• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of vacancy and external electric field on the electronic properties of the MoSi2N4/graphene heterostructure

    2024-03-25 09:33:02QianLiang梁前XiangyanLuo羅祥燕GuolinQian錢國林YuanfanWang王遠(yuǎn)帆YongchaoLiang梁永超andQuanXie謝泉
    Chinese Physics B 2024年3期

    Qian Liang(梁前), Xiangyan Luo(羅祥燕), Guolin Qian(錢國林),Yuanfan Wang(王遠(yuǎn)帆), Yongchao Liang(梁永超), and Quan Xie(謝泉)

    College of Big Data and Information Engineering,Institute of New Optoelectronic Materials and Technology,Guizhou University,Guiyang 550025,China

    Keywords: MoSi2N4,vacancy defects,external electric field,Schottky contacts

    1.Introduction

    In recent years, 2D materials have received much scientific attention due to their novel electronic transport, piezoelectric, optical and mechanical properties.[1-5]Among all 2D materials, graphene (Gr),[6,7]hexagonal boron nitride (h-BN),[8-10]phosphorene,[11,12]arsenene[13,14]and transitionmetal dichalcogenides (TMDs)[15-17]are the most important and widely researched.MoS2[18,19]is a typical representative of TMDs, which is extensively used as a channel material in transistors with promising application prospects.In particular,MoS2has great potential for applications in photocatalysis,[20]Li-ion batteries,[21]field-effect transistors (FETs),[22]energy storage,[23]sensors,[24]etc.Subsequently, the emergence of 2D van der Waals (vdW) heterostructures stacked by two 2D materials has surprised researchers with some unanticipated results.For instance, Zhanget al.[25]proved that MoS2/g-C3N4heterojunction enhances the hole separation and transfer ability of photogenerated electrons by broadening the spectral absorption range,showing excellent photocatalytic performance.Huanget al.[26]successfully synthesized a MoS2/Gr heterostructure using the facile hydrothermal method, and they found that the MoS2/Gr heterostructure exhibits preferable photo-response activity under the irradiation of sunlight.Mikhalevaet al.[27]reported that the combination of VS2monolayer with Gr has good lithium capacity, remarkable electronic conductance and high sorption/desorption rates,making it a promising anode material for Li-ion batteries.Neupaneet al.[28,29]investigated the Gr/MoS2heterostructure systematically using first-principles calculation.They found that non-magnetic Gr/MoS2heterostructure changes to magnetic material as a result of Mo site vacancy defects.Furthermore, the C vacancy defect also makes the original nonmagnetic water-adsorbed Gr/MoS2heterostructure into a magnetic system and the spins of electrons in 2s and 2p orbitals of C atoms give the principal effect of magnetism in wateradsorbed Gr/MoS2heterostructure materials with C sites vacancy defects.

    More recently, two new layered 2D materials, MoSi2N4(MSN) and WSi2N4(WSN), were successfully synthesized by Honget al.,[30]who used the chemical vapor deposition(CVD)method.They also predicted an emergingMA2Z4family by first-principles calculation,whereMis a transition metal(Mo,W,V,Nb,Ta,Ti,Zr,Hf or Cr),Ais Si or Ge,andZdenotes N, P or As.Luet al.[31]found that 2D MSN modified with 3d transition-metal (TM) atoms can be an effective alternative to noble metal-based catalysts for energy conversion and storage.By constructing a novel Janus MoSH/MSN heterostructure, Nguyenet al.[32]found that vertical strain and electric field can achieve n-p type Schottky contact transitions and even ohmic contacts.Xiaoet al.[33]systematically investigated the catalytic activity of TM atoms and non-metal atom-doped MSN monolayer for hydrogen evolution reaction(HER), and they found that the O, P, Fe and Nb atom-doped systems can be selected as promising HER electrocatalysts with relatively good structural stability.

    The electronic properties of 2D vdW heterostructures are sensitive to doping, adsorption, vacancy defect, biaxial strain and external electric field.In this contribution,we construct an MSN/Gr heterostructure and investigate the effects of vacancy and external electric field on the electronic properties of the MSN/Gr heterostructure based on density functional theory(DFT).First, we compare the band structure of the MSN/Gr heterostructure with the band structures of MSN and Gr, and find that it is a simple superposition of two monolayers.The calculated binding energy is-0.69 eV,and the negative binding energy proves that the MSN/Gr heterostructure we have built is stable.Then, we investigate the effect of vacancy defects on the magnetic properties,work function,charge transfer at the interface and electrostatic potential of MSN monolayer or MSN/Gr heterostructure, respectively.Finally, we study the modulation effect of the external electric field on the MSN/Gr heterostructure.

    2.Method

    First-principles calculations were performed to obtain the electronic properties of the intrinsic MSN/Gr heterostructure and its defective structures using the Viennaab initiosimulation package (VASP)[34,35]based on DFT.The exchangecorrelation potential between the interacted electrons was described by the generalized gradient approximation (GGA)with the Perdew-Burke-Ernzerhof(PBE)[36]functional.The projected augmented wave(PAW)potential[37]was used to describe the interactions between ionic cores and valence electrons.The plane-wave kinetic cutoff energy was set to be 500 eV and the reciprocal space was sampled with a 9×9×1 Monkhorst-Pack mesh grid.The convergence criteria for energy and force were set to be 1×10-6eV and 0.01 eV/°A,respectively.A vacuum layer of 15 °A was applied to avoid the interaction between adjacent periodic slabs.Moreover,the DFT-D3 method proposed by Grimme[38]was considered to correct the effect of vdW interaction.The Grimme DFT-D3 method is widely used and is thought to better describe the weak vdW interactions between the monolayer MSN and Gr than the DFT-D2 method.Instead of using a semi-empirical dispersion-correlated as in DFT-D2,the dispersion coefficients are now computedab initioby time-dependent DFT employing known recursion relations for the higher-multipole terms.

    3.Results and discussion

    3.1.Electronic properties of the MSN and MSN/Gr heterostructure without defects

    The optimized lattice constants of the MSN and Gr are 2.91 °A and 2.46 °A,respectively,which are in good agreement with other works.[39-41]As can be seen from the top views of the MSN and Gr (as shown in Fig.1(a) and 1(c)), MSN and Gr are both composed of hexatomic rings.From the side views,the MSN is built by an N-Si-N-Mo-N-Si-N septupleatomic layer and the Gr is built by a single-atomic layer.Figures 1(b)and 1(d)show the band structures of the monolayer MSN and Gr,and the Fermi level is set to zero.The calculated value of the band gap of the MSN is 1.80 eV,which is slightly smaller than the experimental results(1.94 eV),[30]but agrees with the results calculated by other researchers.[42]The conduction band minimum (CBM) and valence band maximum(VBM) of the MSN are located at the high-symmetryKandΓpoints in the Brillouin zone, respectively.The CBM and VBM are located at different high-symmetry points in the Brillouin zone,so the MSN is an indirect band gap semiconductor.However,the calculated value of the band gap of the Gr is approximately equal to zero with the Fermi level just passing through the Dirac point.The Dirac cone of the Gr is located at the high-symmetryKpoint.The energy and momentum of the electrons both have a linear dispersion relationship,which makes the effective mass of Gr relativistic electrons approximately equal to zero.

    Fig.1.The side and top views of(a)MSN and(c)Gr;band structures of(b)MSN and(d)Gr.The Fermi level is set to zero.

    The cohesive energy(Ecoh)is firstly considered to assess the possibility of experimentally synthesizing the MSN

    whereEtot,EMo,ESiandENare the energy of the MSN supercell and the ground state total energy of a single Mo,Si and N atom,respectively.Thenrepresents the cell expansion multiplier of the MSN supercell.In our calculation,the value ofnis equal to 1.The calculated cohesive energy is-8.44 eV/atom,indicating the possibility of experimentally synthesizing the MSN structure.

    Then,we plot the plane-averaged differential charge density along theZ-plane in Fig.2(c) to investigate the charge transfer properties at the interface of the MSN/Gr heterostructure.The plane-averaged differential charge density (Δρ) is defined as follows:

    whereρvdW,ρMSNandρGrare the plane-averaged charge densities of the MSN/ Gr with or without defects, the isolated MSN single layer and the isolated Gr layer.The pink and blue areas represent the accumulation and depletion of the charges,respectively.We find charge transfer behavior at the interface of the MSN/Gr heterostructure.In addition, the charges are accumulated in the MSN layer and depleted in the Gr layer,implying that the charges are transferred from the Gr layer to the MSN layer.Due to the charge transfer behavior at the interface, a built-in electric field is generated at the interface pointing from the Gr layer to the MSN layer.

    Fig.2.(a) The side and top views of the MSN/Gr heterostructure.(b) The projected band structure of the MSN/Gr heterostructure.The Fermi level is set to zero and the yellow and green lines represent the contributions of the MSN and Gr,respectively.(c)The plane-averaged differential charge density between two interfaces along the Z-plane of the MSN/Gr heterostructure.The pink and blue areas represent the accumulation and depletion of the charges,respectively.(d)The effective electrostatic potential of the MSN/Gr heterostructure.(e)The band alignments of the Gr and MSN before(left)and after(right)formation of the heterostructure. EF is the Fermi energy level.

    Figure 2(d) shows the effective electrostatic potential of the MSN/Gr heterostructure.When the MSN/Gr heterostructure is completely relaxed,the effective electrostatic potential of the MSN layer is deeper than that of the Gr layer, indicating the existence of a strong electrostatic field between the two layers.The effective electrostatic potential in the MSN layer part shows a symmetrical property due to the symmetry of the MSN structure.The significant potential drop between the MSN and Gr leads to the generation of a built-in electric field at the interface of the MSN/Gr heterostructure.The band alignments of the Gr and MSN before and after the formation of the heterostructure are depicted in Fig.2(e).We calculate the work functionWMof the MSN and Gr, which can be defined as the difference between the vacuum energy level and the Fermi energy level

    whereEvacuumandEFare the energy of the vacuum energy level and the Fermi energy level,respectively.The calculated work functionWMof the MSN is 5.20 eV, which is greater than 4.55 eV of the Gr, as shown in Fig.2(e).The charge transfer from the layer with a small work function(Gr)to the layer with a large work function(MSN)is attributed to the disparity in the work functions between these two layers.As the amount of charge transfer increases,the Fermi energy levels of the Gr and MSN keep decreasing and increasing,respectively,and eventually both reach the same energy level.It is worth noting that the work function of the MSN/Gr heterostructure(5.17 eV) lies just between the work functions of the Gr and MSN,implying that charges are accumulated in the MSN layer and depleted in the Gr layer.This is also consistent with previous conclusions on the plane-averaged differential charge density.

    3.2.Electronic properties of the MSN and MSN/Gr heterostructure with defects

    whereEvacancyandEintrinsicare the energy of the MSN(MSN/Gr) with and without defects, whilemis the number of the removedXatoms andμXis the chemical potential of the removedXatom.The chemical potentials of the removed Si, Mo and N atoms are energy of per atom of their corresponding stable structures.For the removed Si and Mo atoms,the reference phases used are their bulk structures.For the removed N atom, the reference phase used is its stable N2molecule in the gas phase.The positive(negative)value of the formation energy denotes the non-spontaneous(spontaneous)process.The values of the calculated formation energyEfare listed in Table 1.All obtained values of the formation energy for the four defective structures are negative, implying that the four defective structures are stable in the air.Among them,the MSN VSimodel has the smallest value of the formation energy (-10.02 eV) and the MSN VN-inmodel has the largest value of the formation energy(-3.76 eV).Our results demonstrate that the MSN VSiis the most stable model and the MSN VN-inis the most unstable one.

    Figures 3(a)-3(d) show the side views of the pristine MSN with vacancies and the positions of the defective atoms are circled in red.In our calculations, spin polarization was considered.The band structures of the monolayer MSN with vacancies are shown in Figs.3(e)-4(h).It is noteworthy that when four different vacancy defects are introduced, defective energy levels are generated near the Fermi energy level in both the up and down spin channels.It can also be easily seen that the band structures of both the MSN VN-outand the MSN VMomodels show perfect symmetry in both the up and down spin channels, indicating that N-out and Mo vacancies cannot introduce magnetism into the pristine MSN.However, when N-in and Si vacancies are introduced, the up and down spin channels show asymmetry,suggesting that the MSN VN-inand MSNVSimodels are magnetic systems with magnetic moments of 0.809μB/cell and 1.966μB/cell,respectively.

    Table 1.Calculated equilibrium interface distance(Deq),binding energy(Eb),formation energy(Ef),work function(WF)and total magnetic moment(M).

    When N-in vacancy is introduced,the Fermi energy level passes through the defective energy level in the up-spin channel.While in the down-spin channel, there is no overlap between the Fermi energy level and the energy band, so the MSN VN-inmodel is a half-metal.In contrast,the MSNVMomodel is still a semiconductor.Unlike both the MSNVN-inand MSN VMomodels,the MSN VN-outand MSNVSimodels exhibit metallicity.Furthermore,the work functions of four defective monolayers are also calculated in our work.Our calculation shows that the work function of the pristine MSN decreases when N and Mo vacancies are introduced and increases when Si vacancy is introduced.

    We then use four defective monolayers to match Gr to form MSN/Gr heterostructure with vacancies,namely, MSN/GrVN-in, MSN/Gr VN-out, MSN/GrVSiand MSN/GrVMo, respectively.As listed in Table 1, the obtained equilibrium interface distances of the four defective heterostructures are 3.38 A°, 3.36 A°, 3.41 A° and 3.38 A°, respectively,which are quite close to the distance of the pristine MSN/Gr heterostructure and are all larger than the pristine MSN/Gr heterostructure.

    The binding energy(Eb)can be used to describe the stability of the MSN/Gr heterostructure with and without defects

    whereEvdW,EGrandEMSNare the energy of the MSN/Gr heterostructure with and without defects, the energy of the isolated Gr and MSN, respectively.A smaller value of the binding energyEbindicates a more stable heterostructure.For the pristine MSN/Gr heterostructure, the calculated binding energyEbis-0.69 eV, indicating that the pristine MSN/Gr heterostructure is a stable structure.The values of the binding energy of the MSN/Gr VN-in, MSN/GrVN-outand MSN/GrVMomodels are extremely close to each other

    Fig.3.The side views of the intrinsic MSN with vacancies: (a)MSN VN-in,(b)MSN VN-out,(c)MSN VSi and(d)MSNVMo.Band structures of the monolayer MSN with vacancies: (e)MSNVN-in,(f)MSN VN-out,(g)MSN VSi and(h)MSN VMo.Fermi level is set to zero.

    Fig.4.The side views of the MSN/Gr heterostructure with vacancies:(a)MSN/Gr VN-in,(b)MSN/Gr VN-out,(c)MSN/Gr VSi and(d)MSN/GrVMo.The projected band structures of the MSN/Gr heterostructure with vacancies: (e) MSN/GrVN-in, (f) MSN/Gr VN-out, (g) MSN/GrVSi and(h)MSN/GrVMo.The Fermi level is set to zero and the yellow and green lines represent the contributions of MSN and Gr,respectively.

    Figures 4(a)-4(d)show the side views of the MSN/Gr heterostructure with vacancies and the positions of the defective atoms are circled in red.Figures 4(e)-4(h) correspond to the projected band structures after the introduction of N-in,N-out,Si and Mo vacancy defects, respectively.Just like the monolayer MSN with vacancies,the up and down spin channels of N-out and Mo vacancy defects are symmetrical and neither system is magnetic.In contrast, the up and down spin channels of N-in and Si vacancy defects are asymmetrical and both are magnetic systems with magnetic moments of 0.756μB/cell and 1.828μB/cell, respectively.We also fnid that the band structure of the defective heterostructure is just a simple superposition of its corresponding defective monolayer MSN and Gr band structures.

    Furthermore,in order to investigate the specifci origin of magnetism, the magnetic moments contributed by the atomic orbitals of C, N, Si, Mo atoms of four magnetic models(MSN VN-in, MSN VSi, MSN/Gr VN-inand MSN/GrVSi)are listed in Table 2.For the MSNVN-inmodel, the magnetic moments contributed by 2s and 2p atomic orbitals of N atoms are 0.000μB/cell and 0.072μB/cell, respectively.The magnetic moments contributed by 3s and 3p atomic orbitals of Si atoms are both-0.00μB/cell and the magnetic moments contributed by 4p, 4d and 5s atomic orbitals of Mo atoms are 0.020μB/cell, 0.711μB/cell and 0.008μB/cell, respectively.The total magnetic moment of the MSN VN-inmodel is 0.809μB/cell, which is mainly contributed by the 2p atomic orbitals of N atoms and the 4d atomic orbitals of Mo atoms.For the MSN VSimodel, the total magnetic moment is 1.966μB/cell and it is mainly contributed by the 2s and 2p atomic orbitals of N atoms.For the MSN/Gr VN-inand MSN/Gr VSimodels, the total magnetic moments are 0.756μB/cell and 1.828μB/cell, respectively.The magnetic moments of the MSN/Gr VN-inand MSN/GrVSimodels contributed by atomic orbitals of C atoms are both zero,indicating that vacancies do not affect the magnetic properties of the underlying Gr but only the upper MSN.Like the MSNVN-inmodel, for the MSN/Gr VN-inmodel, the 2p atomic orbitals of N atoms and the 4d atomic orbitals of Mo atoms are the main cause of the magnetism.Like the MSN VSimodel, for the MSN/Gr VSimodel,the magnetic moment is mainly contributed by the 2s and 2p atomic orbitals of N atoms.

    Table 2.Magnetic moments contributed by atomic orbitals of C,N,Si and Mo atoms and total magnetic moment(M).

    Fig.5.The plane-averaged differential charge densities between two interfaces along the Z-plane of the MSN/Gr heterostructure with vacancies:(a)MSN/Gr VN-in,(b)MSN/Gr VN-out,(c)MSN/GrVSi and(d)MSN/GrVMo.The pink and blue areas represent the accumulation and depletion of the charge,respectively.

    We then plot the plane-averaged differential charge densities to investigate the charge transfer difference between the pristine and defective MSN/Gr heterostructures in Figs.5(a)-5(d).After comparison, it is clear that charge transfer at the interface decreases after the introduction of N-in and Si vacancy defects and increases after the introduction of N-out and Mo vacancy defects.However, the charges at the interface are still depleted at the Gr layer and accumulated at the MSN layer.The direction of the built-in electric field does not change with the generation of vacancies.Obviously, N-out and Mo vacancy defects have little effect on charge transfer at the non-interfaces.While N-in and Si vacancy defects have a large effect on the charge transfer near the positions of the corresponding defective atoms.

    Figures 6(a)-6(d) show the effective electrostatic potentials of the MSN/Gr heterostructure with vacancies, respectively.The introduction of Si vacancy defect creates an energy difference(ΔΦ1)of 3.46 eV in the vacuum region between the two sides, while the remaining three defects do not create an energy difference in the vacuum region.Four vacancy defects break the symmetry of the MSN layer part.In particular, Nout, Si and Mo vacancy defects lift the potentials at the positions of the corresponding defective atoms by 2.47 eV(ΔΦ2),10.28 eV(ΔΦ3)and 6.21 eV(ΔΦ4),respectively.

    Fig.6.The effective electrostatic potentials of the MSN/Gr heterostructure with vacancies: (a)MSN/Gr VN-in,(b)MSN/Gr VN-out,(c)MSN/GrVSi and(d)MSN/GrVMo.

    3.3.Modulation of the Schottky barrier height

    The Schottky barrier height can commonly be effectively tuned by in-plane axial strain,external electric field and vertical strain engineering.The n-type and p-type Schottky barrier heights are defined as follows:

    whereΦBnandΦBprepresent the barrier height for electrons and holes,respectively.ECBMandEVBMdenote the energy of the CBM and VBM of MSN.EFis the Fermi energy level,which is set to zero in this work.When the value ofΦBnis smaller than the value ofΦBp, an n-type Schottky contact is formed at the interface of the MSN/Gr heterostructure,and vice versa for a p-type Schottky contact.According to Fig.2(b),the calculatedΦBnandΦBpare 1.03 eV and 0.98 eV,respectively,and the sum ofΦBnandΦBpis equal to 2.01 eV.The value ofΦBnis larger thanΦBp,indicating a p-type Schottky is formed at the interface of the MSN/Gr heterostructure.

    Since MSN/Gr heterostructure has a sizable Schottky barrier height, it is of great significance to achieve a low Schottky barrier height and contact resistance to enhance the device performance.Experimentally, one can achieve the modulation of the applied electric field by introducing pulsed ac fields or gate voltage.[43,44]The Gr and MoS2-based electrical devices have been successfully fabricated based on this technology.[45,46]Here,we define the positive direction of the applied external electric field pointing from the Gr layer to the MSN layer,which is consistent with the direction of the builtin electric field.Figure 7 shows the projected band structures of the MSN/Gr heterostructure under different external electric fields.Compared to the original MSN/Gr heterostructure without an external electric field,we find that the electric field only shifts the band structure up and down, while the trend of the band remains largely unchanged.It is noted that the Fermi energy level shifts towards the VBM of the MSN under the positive external electric field.Conversely,the Fermi energy level shifts towards the CBM of the MSN under the negative external electric field.The MSN in the MSN/Gr heterostructure retains the same characteristics as the direct bandgap semiconductor in the original heterostructure regardless of the positive or negative applied external electric field.

    Furthermore, we plot the variation of the Schottky barrier heights under different external electric fields (Eext) of the MSN/Gr heterostructure in Fig.8.It is found that when the positive external electric field is applied, the value ofΦBngradually increases while the value ofΦBpgradually decreases.At the interface of the MSN/Gr heterostructure, the original p-type Schottky contact is maintained.When the negative external electric field is applied, the trends ofΦBnandΦBpare opposite to those of the positive applied electric field.As the negative electric field increases, the value ofΦBnbecomes smaller than the value ofΦBp,indicating that the n-type Schottky contact is formed at the interface of the MSN/Gr heterostructure.It is worth noting that the sum ofΦBnandΦBpis almost unchanged and the variation curve is almost a straight line.We also find that when the applied electric field is large to a certain extent(±0.5 V/°A),the Schottky barrier height becomes very small(close to zero).A vanishingly small Schottky barrier height and dynamic switching between n-type and p-type Schottky contacts are of great significance for achieving energy-efficient and high-performance Schottky barrier diodes and Schottky devices.

    Contact resistance originating from the Schottky barrier greatly reduces the electrical performance of Schottky devices,so we design a tunable electrical diode based on MSN/Gr vertical contacts, as shown in Fig.9.The upward arrow indicates the positive direction of the applied electric field and the downward arrow indicates the negative direction of the applied electric field.Due to the ultra-high carrier mobility of the Gr,it can be used as an electrode to achieve efficient carrier injection.By changing the strength and direction of the external electric field, the electrical diode can be reconfigured to realize a small Schottky barrier height and dynamic switching between n-type and p-type Schottky contacts.The tunable electrical diode based on MSN/Gr vertical contacts may provide the possibility to exceed the capabilities of conventional Schottky diodes.

    Fig.7.The projected band structures of the MSN/Gr heterostructure under different external electric fields(ranging from-0.5 V/°A to 0.5 V/°A).The Fermi level is set to zero and the yellow and green lines represent the contributions of the MSN and Gr,respectively.

    Fig.8.The variation of the Schottky barrier heights under different external electric fields(Eext)of the MSN/Gr heterostructure.

    Fig.9.Schematic diagram of a tunable electrical diode based on MSN/Gr vertical contacts.

    4.Conclusion

    In summary, the effects of vacancy and external electric field on the electronic properties of the MSN/Gr heterostructure have been systematically investigated in this study based on first-principles calculation.Our results show the following:

    (i)The band structure of the pristine MSN/Gr heterostructure is a simple superposition of the MSN band structure and the Gr band structure.We also find a charge transfer phenomenon at the interface between the Gr layer and the MSN layer,leading to the generation of a built-in electric field pointing from the Gr layer to the MSN layer.

    (ii) For the pristine monolayer MSN,the introduction of N-in vacancy defect transforms the pristine MSN from a semiconductor to a half-metal.The introduction of N-out and Si vacancy defects transforms the pristine MSN from a semiconductor to a metal.While the introduction of Mo vacancy defect maintains the semiconductor nature of pristine MSN.For the pristine monolayer MSN and MSN/Gr heterostructure,the introduction of N-out and Mo vacancy defects cannot introduce magnetism into the original non-magnetic system.However,N-in and Si vacancy defects convert the original non-magnetic system into a magnetic system.

    (iii) The work functions of the pristine monolayer MSN and MSN/Gr heterostructure decrease when N and Mo vacancies are introduced and increase when Si vacancy is introduced.In addition, the charge transfer at the interface of the MSN/Gr heterostructure decreases after the introduction of Nin and Si vacancy defects and increases after the introduction of N-out and Mo vacancy defects.N-out,Si and Mo vacancy defects raise the potentials at the positions of the corresponding defective atoms.

    (iv)External electric field is an effective method to modulate the Schottky barrier height of the MSN/Gr heterostructure.Under the positive external electric field, the p-type Schottky contact is maintained.While under the positive external electric field,the MSN/Gr heterostructure can be modulated to realize the transition from the p-type contact to the n-type Schottky contact.Our results may provide a theoretical basis for the fabrication of energy-efficient and high-performance Schottky barrier diodes and Schottky devices.

    Acknowledgements

    Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University(Grant No.2020-520000-83-01-324061), the National Natural Science Foundation of China (Grant No.61264004), and the High-level Creative Talent Training Program in Guizhou Province of China(Grant No.[2015]4015).

    欧美av亚洲av综合av国产av| 久久精品国产99精品国产亚洲性色 | 亚洲精品粉嫩美女一区| 欧美日韩亚洲综合一区二区三区_| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 在线播放国产精品三级| 成人精品一区二区免费| 一边摸一边抽搐一进一出视频| 国产99白浆流出| 欧美av亚洲av综合av国产av| 国产精品自产拍在线观看55亚洲| 嫁个100分男人电影在线观看| 女警被强在线播放| 人人澡人人妻人| 日韩精品中文字幕看吧| 亚洲伊人色综图| 99热只有精品国产| 在线观看午夜福利视频| 欧洲精品卡2卡3卡4卡5卡区| 国产伦一二天堂av在线观看| 精品人妻1区二区| 国产精品二区激情视频| 国产精华一区二区三区| 精品久久蜜臀av无| 免费在线观看视频国产中文字幕亚洲| 神马国产精品三级电影在线观看 | 精品人妻1区二区| 99国产精品免费福利视频| 国产精品久久久久久人妻精品电影| 好男人在线观看高清免费视频 | 丰满人妻熟妇乱又伦精品不卡| 后天国语完整版免费观看| 免费少妇av软件| 男女午夜视频在线观看| 在线视频色国产色| 色综合亚洲欧美另类图片| 日本精品一区二区三区蜜桃| 琪琪午夜伦伦电影理论片6080| АⅤ资源中文在线天堂| 美女免费视频网站| 亚洲午夜精品一区,二区,三区| 欧美国产日韩亚洲一区| 黄片播放在线免费| 9191精品国产免费久久| 无限看片的www在线观看| 亚洲欧美激情在线| 欧美亚洲日本最大视频资源| 午夜福利高清视频| 亚洲av五月六月丁香网| 最近最新中文字幕大全电影3 | 国产精品1区2区在线观看.| 多毛熟女@视频| 中文字幕色久视频| 国产激情久久老熟女| www国产在线视频色| 在线播放国产精品三级| 久久伊人香网站| 在线免费观看的www视频| 国产在线精品亚洲第一网站| 人人妻人人爽人人添夜夜欢视频| 久久人人爽av亚洲精品天堂| 99国产精品免费福利视频| 啦啦啦韩国在线观看视频| 国产一区二区在线av高清观看| 精品久久久久久成人av| 一区福利在线观看| www.熟女人妻精品国产| 91麻豆精品激情在线观看国产| 高清在线国产一区| 亚洲男人天堂网一区| 亚洲色图综合在线观看| 久久久国产精品麻豆| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 免费看美女性在线毛片视频| 色播在线永久视频| 露出奶头的视频| 欧美乱色亚洲激情| 亚洲aⅴ乱码一区二区在线播放 | 欧美日本亚洲视频在线播放| 成人三级做爰电影| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 91精品三级在线观看| 看片在线看免费视频| 久久久久久大精品| 亚洲国产日韩欧美精品在线观看 | 男女下面插进去视频免费观看| 超碰成人久久| 两个人视频免费观看高清| 热re99久久国产66热| 91麻豆精品激情在线观看国产| 可以在线观看毛片的网站| 国产精品乱码一区二三区的特点 | 久久精品影院6| 丁香六月欧美| 757午夜福利合集在线观看| 国产亚洲av高清不卡| 一进一出抽搐gif免费好疼| 午夜福利18| 国产蜜桃级精品一区二区三区| 久久精品影院6| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 亚洲人成电影观看| 美女扒开内裤让男人捅视频| 校园春色视频在线观看| 亚洲天堂国产精品一区在线| 午夜福利影视在线免费观看| 亚洲熟女毛片儿| 国产野战对白在线观看| 中文字幕人妻丝袜一区二区| 91av网站免费观看| 亚洲一码二码三码区别大吗| 啦啦啦观看免费观看视频高清 | 亚洲男人天堂网一区| 亚洲中文日韩欧美视频| 满18在线观看网站| 国产一区二区三区视频了| 亚洲欧美日韩无卡精品| 极品人妻少妇av视频| 午夜福利欧美成人| 人妻丰满熟妇av一区二区三区| 亚洲中文av在线| 性少妇av在线| 亚洲va日本ⅴa欧美va伊人久久| 黄色女人牲交| 国内精品久久久久久久电影| 如日韩欧美国产精品一区二区三区| 99香蕉大伊视频| 国产精品野战在线观看| 日韩免费av在线播放| 日韩三级视频一区二区三区| 久9热在线精品视频| 黄色a级毛片大全视频| 精品不卡国产一区二区三区| 国产精品日韩av在线免费观看 | 亚洲视频免费观看视频| 成人欧美大片| 久久久久久久精品吃奶| 女人被躁到高潮嗷嗷叫费观| 十分钟在线观看高清视频www| 1024香蕉在线观看| 亚洲av成人一区二区三| 国产精品 国内视频| 天天躁夜夜躁狠狠躁躁| 在线播放国产精品三级| 亚洲性夜色夜夜综合| 精品国产亚洲在线| 久久久久国产一级毛片高清牌| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕一二三四区| 波多野结衣一区麻豆| 黄色片一级片一级黄色片| 1024视频免费在线观看| 久久人妻熟女aⅴ| 国产一区二区在线av高清观看| 国产av一区二区精品久久| 亚洲中文av在线| av中文乱码字幕在线| 黄色毛片三级朝国网站| 男人的好看免费观看在线视频 | 俄罗斯特黄特色一大片| 成人av一区二区三区在线看| 国产精品 欧美亚洲| 久久中文字幕一级| 少妇粗大呻吟视频| 黄色丝袜av网址大全| 人成视频在线观看免费观看| 欧美人与性动交α欧美精品济南到| 99在线视频只有这里精品首页| 午夜福利在线观看吧| 黄色视频,在线免费观看| 国产成年人精品一区二区| 欧美黑人精品巨大| 国产在线观看jvid| 老司机靠b影院| 人妻丰满熟妇av一区二区三区| 视频在线观看一区二区三区| 国产真人三级小视频在线观看| 好看av亚洲va欧美ⅴa在| 一进一出抽搐动态| 免费高清视频大片| 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 久久人人爽av亚洲精品天堂| 97人妻精品一区二区三区麻豆 | 欧美在线一区亚洲| 国产成人av激情在线播放| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| av视频在线观看入口| 村上凉子中文字幕在线| 搡老熟女国产l中国老女人| 国内精品久久久久久久电影| 亚洲av日韩精品久久久久久密| 午夜福利高清视频| 麻豆一二三区av精品| 国产欧美日韩综合在线一区二区| 琪琪午夜伦伦电影理论片6080| 国语自产精品视频在线第100页| 一卡2卡三卡四卡精品乱码亚洲| 欧美成人性av电影在线观看| 国产真人三级小视频在线观看| 色老头精品视频在线观看| 成人亚洲精品av一区二区| cao死你这个sao货| 亚洲精品久久成人aⅴ小说| 亚洲av五月六月丁香网| 法律面前人人平等表现在哪些方面| 免费搜索国产男女视频| 色综合亚洲欧美另类图片| 国产精品亚洲一级av第二区| 久久热在线av| 十八禁人妻一区二区| 日本vs欧美在线观看视频| 国产精品一区二区免费欧美| 国产精品免费视频内射| av在线播放免费不卡| 手机成人av网站| 午夜久久久久精精品| 欧美乱妇无乱码| 国产欧美日韩精品亚洲av| 自线自在国产av| 国产亚洲精品av在线| 亚洲第一欧美日韩一区二区三区| 两个人视频免费观看高清| 国产av一区二区精品久久| 亚洲欧美激情在线| 看免费av毛片| av片东京热男人的天堂| 男女下面插进去视频免费观看| 午夜福利一区二区在线看| 国产亚洲精品久久久久久毛片| 国内精品久久久久精免费| 美女 人体艺术 gogo| 久久中文字幕一级| 午夜a级毛片| 亚洲精品在线美女| 成人精品一区二区免费| 老司机午夜福利在线观看视频| 亚洲黑人精品在线| 国产私拍福利视频在线观看| 国产成人欧美| 亚洲av成人一区二区三| 熟女少妇亚洲综合色aaa.| www.www免费av| 成人免费观看视频高清| 涩涩av久久男人的天堂| 老熟妇乱子伦视频在线观看| 国产精品一区二区在线不卡| 国产欧美日韩综合在线一区二区| 免费看美女性在线毛片视频| 国产av一区二区精品久久| 黄色 视频免费看| 欧美乱色亚洲激情| 久久影院123| 日本vs欧美在线观看视频| 母亲3免费完整高清在线观看| 欧美黑人欧美精品刺激| 女人高潮潮喷娇喘18禁视频| 国产精品99久久99久久久不卡| 亚洲 欧美一区二区三区| 久久久国产成人精品二区| www.www免费av| 天天添夜夜摸| 久久狼人影院| 亚洲 国产 在线| 欧美性长视频在线观看| 中文字幕最新亚洲高清| 亚洲欧美激情综合另类| 50天的宝宝边吃奶边哭怎么回事| 欧美激情久久久久久爽电影 | 日韩欧美三级三区| 视频区欧美日本亚洲| 国产成人精品无人区| 午夜精品在线福利| 最近最新免费中文字幕在线| 极品教师在线免费播放| 人人妻人人爽人人添夜夜欢视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产一级毛片七仙女欲春2 | 可以免费在线观看a视频的电影网站| 成人手机av| 国产高清有码在线观看视频 | 亚洲av美国av| 国产xxxxx性猛交| 天天添夜夜摸| 久久午夜亚洲精品久久| av福利片在线| 狂野欧美激情性xxxx| 淫妇啪啪啪对白视频| 韩国av一区二区三区四区| 在线观看66精品国产| 大型黄色视频在线免费观看| 激情视频va一区二区三区| 国产精品98久久久久久宅男小说| netflix在线观看网站| 免费观看精品视频网站| 日韩欧美国产在线观看| 中出人妻视频一区二区| 99久久精品国产亚洲精品| 好男人在线观看高清免费视频 | 久久中文看片网| 午夜a级毛片| 一级a爱片免费观看的视频| 乱人伦中国视频| 999精品在线视频| 亚洲成人免费电影在线观看| 欧美日韩精品网址| 99国产精品一区二区三区| 黑人操中国人逼视频| 欧美最黄视频在线播放免费| 天堂影院成人在线观看| 成人亚洲精品av一区二区| e午夜精品久久久久久久| 精品熟女少妇八av免费久了| 青草久久国产| 18美女黄网站色大片免费观看| 精品免费久久久久久久清纯| 亚洲九九香蕉| 久久中文字幕一级| 黄色视频,在线免费观看| 亚洲熟妇熟女久久| 欧美黄色片欧美黄色片| 欧美在线黄色| 在线视频色国产色| 麻豆久久精品国产亚洲av| 成人永久免费在线观看视频| 中文字幕色久视频| 日韩高清综合在线| 在线天堂中文资源库| 黑人巨大精品欧美一区二区蜜桃| 亚洲在线自拍视频| 欧美国产日韩亚洲一区| 91麻豆av在线| 99久久国产精品久久久| 这个男人来自地球电影免费观看| 俄罗斯特黄特色一大片| 亚洲av成人av| 国产av一区二区精品久久| 日韩精品免费视频一区二区三区| 日本免费一区二区三区高清不卡 | 麻豆一二三区av精品| 国内久久婷婷六月综合欲色啪| 亚洲一区高清亚洲精品| 久久午夜亚洲精品久久| 欧美成人一区二区免费高清观看 | 91精品国产国语对白视频| 欧美中文综合在线视频| 国产成人av教育| 青草久久国产| 亚洲欧美一区二区三区黑人| 性色av乱码一区二区三区2| 成人三级黄色视频| 精品国产美女av久久久久小说| 日韩欧美一区视频在线观看| 搡老岳熟女国产| 99re在线观看精品视频| 嫩草影视91久久| 国产午夜福利久久久久久| 一级黄色大片毛片| 午夜两性在线视频| 国产精品99久久99久久久不卡| 久久精品亚洲精品国产色婷小说| 波多野结衣巨乳人妻| 99国产精品99久久久久| 看免费av毛片| 黄片播放在线免费| 最新美女视频免费是黄的| 国产精品一区二区在线不卡| 国产欧美日韩一区二区精品| 88av欧美| 亚洲精品国产区一区二| 天堂影院成人在线观看| 给我免费播放毛片高清在线观看| 日韩欧美一区二区三区在线观看| 美女国产高潮福利片在线看| 午夜精品在线福利| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲 国产 在线| 成人欧美大片| 99香蕉大伊视频| 黑丝袜美女国产一区| 欧美亚洲日本最大视频资源| 九色国产91popny在线| 亚洲五月婷婷丁香| 国产黄a三级三级三级人| 精品国产超薄肉色丝袜足j| 我的亚洲天堂| 国产成人av激情在线播放| 看片在线看免费视频| 一级毛片精品| 成人欧美大片| 国产99久久九九免费精品| 精品卡一卡二卡四卡免费| 精品国内亚洲2022精品成人| 久久午夜综合久久蜜桃| 国产精品 欧美亚洲| 免费久久久久久久精品成人欧美视频| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 日韩 欧美 亚洲 中文字幕| 大陆偷拍与自拍| 国产欧美日韩一区二区精品| 国产精品一区二区免费欧美| 欧美激情久久久久久爽电影 | 两个人视频免费观看高清| 一个人观看的视频www高清免费观看 | 黑人巨大精品欧美一区二区蜜桃| 丁香欧美五月| 一区福利在线观看| 国产一卡二卡三卡精品| 久久精品国产亚洲av香蕉五月| 欧美激情 高清一区二区三区| 一进一出好大好爽视频| 亚洲,欧美精品.| www.999成人在线观看| 午夜福利免费观看在线| 久久九九热精品免费| 亚洲天堂国产精品一区在线| 777久久人妻少妇嫩草av网站| 日韩高清综合在线| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美在线一区二区| 免费看a级黄色片| 97人妻天天添夜夜摸| 国产99久久九九免费精品| 熟女少妇亚洲综合色aaa.| 桃红色精品国产亚洲av| www.精华液| 久久久精品国产亚洲av高清涩受| 久久精品国产亚洲av高清一级| 国产精品久久久人人做人人爽| 成人av一区二区三区在线看| 欧美乱色亚洲激情| 久久国产精品人妻蜜桃| 色综合欧美亚洲国产小说| 午夜精品在线福利| av视频在线观看入口| 久久中文字幕一级| 99在线人妻在线中文字幕| 欧美日韩亚洲综合一区二区三区_| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 免费在线观看日本一区| 日韩精品中文字幕看吧| 日本黄色视频三级网站网址| 午夜福利高清视频| www.自偷自拍.com| 一区福利在线观看| 在线天堂中文资源库| 亚洲国产欧美一区二区综合| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区| 可以在线观看毛片的网站| 超碰成人久久| 欧美日韩黄片免| 男女做爰动态图高潮gif福利片 | 日韩成人在线观看一区二区三区| 亚洲片人在线观看| 香蕉丝袜av| 成人手机av| 中出人妻视频一区二区| 中文字幕久久专区| 无限看片的www在线观看| 九色亚洲精品在线播放| 自线自在国产av| 国产av一区二区精品久久| 女性生殖器流出的白浆| 国产成人影院久久av| 免费不卡黄色视频| 精品国产乱子伦一区二区三区| 国语自产精品视频在线第100页| 午夜视频精品福利| 国产精品香港三级国产av潘金莲| 在线天堂中文资源库| 午夜福利视频1000在线观看 | 99精品在免费线老司机午夜| 日本黄色视频三级网站网址| 久久国产精品男人的天堂亚洲| 精品乱码久久久久久99久播| 制服丝袜大香蕉在线| 99在线视频只有这里精品首页| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| 午夜精品在线福利| 黄色丝袜av网址大全| 国产精品1区2区在线观看.| 国产午夜福利久久久久久| 美女免费视频网站| 嫩草影院精品99| 久久这里只有精品19| 啦啦啦观看免费观看视频高清 | 精品人妻在线不人妻| 嫩草影院精品99| 久99久视频精品免费| 亚洲 欧美一区二区三区| 国产精品99久久99久久久不卡| 午夜影院日韩av| 成人亚洲精品一区在线观看| 午夜福利视频1000在线观看 | 一二三四在线观看免费中文在| 男人舔女人的私密视频| 亚洲av美国av| 午夜精品在线福利| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人| 日本vs欧美在线观看视频| 亚洲国产日韩欧美精品在线观看 | 色尼玛亚洲综合影院| 一本综合久久免费| 成人三级黄色视频| 极品教师在线免费播放| 可以在线观看的亚洲视频| 久久久久久久久中文| 一进一出抽搐gif免费好疼| videosex国产| 午夜精品久久久久久毛片777| 夜夜躁狠狠躁天天躁| 国产精品综合久久久久久久免费 | 99国产极品粉嫩在线观看| 国产精品日韩av在线免费观看 | 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2 | 午夜免费鲁丝| 不卡一级毛片| 91精品三级在线观看| 制服丝袜大香蕉在线| 91国产中文字幕| 香蕉久久夜色| 久久香蕉国产精品| 正在播放国产对白刺激| 老熟妇仑乱视频hdxx| 69av精品久久久久久| √禁漫天堂资源中文www| av天堂在线播放| 久久午夜亚洲精品久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美日韩无卡精品| 久久精品成人免费网站| 多毛熟女@视频| 亚洲欧美激情在线| 久久久久久大精品| 性少妇av在线| 久热爱精品视频在线9| 久久天堂一区二区三区四区| a级毛片在线看网站| 国产精品乱码一区二三区的特点 | 十分钟在线观看高清视频www| 好看av亚洲va欧美ⅴa在| 无人区码免费观看不卡| 午夜影院日韩av| 午夜精品久久久久久毛片777| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 亚洲精品在线美女| 亚洲黑人精品在线| 精品国产超薄肉色丝袜足j| 国产精品美女特级片免费视频播放器 | 淫秽高清视频在线观看| 啪啪无遮挡十八禁网站| 国产精品亚洲一级av第二区| 免费人成视频x8x8入口观看| 少妇 在线观看| 精品国产乱码久久久久久男人| 老司机在亚洲福利影院| 最近最新免费中文字幕在线| 国产1区2区3区精品| 制服丝袜大香蕉在线| 在线国产一区二区在线| 满18在线观看网站| 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 老司机靠b影院| 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 人妻久久中文字幕网| 亚洲片人在线观看| 九色国产91popny在线| 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 一区福利在线观看| 在线播放国产精品三级| 99热只有精品国产| 国产人伦9x9x在线观看| netflix在线观看网站| 国产精品免费视频内射| 91精品三级在线观看| 亚洲国产中文字幕在线视频| 免费在线观看影片大全网站| 亚洲国产精品成人综合色| 欧洲精品卡2卡3卡4卡5卡区| 91字幕亚洲| 亚洲国产欧美日韩在线播放| 九色国产91popny在线| 午夜福利视频1000在线观看 | 老司机福利观看| 韩国精品一区二区三区| 人成视频在线观看免费观看| 色播在线永久视频| 久久亚洲精品不卡| 18禁黄网站禁片午夜丰满| 亚洲三区欧美一区| 国产成人啪精品午夜网站| 亚洲国产日韩欧美精品在线观看 |