noise.[32]Therefore, it is necessary to balance the pulse accumulation number with the influence of the noise.In order to achieve this balance,the minimum pulse accumulation number is set as the basic processing unit.The optimal pulse accumulation time is then determined by comparing the PSD of the backscattered spectra[33]with different pulse accumulation numbers.

    Specifically, the wind speed at the same detection distance is retrieved by block averaging when the values of pulse accumulation numberNare 50, 100, 125, and 200 as shown in Fig.3.It can be seen from Figs.3(a) and 3(b) that the wind retrieval results are inaccurate whenNis small.In contrast, whenN= 125, the wind retrieval results are between-3.7 m/s and-2.9 m/s, which is relatively reasonable as shown in Fig.3(c).WhenN=200,the wind retrieval results are similar to those forN=125 as shown in Fig.3(d).Therefore, we set the minimum pulse accumulation number to 125 for the subsequent analysis.

    Fig.3.Wind retrieval results at the same detection distance with accumulation number N=50(a),100(b),125(c),and 200(d).

    Figure 4 shows the PSDs of wind speed within the 5000-m range,corresponding to accumulation time of 0.1 s,0.25 s,and 0.5 s,respectively.From Fig.4 it can follow that the optimal accumulation time can be determined for a given range and atmosphere condition.The variability in wind data is attributed to wind turbulence,which follows Kolmogorov’s law,and its PSD is directly proportional tof-5/3.[34]The log-log plot of the PSD shows that the fitted wind turbulence slope of-1.8 matches the Kolmogorov turbulence slope of-5/3 closely as shown by the solid red lines and dashed purple lines in Fig.4.The root mean square (RMS) of the wind speed measurement error is estimated by integrating the noise at the lower end of the spectrum.Figure 4(a) shows that the frequency at which the PSD begins to flatten (i.e., the frequency cutoff) is 3.54 Hz, corresponding to an RMS value of 0.234 m/s.In other words, when the accumulation time is less than 0.28 s, the accuracy of the wind speed measurement cannot be improved any more.The accumulation time shown in Fig.4(b)is close to the optimal accumulation time,which minimizes the redundancy and loss of wind information.Conversely, the accumulation time in Fig.4(c) is too long, resulting in a noticeable loss of wind data.Therefore,the pulse accumulation time of 0.25 s will be adopted.It is important to note that the specific scenarios may require caseby-case analysis to determine the optimal accumulation time based on measured wind data.

    Fig.4.Wind PSD at different accumulation time 0.1 s(a),0.25 s(b),0.5 s(c).

    Fig.5.(a) Radial wind speed varying with distance and (b) backscattered spectra in wind shear region.

    Figure 5(a)displays the wind speed measured at a specific time,where the locations with rapid wind speed changes indicate the phenomenon of wind shear as reflected by large gradients in the wind speed profile.As an example,the backscattered spectra corresponding to the wind data in the red dotted box of Fig.5(a)are shown in Fig.5(b).It is obvious that the position of the spectral peak is shifted and the spectrum is broadened within 270 m, which indicates the existence of wind shear.[35]

    In order to effectively identify and explore the cause of wind shear, we propose a decoupling strategy for temporal/spatial broadening effects[35,36]to better understand the wind shear.As shown in Fig.6,this strategy relies mainly on the analysis of the value and trend of the spectral width.The spectral width is evaluated at different accumulation times,and the broadening effects are classified through two criteria,focusing on the minimum value and the trend of the spectral width.The minimum width criterion is related to the spatial broadening effect,and the trend criterion is dependent on temporal broadening effect.The two criteria can be explained as follows.

    Figure 7 shows four typical evolution patterns of the spectral widths.The blue curve shows that the spectral width first decreases and then stabilizes with an increase with accumulation time increasing,and the minimum spectral width is close to an ideal spectral width, indicating that neither temporal broadening effect nor spatial broadening effect exists at this position.The orange curve shows that the spectral width first decreases and then increases with accumulation time increasing,which reveals that the spectral peak at this position moves with time.As the accumulation time increases, the spectrum broadens, indicating a temporal broadening effect.The performance trend of the black curve is the same as that of the blue curve, except that the minimum spectral width exceeds the ideal spectral width.In addition, the accumulation time corresponding to flattening is shorter,indicating that there are multiple changes in the wind speed within a distance gate,implying spatial broadening effects.The purple curve indicates both temporal broadening effect and spatial broadening effect at this location.Notably,for all four curves,the spectral width decreases with the increase of accumulation time within 0.1 s.The main reason for this is that the signal is more seriously affected by noise when the accumulation time is too short;therefore,the estimation of spectral width is inaccurate.

    Fig.6.Flowchart of decoupling of temporal broadening effect and spatial broadening effect.

    Fig.7.Spectral widths varying with accumulation time.

    4.Conclusions

    In this work, we analyzed the signal spectrum of a coherent Doppler LiDAR and introduced a 2D spectral analysis method to enhance the retrieval capability of Doppler signals.An ICC method is proposed to improve the retrieval precision of the Doppler frequency and spectral width with low computational load.By relaxing the assumption of wind field stability during multi-pulse accumulation, we developed a strategy to obtain an optimal accumulation time and decouple the temporal broadening effect, and spatial broadening effect of the wind shear.The proposed method is validated experimentally,and can have further implications in areas like aviation safety.

    Acknowledgement

    Project supported by the Shanghai Science and Technology Innovation Action(Grant No.22dz1208700).

    亚洲欧美精品综合久久99| 麻豆国产av国片精品| 色综合站精品国产| 免费高清在线观看日韩| 亚洲欧美激情综合另类| 亚洲成国产人片在线观看| 最新在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产aⅴ精品一区二区三区波| 免费无遮挡裸体视频| 亚洲自拍偷在线| 久久天堂一区二区三区四区| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 日韩 欧美 亚洲 中文字幕| 黑丝袜美女国产一区| 国产极品粉嫩免费观看在线| 可以免费在线观看a视频的电影网站| 亚洲国产欧美网| 久久久久久人人人人人| 亚洲av电影在线进入| 免费看美女性在线毛片视频| 中文字幕色久视频| 亚洲专区字幕在线| 欧美在线黄色| 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片| 狂野欧美激情性xxxx| 国产亚洲精品av在线| 成人国产一区最新在线观看| 嫩草影院精品99| 99久久国产精品久久久| 精品高清国产在线一区| 国产亚洲精品第一综合不卡| 国产精品av久久久久免费| 精品无人区乱码1区二区| 看黄色毛片网站| 好男人电影高清在线观看| 99在线人妻在线中文字幕| 高清毛片免费观看视频网站| 亚洲欧美日韩高清在线视频| 18禁观看日本| 少妇裸体淫交视频免费看高清 | 黑丝袜美女国产一区| 国产成人一区二区三区免费视频网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲伊人色综图| 90打野战视频偷拍视频| 国产单亲对白刺激| 岛国在线观看网站| 一a级毛片在线观看| 男女下面插进去视频免费观看| 中出人妻视频一区二区| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| 亚洲精华国产精华精| www.精华液| 免费无遮挡裸体视频| 两个人免费观看高清视频| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕| 国产精品98久久久久久宅男小说| 黄色女人牲交| 波多野结衣一区麻豆| 国产成人av激情在线播放| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 99精品在免费线老司机午夜| 人人妻,人人澡人人爽秒播| 久久久久久久午夜电影| 人人妻人人澡人人看| 亚洲在线自拍视频| 麻豆久久精品国产亚洲av| 亚洲av成人av| 女人精品久久久久毛片| 美女国产高潮福利片在线看| 午夜福利,免费看| 成人手机av| 啦啦啦观看免费观看视频高清 | 成人国语在线视频| 国产成+人综合+亚洲专区| 久久久国产欧美日韩av| 18美女黄网站色大片免费观看| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡 | 手机成人av网站| 久久亚洲精品不卡| 亚洲色图 男人天堂 中文字幕| 脱女人内裤的视频| 久久人人精品亚洲av| 一夜夜www| 色av中文字幕| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 人妻久久中文字幕网| 一本大道久久a久久精品| 久久婷婷成人综合色麻豆| 免费看a级黄色片| 国产成年人精品一区二区| 亚洲av熟女| 日本撒尿小便嘘嘘汇集6| 久久人妻av系列| 久久精品国产综合久久久| 久久精品91蜜桃| АⅤ资源中文在线天堂| 亚洲 欧美一区二区三区| 日本黄色视频三级网站网址| 亚洲精品美女久久av网站| 日本一区二区免费在线视频| 午夜日韩欧美国产| 97人妻精品一区二区三区麻豆 | 99riav亚洲国产免费| 黄色a级毛片大全视频| 国产精品综合久久久久久久免费 | 啦啦啦韩国在线观看视频| 国产欧美日韩一区二区三区在线| 欧美激情高清一区二区三区| 伦理电影免费视频| 韩国精品一区二区三区| av超薄肉色丝袜交足视频| 黄片播放在线免费| 村上凉子中文字幕在线| 大香蕉久久成人网| 国产精品亚洲美女久久久| 午夜福利欧美成人| 久久午夜亚洲精品久久| 看黄色毛片网站| 日本欧美视频一区| 真人一进一出gif抽搐免费| 一级毛片高清免费大全| 日韩成人在线观看一区二区三区| 国产精品久久久久久人妻精品电影| 国产aⅴ精品一区二区三区波| 纯流量卡能插随身wifi吗| 黄色视频,在线免费观看| 成熟少妇高潮喷水视频| 一进一出抽搐gif免费好疼| 俄罗斯特黄特色一大片| 9色porny在线观看| 亚洲精品在线观看二区| av视频在线观看入口| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕一区二区三区有码在线看 | 午夜福利免费观看在线| 伦理电影免费视频| 久久人人精品亚洲av| 午夜福利在线观看吧| 我的亚洲天堂| 国产xxxxx性猛交| 久久精品成人免费网站| 可以在线观看毛片的网站| 最好的美女福利视频网| a在线观看视频网站| 日日夜夜操网爽| 亚洲美女黄片视频| 午夜福利在线观看吧| 日日爽夜夜爽网站| 精品国产美女av久久久久小说| 欧美日韩一级在线毛片| 成年版毛片免费区| 91成年电影在线观看| 精品午夜福利视频在线观看一区| 欧美一区二区精品小视频在线| 国产伦人伦偷精品视频| 亚洲色图综合在线观看| 免费少妇av软件| 青草久久国产| 女人爽到高潮嗷嗷叫在线视频| 国产高清激情床上av| 亚洲色图 男人天堂 中文字幕| 女人爽到高潮嗷嗷叫在线视频| 午夜福利一区二区在线看| 国产熟女午夜一区二区三区| 国产免费男女视频| 国产成年人精品一区二区| e午夜精品久久久久久久| 国产精品99久久99久久久不卡| 十八禁网站免费在线| 欧美丝袜亚洲另类 | 精品一区二区三区四区五区乱码| 亚洲成人免费电影在线观看| а√天堂www在线а√下载| 两个人看的免费小视频| 日本五十路高清| 一级片免费观看大全| 亚洲 欧美一区二区三区| 日本欧美视频一区| 精品国产一区二区久久| 一二三四在线观看免费中文在| 黄色视频不卡| 成人18禁在线播放| 亚洲欧美日韩无卡精品| 操出白浆在线播放| 国产亚洲精品久久久久久毛片| 国产成人精品在线电影| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 久久精品国产亚洲av高清一级| 亚洲情色 制服丝袜| 91成人精品电影| 黄片大片在线免费观看| www日本在线高清视频| 人人妻人人爽人人添夜夜欢视频| 精品欧美一区二区三区在线| 18禁观看日本| 亚洲成av人片免费观看| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 亚洲天堂国产精品一区在线| 精品国产一区二区三区四区第35| 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| 国产亚洲精品久久久久5区| 欧美大码av| 午夜福利18| 成人手机av| 欧美国产精品va在线观看不卡| АⅤ资源中文在线天堂| 91大片在线观看| 亚洲自拍偷在线| 欧美成狂野欧美在线观看| 一本综合久久免费| 久久香蕉国产精品| 九色国产91popny在线| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 欧美日韩黄片免| 亚洲精品中文字幕一二三四区| 亚洲色图综合在线观看| 精品乱码久久久久久99久播| 国产激情久久老熟女| 午夜精品国产一区二区电影| 男人的好看免费观看在线视频 | netflix在线观看网站| 久久精品国产清高在天天线| 老司机福利观看| 91字幕亚洲| 中国美女看黄片| 成人永久免费在线观看视频| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 国产xxxxx性猛交| 18禁黄网站禁片午夜丰满| 又紧又爽又黄一区二区| 亚洲av熟女| 亚洲中文日韩欧美视频| 亚洲精品美女久久av网站| 午夜久久久在线观看| 伊人久久大香线蕉亚洲五| a在线观看视频网站| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 18禁国产床啪视频网站| 人妻久久中文字幕网| 亚洲av成人不卡在线观看播放网| 69精品国产乱码久久久| 精品国产亚洲在线| 一本久久中文字幕| 欧美精品亚洲一区二区| 69av精品久久久久久| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 9色porny在线观看| 宅男免费午夜| 成人18禁在线播放| 精品人妻在线不人妻| 成人国语在线视频| 欧美日本亚洲视频在线播放| 女警被强在线播放| 国产成人欧美| 嫁个100分男人电影在线观看| 欧美精品啪啪一区二区三区| 久久人妻熟女aⅴ| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 国产人伦9x9x在线观看| 国产精品久久久久久精品电影 | 色老头精品视频在线观看| 精品久久久久久久毛片微露脸| 精品国产乱子伦一区二区三区| 日韩欧美一区视频在线观看| 精品日产1卡2卡| 午夜免费成人在线视频| 国产麻豆成人av免费视频| 亚洲熟女毛片儿| 欧美成人性av电影在线观看| 一本大道久久a久久精品| 亚洲av日韩精品久久久久久密| 九色国产91popny在线| 在线观看一区二区三区| 精品无人区乱码1区二区| 国产精品98久久久久久宅男小说| 国产又色又爽无遮挡免费看| 亚洲欧美精品综合一区二区三区| 亚洲电影在线观看av| videosex国产| 99久久精品国产亚洲精品| 久热爱精品视频在线9| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成77777在线视频| 女人精品久久久久毛片| 女性被躁到高潮视频| 丰满的人妻完整版| 禁无遮挡网站| 男男h啪啪无遮挡| 国产野战对白在线观看| 大型av网站在线播放| 正在播放国产对白刺激| 国产精品综合久久久久久久免费 | 国产97色在线日韩免费| 欧美乱色亚洲激情| 久热这里只有精品99| 男人操女人黄网站| 黄色毛片三级朝国网站| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久亚洲精品国产蜜桃av| 久久人人精品亚洲av| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 女警被强在线播放| 日韩精品青青久久久久久| 69精品国产乱码久久久| 精品电影一区二区在线| 三级毛片av免费| 免费在线观看影片大全网站| 给我免费播放毛片高清在线观看| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 欧美日韩精品网址| 亚洲精华国产精华精| 精品福利观看| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 又大又爽又粗| 中文亚洲av片在线观看爽| 麻豆av在线久日| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 久久影院123| 欧美大码av| 最近最新中文字幕大全电影3 | 亚洲一区高清亚洲精品| 久久国产精品影院| 免费av毛片视频| 一区二区三区精品91| 色综合婷婷激情| 欧美黑人精品巨大| 欧洲精品卡2卡3卡4卡5卡区| 久久精品aⅴ一区二区三区四区| 成人亚洲精品av一区二区| 国产又爽黄色视频| 法律面前人人平等表现在哪些方面| 日韩精品免费视频一区二区三区| 成人18禁在线播放| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 亚洲第一青青草原| 国产成人av激情在线播放| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 久久香蕉国产精品| 国产亚洲精品av在线| 极品教师在线免费播放| 欧美日本视频| 亚洲七黄色美女视频| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 亚洲av五月六月丁香网| 国产精品久久视频播放| 久久久久久免费高清国产稀缺| 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| 亚洲免费av在线视频| 亚洲成人精品中文字幕电影| 欧美另类亚洲清纯唯美| 亚洲激情在线av| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 麻豆一二三区av精品| 国产成人精品在线电影| 亚洲自偷自拍图片 自拍| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 国产精品久久久久久人妻精品电影| 欧美日韩精品网址| 大香蕉久久成人网| 精品电影一区二区在线| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 久久久水蜜桃国产精品网| 成人欧美大片| 日韩视频一区二区在线观看| 色婷婷久久久亚洲欧美| 久久精品91无色码中文字幕| 亚洲一区二区三区色噜噜| 波多野结衣一区麻豆| 精品电影一区二区在线| 免费在线观看亚洲国产| 97人妻精品一区二区三区麻豆 | 国产精品电影一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲国产精品合色在线| 18禁裸乳无遮挡免费网站照片 | 色在线成人网| 美女扒开内裤让男人捅视频| 亚洲视频免费观看视频| 夜夜躁狠狠躁天天躁| 天堂√8在线中文| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 亚洲熟女毛片儿| 国产欧美日韩一区二区精品| 日本五十路高清| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| av天堂久久9| 日本精品一区二区三区蜜桃| 亚洲国产欧美网| 国产精品二区激情视频| 夜夜躁狠狠躁天天躁| 久久久久久久午夜电影| 天天一区二区日本电影三级 | 久久久久久人人人人人| 十分钟在线观看高清视频www| 巨乳人妻的诱惑在线观看| 丰满人妻熟妇乱又伦精品不卡| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 亚洲av第一区精品v没综合| 精品福利观看| 后天国语完整版免费观看| www.自偷自拍.com| 久久久久久亚洲精品国产蜜桃av| 97人妻精品一区二区三区麻豆 | 一级毛片高清免费大全| 狠狠狠狠99中文字幕| 九色亚洲精品在线播放| 欧美人与性动交α欧美精品济南到| 大型黄色视频在线免费观看| 大码成人一级视频| 国产免费av片在线观看野外av| 我的亚洲天堂| 丝袜美腿诱惑在线| 在线观看66精品国产| 后天国语完整版免费观看| 国产精品影院久久| 黄色丝袜av网址大全| 美女高潮喷水抽搐中文字幕| 精品卡一卡二卡四卡免费| 狠狠狠狠99中文字幕| 在线观看免费视频日本深夜| bbb黄色大片| 色在线成人网| 午夜久久久久精精品| 长腿黑丝高跟| 国产精品亚洲美女久久久| 国产精品 国内视频| 999精品在线视频| 欧美色欧美亚洲另类二区 | 脱女人内裤的视频| 黄频高清免费视频| 亚洲中文字幕日韩| 黄色片一级片一级黄色片| 一级a爱片免费观看的视频| 国内久久婷婷六月综合欲色啪| 99国产精品免费福利视频| 国产成人精品久久二区二区免费| 国产精品久久久久久人妻精品电影| 激情视频va一区二区三区| 美女 人体艺术 gogo| 美女午夜性视频免费| 亚洲天堂国产精品一区在线| 国产成人精品在线电影| 欧美精品亚洲一区二区| 欧美日韩福利视频一区二区| 搡老岳熟女国产| 9色porny在线观看| 黄色视频,在线免费观看| 欧美精品亚洲一区二区| 国产精品美女特级片免费视频播放器 | 91国产中文字幕| 乱人伦中国视频| 午夜久久久在线观看| 亚洲精品美女久久av网站| 无限看片的www在线观看| 日韩高清综合在线| 此物有八面人人有两片| 国产精品 欧美亚洲| 日韩三级视频一区二区三区| 色婷婷久久久亚洲欧美| 后天国语完整版免费观看| 久久久国产欧美日韩av| 九色国产91popny在线| 嫩草影院精品99| 亚洲专区国产一区二区| 日本一区二区免费在线视频| 在线观看免费视频网站a站| 亚洲 欧美一区二区三区| 日本a在线网址| 亚洲 欧美 日韩 在线 免费| 久久久久久亚洲精品国产蜜桃av| 亚洲第一青青草原| 亚洲一区二区三区不卡视频| 一边摸一边抽搐一进一小说| 亚洲全国av大片| 亚洲avbb在线观看| 久久久久久国产a免费观看| 岛国在线观看网站| 99精品久久久久人妻精品| 美女午夜性视频免费| 免费观看精品视频网站| av视频在线观看入口| 亚洲国产欧美日韩在线播放| 色av中文字幕| 国产三级黄色录像| 国语自产精品视频在线第100页| 中国美女看黄片| 夜夜看夜夜爽夜夜摸| 香蕉国产在线看| 精品福利观看| 色在线成人网| 可以免费在线观看a视频的电影网站| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 亚洲中文字幕一区二区三区有码在线看 | 亚洲五月天丁香| 九色亚洲精品在线播放| 十八禁人妻一区二区| 久久久久久免费高清国产稀缺| 免费在线观看黄色视频的| 纯流量卡能插随身wifi吗| 国产精品亚洲av一区麻豆| 一区二区日韩欧美中文字幕| 正在播放国产对白刺激| 日韩三级视频一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 日韩av在线大香蕉| 亚洲电影在线观看av| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| 免费久久久久久久精品成人欧美视频| 日韩欧美一区二区三区在线观看| 国产片内射在线| 变态另类丝袜制服| 亚洲午夜理论影院| 日本免费a在线| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 最好的美女福利视频网| www.熟女人妻精品国产| 欧美日本中文国产一区发布| 亚洲午夜理论影院| 老鸭窝网址在线观看| 不卡一级毛片| 国产97色在线日韩免费| 一进一出好大好爽视频| 亚洲色图综合在线观看| 国产精品自产拍在线观看55亚洲| 亚洲一区中文字幕在线| 一区二区三区精品91| 亚洲伊人色综图| 精品午夜福利视频在线观看一区| av视频免费观看在线观看| 亚洲在线自拍视频| 黄色视频,在线免费观看| 一二三四在线观看免费中文在| 别揉我奶头~嗯~啊~动态视频| 欧美日本亚洲视频在线播放| 国产激情久久老熟女| 中文字幕人妻丝袜一区二区| 色播在线永久视频| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 成人手机av| 亚洲专区中文字幕在线| 在线av久久热| av视频免费观看在线观看| 久久久久久久久免费视频了| 国产精品日韩av在线免费观看 | 久久久国产精品麻豆| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 999精品在线视频| 性少妇av在线| 一区二区日韩欧美中文字幕| 夜夜躁狠狠躁天天躁| 天天添夜夜摸| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 此物有八面人人有两片| 亚洲avbb在线观看| 91精品三级在线观看| 欧美乱码精品一区二区三区| 久久久久久久久久久久大奶| 色哟哟哟哟哟哟| 免费不卡黄色视频| 亚洲 欧美一区二区三区| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区| 可以在线观看的亚洲视频| 一进一出好大好爽视频| 少妇熟女aⅴ在线视频| 国内精品久久久久久久电影| 亚洲熟妇中文字幕五十中出| 一级a爱视频在线免费观看| 国产成人欧美在线观看|