• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering the spectra of photon triplets generated from micro/nanofiber

    2024-03-25 09:30:22ChuanQu瞿川DongqinGuo郭東琴XiaoxiaoLi李笑笑ZhenqiLiu劉振旗YiZhao趙義ShenghaiZhang張勝海andZhengtongWei衛(wèi)正統(tǒng)
    Chinese Physics B 2024年3期
    關(guān)鍵詞:正統(tǒng)

    Chuan Qu(瞿川), Dongqin Guo(郭東琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(劉振旗), Yi Zhao(趙義),Shenghai Zhang(張勝海), and Zhengtong Wei(衛(wèi)正統(tǒng))

    The College of Basic Department,Information Engineering University,Zhengzhou 450000,China

    Keywords: photon triplets,micro/nanofiber,spectrum engineering

    1.Introduction

    Photons are well suited for the implementation of major quantum information processing (QIP) tasks, such as quantum computation,[1,2]quantum teleportation,[3]quantum key distribution,[4]and quantum metrology.[5]These photonicsbased QIP creates demands for sources of single photons[6,7]and of multiple photons[5,8]in quantum-entangled states.Indeed, over the past few decades, spontaneous parametric down-conversion (SPDC) in second-order nonlinear crystals,as well as spontaneous four-wave mixing (SFWM) in thirdorder nonlinear fibers,have emerged as the primary choices for entangled photon pair sources in many QIP experiments.[9,10]Importantly, photon triplet states have inherent advantages in generating Greenberger-Horne-Zeilinger (GHZ) states[11]and the heralded generation of photon pairs.[12]Several methods have been reported for generating photon triplets, including cascaded photon pair processes[13]and quantumdot molecule schemes.[14]Nevertheless, these methods are plagued by extremely low collection efficiencies.Third-order spontaneous parametric down-conversion (TOSPDC), the inverse process to third-harmonic generation (THG), where a pump photon is annihilated to simultaneously give birth to a photon triplet governed by energy and momentum conservation, may lead to the generation of GHZ states without post-selection.[15-17]Further,TOSPDC introduces three-mode squeezing operators to directly facilitate the realization of non-Gaussian states,[18,19]while two-mode squeezing operators lead to Gaussian squeezed states.Despite TOSPDC’s promising prospects for QIP, it confronts some technological challenges due to the weak third-order nonlinearity of typical optical materials and difficulties in achieving phase matching.[20]

    A micro/nanofiber is an optical fiber with a core diameter approaching the submicron scale, a size comparable to the wavelength of the transmitted light.Here, the effective nonlinear-optical coefficients are significantly enhanced due to the reduced mode area and field enhancement that results from tight confinement.[21,22]The typical method for fabricating micro/nanofiber involves heating and stretching standard optical fibers until they reach a predetermined diameter.[23]In addition, the use of direct mode cutoff feedback can significantly enhance the accuracy and precision of real-time diameter control during the fiber-pulling process.[23,24]Note that the cladding of the original fiber acts as the core confining light,while the surrounding air serves as the new cladding.It is such a large step in the refractive index that tightly confines the mode inside the core.Furthermore,phase matching is actually dependent on the chromatic dispersion of the fiber.The ability of a micro/nanofiber to support multiple transmission modes enables phase matching of TOSPDC through so-called intermodal phase matching, where the pump operates in a highorder mode while the photon triplets are in the fundamental mode.Also,waveguide dispersion contributes greatly to chromatic dispersion, suggesting that photon-triplet wavelengths can be widely tailored by changing the micro/nanofiber diameter.The pigtail of the micro/nanofiber is retained as a standard optical fiber, which is beneficial for accessing the fiber quantum network with minimal coupling loss.

    In this work, we study the spectrum engineering of photon triplets generated from micro/nanofibers and longperiod micro/nanofiber gratings.A multitude of theoretical and experimental studies have focused on realizing phase matching for degenerate signal frequencies to improve the efficiency of photon triplet generation, using methods such as fiber dispersion tuning,[25,26]nonlinear phase modulation enhancing[27]and quasi phase matching (QPM).[28-30]Some studies have validated these design schemes experimentally through THG.[17,20]Nonetheless, spectrum engineering, especially for non-degenerate photon triplets, has rarely been reported.In fact, phase mismatching at one-third pump frequency gives rise to non-degenerate photon triplets without a decrease in efficiency.An increased phase mismatching corresponds to a broader signal bandwidth,indicating that the collection efficiency of photon triplets decreases and the noise increases.Further,the photon triplets need to be separated into three channels for practical applications in QIP.To the best of our knowledge,we provide a frequency-division scheme with high heralding efficiency for the first time.Moreover,we propose a QPM scheme to generate tunable-wavelength photon triplets in a long-period micro/nanofiber grating.The results presented can also be extended to many optical materials and waveguide geometries where TOSPDC occurs.

    This paper is organized as follows.In Section 2, we introduce the quantum theory analysis of TOSPDC and give the expression of joint spectral amplitude.In Section 3,we investigate the ellipse locus of joint spectra, and based on this, in Section 4,we propose a frequency-division scheme to separate non-degenerate photon triplets into three channels.Also, we study the tunable-wavelength photon triplets based on QPM in Section 5.Conclusions and some perspectives are drawn in Section 6.

    2.Photon triplet states

    The TOSPDC process is a third-order optical nonlinear process, originating from the third-order susceptibilityχ(3).The annihilation of individual photons from the pump modes gives birth to photon triplets, as shown in Fig.1.The three emitted signal modes are referred to as signal-1 (r),signal-2 (s), and idler (i) with angular frequenciesωr,ωsandωi, respectively.Pump angular frequency is denoted asωp.This TOSPDC process occurs by satisfying the energy conservationωr+ωs+ωi=ωpand phase-matching condition Δβ=βp-βr-βs-βi-βNL=0,whereβj(j=p,r,s,i)is the mode propagation constant for the four participating fields andβNLis the nonlinear contribution resulting from cross and selfphase modulation.[22]Δβis known as the phase mismatch.The light-matter interaction Hamiltonian for the TOSPDC is given by[20,31]

    Fig.1.The TOSPDC process in micro/nanofiber.A pump photon decays into photon triplets.Additionally, the intensity distributions of the two mode fields are shown below.

    whereχ(3)is the cubic susceptibility, ?0is the vacuum permittivity and the integral is evaluated over the cubic interaction volumeVint.The subscript i denotes the idler, and the other i signifies the imaginary unit.We describe classically the strong pump fields, in terms of monochromatic pump, its positive-frequency components can be written as Therefore, we obtain the photon triplet states in terms of the fiber lengthL

    and joint spectral intensity (JSI)|?(ωr,ωs,ωi)|2is related to the probability of photon triplets emitted at frequencies ofωr,ωs, andωi.In Eq.(6), the product termγ2Iωrωsωi/ω2phas a slowly-varying dependence on frequency within the spectral range of interest,[15]such that we neglect this dependence and characterize the spectral properties of photon triplets with the joint spectral amplitude(JSA)?(ωr,ωs,ωi),given by

    In this case, the JSI|?(ωr,ωs,ωi)|2=L2sinc2(ΔβL/2) and thus phase matching Δβ=0 corresponds to the most efficient photon-triplet emission.

    Generally,the fulfillment of phase matching resorts to the so-called intra-modal phase matching,in which the pump is in a higher-order mode while the triplet photons are all in the fundamental mode(HE11mode).Here,the micro/nanofiber used to generate photon triplets has a submicron diameter,such that changing diameter drastically influences the contribution of waveguide dispersion to fiber dispersion.Figure 2(a) shows the effective refractive index of various modes versus the micro/nanofiber diameter.Here, the black curve denotes the fundamental mode with a wavelength of 1551 nm(angle frequencyω1), while the colorful curves represent higher-order modes with a wavelength of 517 nm (angle frequencyω3,ω3=3ω1).In the case of continuous-wave(CW)pump with low peak power,the nonlinear phase mismatchβNLis negligible and the phase matching is rewritten asneff(ω3)=neff(ω1)corresponding to the intersections between black curve and colorful curves.Even if multiple higher-order modes enable one to fulfill the phase matching of the TOSPDC process,most of them are inaccessible due to their poor overlap integralsfprsiand the difficulty in coupling pump into higher-order modes.The favorable regime occurs when the visible pump light is guided in the HE12mode,and the micro/nanofiber diameter is 767 nm,corresponding to the black dot in Fig.2(a).The pump wavelength ofλp0= 517 nm and the diameter ofd0=767 nm are referred to as reference values.Moreover,the intensity distributions of the HE11(ω1)mode and the HE12(ω3)mode are shown in Figs.2(b)and 2(c),respectively.It turns out that the overlap integral for the combination of HE11(ω1) and HE12(ω3) is the most efficient for generating photon triplets.[20]

    Fig.2.(a) The dependence of the effective refractive index neff on the micro/nanofiber diameter for various higher-order modes at a wavelength of 517 nm and for the fundamental mode at a wavelength of 1551 nm.(b) and (c) The intensity distributions in terms of HE11(ω1) mode and HE12(ω3)mode,respectively.

    3.Joint spectra with ellipse locus

    In the process of TOSPDC, the pump wavelength and micro/nanofiber diameter may deviate slightly from their reference values, whereas the rules of energy conservation and phase matching can still be satisfied resulting from nondegenerate photon-triplet frequencies.In addition, nondegenerate TOSPDC with phase matching also maintains efficient photon-triplet emission, unlike the process of THG.Figure 3 shows the results of simulated photon-triplet JSI in the space of{ωs,ωi,ωr}with brighter one representing higher probabilities of emission.As for the monochromatic pump,the JSI is pasted upon the plane ofωs+ωi+ωr=ωpdue to energy conservation.Thus, we project JSI onto the three coordinate planes to obtain each marginal distribution.Here,the pump wavelength is shifted by-0.2 nm withλp=516.8 nm.Obviously, the non-degenerate JSI has a form of closed-loop belt and is absent from an emission maximum at the loop center with frequency ofωp/3.

    Fig.3.JSI in the three-dimensional space of{ωs,ωi,ωr}in terms of the frequency non-degenerate configuration.The violet plane stands for the plane of ωs+ωi+ωr=ωp.Three marginal distributions are projected on the corresponding coordinate planes.

    In the case of non-degenerate frequency,R >0 gives rise to an ellipse-belt JSI in shape, while in the case of degenerate frequency,R= 0 gives rise to an ellipse-cake JSI in shape.The highest emission probabilities occur at frequencies satisfying the ellipse equation in Eq.(10) and they get identical probabilities for both of degenerate and nondegenerate cases above.Furthermore, degenerate photon triplets get a Gaussian-approximation output spectrum, while non-degenerate photon triplets get a concave output spectrum,as shown in Figs.4(b)and 4(d).The two highest values of the concave spectrum correspond to the left/right extreme points of ellipse;using analytic geometry methods,the bandwidth of the concave spectrum readsNote that there are multiple weak ellipse belts,attributing to the assistant peaks in sinc function plots,thus they rapidly oscillate and decay.

    Fig.4.JSIs in the {ωs,ωi} plane, corresponding to the marginal distribution, for the non-degenerate regime (a) and degenerate regime (c).Both JSIs are normalized by the total conversion probability.Additionally, their normalized output signal spectra are shown in panels (b) and(d), respectively.In panel (a), the red dashed curve, originating from Eq.(10),outlines an ellipse locus representing the highest emission probability.Two white arrows denote the major axis δ- and minor axis δ+,and they have 135° and 45° in intersection angle with the ωs axis, respectively.The location of the ellipse center is(2ωp/3,0)in {δ+,δ-}coordinate plane.

    4.Frequency-division scheme to separate photon triplets into three channels

    A critical procedure for a TOSPDC photon-triplet source to be practically applied to quantum information technology is to separate photon triplets into three frequency channels.Hence,detecting one of the photon triplets heralds the remaining photon pairs.Fortunately,in terms of non-degenerate photon triplets,the fixed eccentricityin the ellipse locus of JSI provides an option of the frequency-division scheme with high-enough heralding efficiency.The frequency-division scheme we give is shown in Fig.5, wherein the simulation parameters of JSI are identical to that in Fig.4(a).Here, the diagonal line in equation ofωs=ωiintersects the ellipse of perfect phase matching at two points,accordingly,we can divide the whole spectrum into three channels.

    We assume an ideal rectangular filter and that channels 1,2 and 3 are of identical bandwidth.Therefore, we can obtain visually the channels in which s-signal and i-signal photons are located from the marginal JSI in the{ωs,ωi}plane.Identifying the channel where r-signal photons are located is crucial for increasing efficiency.Ifωs+ωi=2ωp/3+νwithνrepresenting the frequency deviation,we haveωr=ωp/3-ν.For example,in terms of point A in Fig.5,νindicates the vertical distance from the white dashed lineωs+ωi=2ωp/3.Then we move the point(ωp/3,ωp/3)with-νto obtain the channel of r-signal photons.Particularly, the heralding efficiency in terms of Fig.5 is up to 94.4%.

    Fig.5.Frequency-division scheme to separate non-degenerate photon triplets into three channels.The frequency-division channels 1, 2 and 3 are divided by the red lines.The coordinate equation for the white dashed line is ωs+ωi =2ωp/3 and the coordinate equations for the two solid lines are ωs+ωi=2ωp/3±R/.Thus,these shadow regions represent that photon triplets can not be absolutely separated, resulting in a slight decrease in heralding efficiency.

    In Fig.5,these shadow regions correspond to that photon triplets may not be absolutely separated into three channels,while other regions correspond to complete separation.Obviously, a degenerate source of photon triplets will give rise to a low heralding efficiency.In fact, the decrease in heralding efficiency mainly arises from the thickness of the ellipse belt as well as the assistant peaks of the sinc function.Both of the above-mentioned flaws can be mitigated by increasing the fiber length (see Eq.(9)).In addition, the broad ellipse loci suffer from a lot of fluorescent background,such that the frequency-division bands collecting signal photons should be set narrow enough to increase the signal-to-noise ratio.

    The frequency-division scheme is realised using a frequency divider.The fabrication of this frequency divider can utilize the same technologies as the wavelength-division multiplexer in fiber communication systems.Furthermore, in order to increase the heralding efficiency,the frequency-channel edge should be steep and the channel position in the spectrum should align with the preset value.

    Due to a fixed eccentricity of the ellipse locus,the bandwidth of photon triplets depends on the minor semi-axis lengthR.Figure 6 showsR2versus pump wavelength shiftsλp-λp0in terms of various micro/nanofiber diameter deviationsd-d0.The black dashed line marksR=0,indicating degenerate photon triplets.A positiveR2corresponds to non-degenerate photon triplets, while a negativeR2represents an unaccessible generation of photon triplets in the absence of phase matching.Obviously, around the reference value, the simultaneous decrease in micro/nanofiber diameter and increase in pump wavelength will result in the disappearance of photon triplets.As shown in Fig.7,the ellipse width can be adjusted by changing the diameter and pump wavelength.Due to the square root function form ofR, the ellipse loci in Figs.7(a) and 7(b) become denser from the inside out.Furthermore, changing the pump wavelength will move the ellipse center,while changing the diameter will keep the ellipse center fixed.Importantly,even if the diameter deviation from the reference value,resulting from micro/nanofiber fabrication error, may broaden the bandwidths of the photon triplets or destroy phase matching,choosing an appropriate pump wavelength can compensate for this error and give rise to a narrowband,non-degenerate photon triplet source, as illustrated in Fig.7(c).In addition, as can be seen from Fig.7(a),a pump with a wider spectrum will result in broadening the thickness of the ellipse belt, thereby lowering the heralding efficiency.Therefore,it is necessary to choose pumps with narrow enough bands.

    Fig.6.The R2 versus pump wavelength shifts Δλp=λp-λp0 in terms of various micro/nanofiber diameter deviations Δd=d-d0. λp0=517 nm and d0 =767 nm are the reference values for pump wavelength and micro/nanofiber diameter,respectively,to perform degenerate perfect phase matching.Point A corresponds to Δλp=0 and Δd=0.

    Fig.7.(a) Ellipse loci corresponding to various Δλp of 0 nm, -1 nm,-2 nm, -3 nm and -4 nm in the order from the inside out.(b) Ellipse loci corresponding to various Δd of 0 nm,5 nm,10 nm,15 nm and 20 nm in the order from the inside out.(c)JSI with Δλp=-6.42 nm and Δd =-10 nm.Some plots marked with capitals A-F correspond to the dots in Fig.6.

    5.Tunable-wavelength photon triplet generation

    Many applications of quantum information technique require multiple wavelengths, thus it is demanding to control the phase matching for adjusting the photon triplet wavelength.Phase matching mainly depends on the dispersion characteristics of fibers, whereas after finishing the fabrication of micro/nanofiber,its waveguide and material dispersion both are fixed, indicating a poor tunability of photon-triplet wavelength, as illustrated in Fig.6.Here, long-period micro/nanofiber grating emerges as a viable candidate for realizing tunable-wavelength photon triplet source, in which the periodic variation of dispersion along fiber length provides a new controllable degree of freedom to tailor phase matching.In general, the fiber grating is modeled as adding cosine oscillation term to the original refractive index, i.e.,n(z)=n0+Δncos(2πz/Λ),wheren0is the original refractive index,Δndenotes modulation depth of refractive index andΛis the grating pitch.[32]Note that Δnperforms differently for different fiber modes.Therefore, we rewrite the phase mismatching as

    whereapresents the original phase mismatch without the effects of grating, whileb=Δn3ωp/c-Δn1(ωs+ωi+ωr)/c,reduced tob=ωp(Δn3-Δn1)/caccording to energy conservation.Here,Δn3and Δn1denote the modulation depth of refractive index for HE12and HE11modes,respectively.Further,the accumulated phase mismatch from 0 tozcan be written as

    Figure 9 shows the JSIs ofq-order QPM by using longperiod micro/nanofiber gratings.The preset ones areq=2 andq=-2, respectively.JSI shows multiple concentric ellipse loci due to QPM, and each ellipse locus corresponds to aq.From the inside out,qincreases sequentially.Indeed,the minor semi-axis length of theq-order ellipse is given by

    On the one hand,as shown in Fig.9(a),no photon triplets are generated in such a homogeneous micro/nanofiber configuration due to the absence of phase matching, while QPM enables the regeneration of photon triplets.On the other hand,as shown in Fig.9(c), QPM can reduce the width of ellipse and thus improve the signal-to-noise ratio.Here,q=0 corresponds to the homogeneous micro/nanofiber.

    Fig.8.The plots of Bessel function Jq(x)for various q.Parity,Jq(-x)=(-1)qJq(x).

    Fig.9.(a) and (c) JSIs for the q-order QPM.Panels (b) and (d) are the normalized output signal spectra of TOSPDC corresponding to panels (a) and (c), respectively.The diameter of micro/nanofiber is the reference value 767 nm, fiber length L=5 cm and grating pitch Λ =800 μm.Δn3-Δn1 =0.00198 and λp =519.75 nm for panels (a) and(b),Δn3-Δn1=0.00196 and λp=514.24 nm for panels(c)and(d).

    To enhance the intensity of presetq-order ellipse locus and reduce the influences of other orders,the modulation depth of refractive index needs to be set at a proper value in whichbΛ/2πcorresponds to the first extreme point ofJq(x).Thus,it is necessary to change the modulation depth of the refractive index as needed.Here, we provide a feasible suggestion that mechanically induced long-period fiber gratings,as discussed in Refs.[33,34].Moreover,the thickness of outer ellipse belts is too thin to accumulate stronger intensity contributions.Figures 9(b) and 9(d) show that the outer ellipse loci contribute much to the overall output spectra,but these contributions are mainly concentrated outside the frequency-division band, at the same time,the central part of the spectra corresponding to the preset ellipse locus exhibits a very prominent intensity.Using the frequency-division scheme presented in Section 4,we can effectively eliminate the influences from undesired orders of QPM.

    6.Conclusion

    We theoretically investigate the engineering of photontriplet spectra generated from micro/nanofiber.Firstly, we provide the expression of JSA in the process of TOSPDC.Indeed,the JSI is correlated with the probability of photon-triplet emission.The most efficient emission occurs when phase matching is fulfilled,resorting to intra-modal phase matching

    where the pump is in HE12mode while the photon triplets are all in HE11mode.Further, the two-dimensional JSI shows an ellipse locus with a fixed eccentricity ofAccordingly,we present a frequency-division scheme to separate photon triplets into three channels with high heralding efficiency.The decrease in heralding efficiency primarily results from the thickness of the ellipse belt as well as the assistant peaks of the sinc function.Both of them can be mitigated by increasing the fiber length.In particular, the width of the ellipse locus depends on the phase mismatching at one-third pump frequency,such that one can adjust the width of the ellipse locus via changing pump wavelength or micro/nanofiber diameter.Importantly, choosing an appropriate pump wavelength can compensate micro/nanofiber fabrication errors and give rise to a narrowband non-degenerate photon triplet source with a high signal-to-noise ratio.Notably, long-period micro/nanofiber gratings exhibiting periodic oscillation of dispersion along the fiber length provide a new controllable degree of freedom to tailor phase matching.Thus, QPM is introduced and plays a dominant role in the generation of tunable-wavelength photon triplets.We believe that this work provides a unique pathway towards tunable-wavelength photon triplet sources with high signal-to-noise ratios for applications in quantum information technologies.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No.61605249) and the Science and Technology Key Project of Henan Province of China (Grant Nos.182102210577 and 232102211086).

    猜你喜歡
    正統(tǒng)
    正“入春”
    智族GQ(2022年1期)2022-02-18 09:51:07
    北魏政權(quán)正統(tǒng)之爭(zhēng)研究
    正統(tǒng)的場(chǎng)合
    正統(tǒng)的場(chǎng)合
    正統(tǒng)的場(chǎng)合
    試論金代塑造正統(tǒng)地位的舉措——以祭祀名山大川為例
    正統(tǒng)意識(shí)與民間信仰對(duì)《單刀會(huì)》創(chuàng)作的雙重滲透
    可行性指南長(zhǎng)袍正統(tǒng)款
    Coco薇(2015年10期)2015-10-19 00:46:49
    魏晉南北朝時(shí)期的正統(tǒng)之爭(zhēng)
    “正統(tǒng)四象說” 與“醫(yī)家四象說” 相關(guān)問題辨析
    国内少妇人妻偷人精品xxx网站| 好男人视频免费观看在线| 欧美精品亚洲一区二区| tube8黄色片| 免费大片黄手机在线观看| 制服丝袜香蕉在线| 少妇人妻久久综合中文| 丰满少妇做爰视频| av在线app专区| 亚洲欧美日韩东京热| 九草在线视频观看| 麻豆成人av视频| 成年女人在线观看亚洲视频| 亚洲国产精品国产精品| 亚洲不卡免费看| 韩国高清视频一区二区三区| 韩国高清视频一区二区三区| 极品教师在线视频| 成人二区视频| 直男gayav资源| 丝袜喷水一区| 老女人水多毛片| 乱码一卡2卡4卡精品| 国产 一区 欧美 日韩| av线在线观看网站| 女的被弄到高潮叫床怎么办| 欧美 日韩 精品 国产| 中文在线观看免费www的网站| 在线观看人妻少妇| 国产大屁股一区二区在线视频| 久久精品久久久久久久性| 国产精品国产三级国产专区5o| 尤物成人国产欧美一区二区三区| av.在线天堂| 99热网站在线观看| 热99国产精品久久久久久7| av在线app专区| .国产精品久久| 亚洲怡红院男人天堂| 亚洲色图综合在线观看| 熟妇人妻不卡中文字幕| 欧美日韩综合久久久久久| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 新久久久久国产一级毛片| 日本黄色日本黄色录像| 日韩中字成人| 欧美日韩国产mv在线观看视频 | 国产女主播在线喷水免费视频网站| 99久久精品热视频| 高清欧美精品videossex| 涩涩av久久男人的天堂| 高清午夜精品一区二区三区| 一边亲一边摸免费视频| 精品一区二区三区视频在线| 97超碰精品成人国产| 午夜日本视频在线| 观看美女的网站| 国产亚洲一区二区精品| 黄色配什么色好看| 一区二区av电影网| 夜夜骑夜夜射夜夜干| 观看免费一级毛片| 永久免费av网站大全| 91在线精品国自产拍蜜月| 99热全是精品| 欧美激情国产日韩精品一区| 视频区图区小说| 啦啦啦中文免费视频观看日本| 香蕉精品网在线| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 美女cb高潮喷水在线观看| 尤物成人国产欧美一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 我的女老师完整版在线观看| 久久久色成人| 蜜桃在线观看..| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 成年免费大片在线观看| 五月开心婷婷网| 3wmmmm亚洲av在线观看| 婷婷色综合www| 99热这里只有是精品50| 欧美三级亚洲精品| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 国产在线男女| 亚洲欧美日韩无卡精品| 欧美成人一区二区免费高清观看| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 天美传媒精品一区二区| 又爽又黄a免费视频| 国产精品久久久久久久电影| 免费av中文字幕在线| 久久久久性生活片| 亚洲色图av天堂| 菩萨蛮人人尽说江南好唐韦庄| av国产久精品久网站免费入址| 亚洲不卡免费看| 国产熟女欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产一区有黄有色的免费视频| 夜夜看夜夜爽夜夜摸| 又粗又硬又长又爽又黄的视频| av女优亚洲男人天堂| 久热这里只有精品99| 亚洲一区二区三区欧美精品| 久久韩国三级中文字幕| 精品一区二区三卡| 国产精品无大码| 在线观看免费高清a一片| 国产在线一区二区三区精| 全区人妻精品视频| 搡老乐熟女国产| 香蕉精品网在线| 夫妻性生交免费视频一级片| 国产精品三级大全| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲自偷自拍三级| 国产69精品久久久久777片| 亚洲欧美日韩东京热| 精品一区二区免费观看| 国产精品99久久99久久久不卡 | 成人美女网站在线观看视频| 亚洲真实伦在线观看| 国精品久久久久久国模美| 国产乱人偷精品视频| 国产成人精品久久久久久| 免费av中文字幕在线| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 女的被弄到高潮叫床怎么办| 身体一侧抽搐| 欧美一区二区亚洲| 一级av片app| 波野结衣二区三区在线| 又粗又硬又长又爽又黄的视频| 乱系列少妇在线播放| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 麻豆成人午夜福利视频| av视频免费观看在线观看| av在线蜜桃| 色哟哟·www| 丝袜脚勾引网站| 97超碰精品成人国产| 欧美bdsm另类| 国产老妇伦熟女老妇高清| kizo精华| 美女国产视频在线观看| 亚洲精品成人av观看孕妇| 欧美人与善性xxx| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 熟女av电影| 成人国产麻豆网| 国内精品宾馆在线| 国产一区二区三区综合在线观看 | 观看免费一级毛片| 国产精品无大码| 午夜福利影视在线免费观看| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 麻豆成人午夜福利视频| h日本视频在线播放| 午夜激情久久久久久久| 欧美极品一区二区三区四区| 高清黄色对白视频在线免费看 | 人妻系列 视频| 亚洲欧美日韩东京热| 亚洲国产av新网站| 国产精品久久久久久精品电影小说 | 波野结衣二区三区在线| 成人特级av手机在线观看| 晚上一个人看的免费电影| 全区人妻精品视频| 久久久久久久精品精品| 国产淫语在线视频| 日韩精品有码人妻一区| 久久久久国产精品人妻一区二区| 欧美最新免费一区二区三区| 欧美国产精品一级二级三级 | 亚洲国产日韩一区二区| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩另类电影网站 | 九色成人免费人妻av| 婷婷色av中文字幕| 久久热精品热| 久久97久久精品| 又黄又爽又刺激的免费视频.| 国产亚洲5aaaaa淫片| 一区二区三区免费毛片| 国产精品99久久久久久久久| 日韩av免费高清视频| 成人二区视频| 午夜福利在线观看免费完整高清在| 在线免费十八禁| 人妻 亚洲 视频| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 国产在线视频一区二区| 精品一区在线观看国产| 涩涩av久久男人的天堂| 亚洲精品,欧美精品| 好男人视频免费观看在线| 少妇的逼水好多| 久久99热这里只有精品18| 少妇人妻精品综合一区二区| 色综合色国产| 国产精品爽爽va在线观看网站| 午夜精品国产一区二区电影| 在线观看av片永久免费下载| 欧美成人一区二区免费高清观看| 高清视频免费观看一区二区| 在线观看三级黄色| 久久精品国产亚洲av天美| 精品人妻偷拍中文字幕| 夜夜骑夜夜射夜夜干| 欧美人与善性xxx| 一本色道久久久久久精品综合| 韩国高清视频一区二区三区| 国产永久视频网站| 美女cb高潮喷水在线观看| 亚洲,欧美,日韩| 国产男人的电影天堂91| 国产91av在线免费观看| 国产一区二区三区av在线| 热99国产精品久久久久久7| 国产色婷婷99| 国产精品一区二区在线观看99| 深夜a级毛片| 国国产精品蜜臀av免费| 精品久久久精品久久久| 亚洲国产成人一精品久久久| h视频一区二区三区| 日本色播在线视频| 五月天丁香电影| 亚洲国产日韩一区二区| 国产精品女同一区二区软件| 日韩一区二区视频免费看| 久久99热这里只有精品18| 日韩一区二区三区影片| 久久热精品热| 国产片特级美女逼逼视频| 伦理电影大哥的女人| 激情 狠狠 欧美| tube8黄色片| 最黄视频免费看| 少妇人妻精品综合一区二区| 熟女电影av网| av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 五月玫瑰六月丁香| av黄色大香蕉| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 各种免费的搞黄视频| 女的被弄到高潮叫床怎么办| 欧美日韩在线观看h| 久久久久网色| 午夜福利在线观看免费完整高清在| 啦啦啦视频在线资源免费观看| 赤兔流量卡办理| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 国产精品无大码| 乱系列少妇在线播放| 一级毛片黄色毛片免费观看视频| 天天躁日日操中文字幕| 国产精品一区二区三区四区免费观看| 天堂8中文在线网| 国产淫语在线视频| 国产成人精品婷婷| tube8黄色片| 日韩精品有码人妻一区| 在线亚洲精品国产二区图片欧美 | 一区二区三区免费毛片| 老熟女久久久| h日本视频在线播放| 久久久成人免费电影| 六月丁香七月| 成人综合一区亚洲| 一级毛片黄色毛片免费观看视频| 日韩中文字幕视频在线看片 | 国产精品人妻久久久久久| 久久精品国产亚洲av涩爱| 你懂的网址亚洲精品在线观看| 3wmmmm亚洲av在线观看| 黑人猛操日本美女一级片| 99热全是精品| 蜜桃在线观看..| 只有这里有精品99| 在线观看国产h片| 在线免费十八禁| 老女人水多毛片| 亚洲精品亚洲一区二区| 国产精品久久久久久精品电影小说 | 2018国产大陆天天弄谢| 夜夜爽夜夜爽视频| 欧美精品国产亚洲| 精品一区二区三卡| 久久人人爽人人爽人人片va| 亚洲第一av免费看| 亚洲自偷自拍三级| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲第一区二区三区不卡| 王馨瑶露胸无遮挡在线观看| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图| 青春草视频在线免费观看| 亚洲一级一片aⅴ在线观看| 老熟女久久久| 99热网站在线观看| 国产大屁股一区二区在线视频| 国内揄拍国产精品人妻在线| 熟妇人妻不卡中文字幕| 少妇人妻 视频| 国产v大片淫在线免费观看| 国产黄色免费在线视频| 日韩一区二区三区影片| 日韩av不卡免费在线播放| 一本一本综合久久| 边亲边吃奶的免费视频| 国产成人aa在线观看| 在线看a的网站| 午夜福利影视在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美清纯卡通| 永久网站在线| 麻豆成人午夜福利视频| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产| 国产爱豆传媒在线观看| 国产精品99久久99久久久不卡 | 精品国产露脸久久av麻豆| 亚洲欧美日韩卡通动漫| 国产成人精品福利久久| 欧美zozozo另类| 亚洲久久久国产精品| 欧美性感艳星| 国产在线视频一区二区| 国产成人免费无遮挡视频| 看免费成人av毛片| 免费观看无遮挡的男女| 国产白丝娇喘喷水9色精品| 国精品久久久久久国模美| 日韩国内少妇激情av| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区| 嫩草影院新地址| 亚洲久久久国产精品| 在线观看美女被高潮喷水网站| 国产毛片在线视频| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 国模一区二区三区四区视频| 成人亚洲精品一区在线观看 | 一级毛片aaaaaa免费看小| 国产欧美另类精品又又久久亚洲欧美| 大又大粗又爽又黄少妇毛片口| xxx大片免费视频| 精品久久久噜噜| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 成人特级av手机在线观看| 久久毛片免费看一区二区三区| 激情五月婷婷亚洲| 久久av网站| 青青草视频在线视频观看| 99久久精品一区二区三区| 中文精品一卡2卡3卡4更新| 久久久a久久爽久久v久久| 各种免费的搞黄视频| 国产成人精品一,二区| 五月玫瑰六月丁香| 午夜视频国产福利| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av涩爱| 啦啦啦中文免费视频观看日本| 免费大片黄手机在线观看| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 午夜日本视频在线| 国产一级毛片在线| 99久久精品热视频| 精品久久久噜噜| 一级a做视频免费观看| 欧美变态另类bdsm刘玥| 视频中文字幕在线观看| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| 成年美女黄网站色视频大全免费 | 亚洲国产最新在线播放| 亚洲av日韩在线播放| 人妻少妇偷人精品九色| 国产亚洲5aaaaa淫片| 国产精品伦人一区二区| 亚洲美女视频黄频| 免费黄频网站在线观看国产| 国产男人的电影天堂91| 蜜桃在线观看..| 国产综合精华液| www.av在线官网国产| 欧美成人a在线观看| 精品国产一区二区三区久久久樱花 | 高清在线视频一区二区三区| 国产精品人妻久久久影院| 最近中文字幕2019免费版| 97热精品久久久久久| 成年美女黄网站色视频大全免费 | 国产免费视频播放在线视频| 成人亚洲欧美一区二区av| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 婷婷色综合www| 亚洲av欧美aⅴ国产| 中文天堂在线官网| 亚洲天堂av无毛| 亚洲人成网站在线播| 一区二区av电影网| 久久国产精品男人的天堂亚洲 | 国产成人一区二区在线| 欧美zozozo另类| 精品国产一区二区三区久久久樱花 | 老女人水多毛片| 久久久国产一区二区| 国产精品国产av在线观看| 视频中文字幕在线观看| 黑丝袜美女国产一区| 亚洲四区av| 亚洲精品乱码久久久久久按摩| 免费看av在线观看网站| 亚洲国产精品专区欧美| 秋霞伦理黄片| 欧美日韩视频高清一区二区三区二| 精品酒店卫生间| 日韩免费高清中文字幕av| 亚洲av欧美aⅴ国产| 天堂俺去俺来也www色官网| 国产一区二区在线观看日韩| 最近最新中文字幕大全电影3| 午夜激情久久久久久久| 人人妻人人爽人人添夜夜欢视频 | 热99国产精品久久久久久7| 久久精品人妻少妇| 特大巨黑吊av在线直播| 久久久久视频综合| 国产精品人妻久久久久久| 国产高清有码在线观看视频| 国产熟女欧美一区二区| 在线免费观看不下载黄p国产| 亚洲精品日韩av片在线观看| 97在线人人人人妻| 欧美少妇被猛烈插入视频| 亚洲av二区三区四区| 国国产精品蜜臀av免费| 日本欧美视频一区| 国产欧美另类精品又又久久亚洲欧美| 少妇精品久久久久久久| 日韩大片免费观看网站| 欧美高清性xxxxhd video| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 十八禁网站网址无遮挡 | 国产精品三级大全| 精品一区二区三卡| 亚洲国产欧美在线一区| 极品少妇高潮喷水抽搐| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 国产免费一区二区三区四区乱码| 伊人久久精品亚洲午夜| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 国产视频首页在线观看| 人人妻人人看人人澡| 免费av中文字幕在线| 秋霞伦理黄片| 有码 亚洲区| 一级毛片aaaaaa免费看小| 国产国拍精品亚洲av在线观看| 国产色婷婷99| 国产亚洲91精品色在线| 夜夜爽夜夜爽视频| 在线观看三级黄色| 精品久久久噜噜| 国产男人的电影天堂91| 成人综合一区亚洲| 久久久国产一区二区| 成人一区二区视频在线观看| 国产精品免费大片| 免费人成在线观看视频色| 在线观看美女被高潮喷水网站| 人体艺术视频欧美日本| 国产精品国产三级国产专区5o| 国产精品秋霞免费鲁丝片| 午夜免费观看性视频| 日日摸夜夜添夜夜爱| 1000部很黄的大片| 亚洲国产精品999| 97热精品久久久久久| 亚洲精品视频女| 久久精品国产亚洲av天美| 有码 亚洲区| 国产成人精品福利久久| 国产精品一区www在线观看| 五月伊人婷婷丁香| 中文字幕久久专区| 亚洲,一卡二卡三卡| 成年美女黄网站色视频大全免费 | 久久久久网色| 最黄视频免费看| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久午夜乱码| av在线蜜桃| 晚上一个人看的免费电影| 啦啦啦在线观看免费高清www| 麻豆成人av视频| 久久国内精品自在自线图片| 精品人妻视频免费看| 在线观看一区二区三区激情| 嫩草影院新地址| 人妻夜夜爽99麻豆av| 欧美日韩亚洲高清精品| 国产成人精品婷婷| 精品酒店卫生间| 乱系列少妇在线播放| 少妇人妻 视频| 小蜜桃在线观看免费完整版高清| 久久午夜福利片| 这个男人来自地球电影免费观看 | 中文字幕亚洲精品专区| 亚洲内射少妇av| 女性生殖器流出的白浆| 亚洲精品第二区| 菩萨蛮人人尽说江南好唐韦庄| kizo精华| 毛片女人毛片| 一区在线观看完整版| 国产淫语在线视频| 国产精品久久久久久av不卡| 午夜福利在线在线| av在线老鸭窝| 国产高清有码在线观看视频| 国产爱豆传媒在线观看| 日日啪夜夜爽| 少妇裸体淫交视频免费看高清| 亚洲av日韩在线播放| 久久久久久久国产电影| 一级毛片电影观看| 99精国产麻豆久久婷婷| 婷婷色av中文字幕| 亚洲内射少妇av| 国产精品一区二区在线观看99| 麻豆乱淫一区二区| 亚洲自偷自拍三级| 大香蕉久久网| 一级黄片播放器| av免费在线看不卡| 伦精品一区二区三区| 成年人午夜在线观看视频| 日韩精品有码人妻一区| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 日韩中字成人| 午夜免费男女啪啪视频观看| 六月丁香七月| av播播在线观看一区| 夜夜爽夜夜爽视频| av卡一久久| 亚洲精品,欧美精品| 国产免费又黄又爽又色| av卡一久久| 日本与韩国留学比较| 最近最新中文字幕大全电影3| 免费大片18禁| 国产精品一区二区性色av| 欧美成人午夜免费资源| 深爱激情五月婷婷| 寂寞人妻少妇视频99o| 国产精品伦人一区二区| 国产精品欧美亚洲77777| 国产av码专区亚洲av| 极品教师在线视频| av一本久久久久| 日本免费在线观看一区| 女的被弄到高潮叫床怎么办| 成人特级av手机在线观看| 你懂的网址亚洲精品在线观看| 特大巨黑吊av在线直播| 国产亚洲最大av| 天堂中文最新版在线下载| 蜜桃久久精品国产亚洲av| 亚洲av电影在线观看一区二区三区| 在线看a的网站| 久久久久久久久久久丰满| 人人妻人人添人人爽欧美一区卜 | 亚洲av免费高清在线观看| 亚洲欧洲国产日韩| 中国美白少妇内射xxxbb|