• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AGGREGATE SPECIAL FUNCTIONS TO APPROXIMATE PERMUTING TRI-HOMOMORPHISMS AND PERMUTING TRI-DERIVATIONS ASSOCIATED WITH A TRI-ADDITIVE ψ-FUNCTIONAL INEQUALITY IN BANACH ALGEBRAS*

    2024-03-23 08:05:56SafouraRezaeiADERYANIAzamAHADIRezaSAADATI

    Safoura Rezaei ADERYANI Azam AHADI Reza SAADATI

    School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran E-mail: safora.rezaei.2000@gmail.com; azamahadi9710@gmail.com; rsaadati@eml.cc

    Hari M. SRIVASTAVA

    Department of Mathematics and Statistics, Universtity of Victoria, Canada;

    Department of Medical Research, China Medical University Hospital, China Medical University,

    Taichung 40402, China;

    Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street,

    AZ1007 Baku, Azerbaijan;

    Section of Mathematics, International Telematic, University Uninettuno, I-00186 Rome, Italy E-mail: harimsri@math.uvic.ca

    Abstract In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additive ψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.

    Key words permuting tri-homomorphism in Banach algebra; permuting tri-derivation on C*-algebra; fixed point theorem; Ulam-Hyers-Rassias stability; aggregate special functions; tri-additive ψ-functional inequality

    1 Introduction and Preliminaries

    Aggregation functions play a significant role in many of the technological tasks scientists are faced with nowadays.They are specifically significant in many problems related to the fusion of information.More generally, aggregation functions are widely used in applied mathematics(e.g., statistics, probability, decision mathematics), pure mathematics (e.g., theory of means and averages, functional equations, measure and integration theory), economics and finance(e.g., voting theory, game theory, decision making), computer and engineering sciences (e.g.,artificial intelligence, information theory, pattern recognition and image analysis, data fusion,operations research, engineering design, automated reasoning), social sciences(e.g., mathematical psychology, representational measurement) as well as many other applied fields of physics and natural sciences.Thus, a main characteristic of the aggregation functions is that they are used in a large number of areas and disciplines.The essence of aggregation is that the output value computed by the aggregation function should represent or synthesize in some sense all individual inputs, where quotes are put to emphasize the fact that the precise meaning of this expression is highly dependent on the context.In any case, defining or choosing the right class of aggregation functions for a specific problem is a difficult task, considering the huge variety of potential aggregation functions [1-4].

    The central problem we are investigating in this paper is that of aggregation, which refers to the process of combining and merging several(most often numerical)values into a single one.Perhaps the oldest example in this respect is the notion of arithmetic mean or average, which has been used during all the history of physics and all experimental sciences.Any function like the arithmetic mean computing a single output value from an (arbitrarily long) vector of input values is called an aggregation function.

    Here,we define a new class of control functions through aggregate special functions to investigate the Ulam-Hyers-Rassias stability [5] of the following tri-additiveψ-functional inequality

    which was given by Park [6, 7] in complex Banach spaces by a method derived from vectorvalued alternative fixed point theorem.In addition, we study permuting tri-homomorphisms and permuting tri-derivations in unitalC*-algebras and Banach algebras associated with the tri-additiveψ-functional inequality (1.1).

    Definition 1.1([8]) Suppose M is a ring.Permuting tri-derivation is a tri-additive mapping Z:M3→M satisfying

    for all Ψ1,Ψ2,Ψ3,Ψ4,Φ1,Φ2,Φ3∈M and for any permutation (δ(1),δ(2),δ(3)) of (1,2,3).

    Definition 1.2([8]) Consider complex Banach algebras M and N.Permuting tri-homomorphism is a C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ2,Ψ3,Ψ4,Φ1,Φ2,Φ3∈M and for any permutation (δ(1),δ(2),δ(3)) of (1,2,3).

    Now, we consider a vector-valued generalized metric space (VVGM-space).

    Definition 1.3([9]) Letmbe a positive integer number.We define the partial order set

    whereι=(ι1,···,ιm) andγ=(γ1,···,γm) in Xmsatisfy,i=1,···,m, andι →0??ιi →0,i=1,···,m.

    We are ready to present a vector-valued version of the alternative fixed point theorem of Diaz-Margolis [11] in VVGM-space.

    This paper will study the complex normed spaceGand the complex Banach spaceQforψ ∈C being fixed with 0/=|ψ|<1.

    2 New Control Function by Special Function

    In this section, we introduce a series of special functions that we are going to use as a control function.

    ?Exponential function

    Here, we define the complex exponential function as follows:

    ?Mittag-Leffler function (generalized exponential function)

    The special function

    is said to be a one-parameter Mittag-Leffler function.

    ?Hypergeometric function (the Gauss Hypergeometric series)

    Now,we define the Hypergeometric function(the Gauss Hypergeometric series).The special function

    is called Wright function, in whichm1>-1,p1,Υ∈C.

    ?Fox-Wright function (the generalized Wright function)

    Consider positive vectorsM= (M1,···,Ms),N= (N1,···,Nr), and complex vectorsm= (m1,···,ms), andP= (p1,···,pr).The Fox-Wright function or the generalized Wright function is defined by the series

    Note that, (2.1) converges absolutely for|Υ|=Sif?(T)>0.

    The functionsHris a extension of the generalized hypergeometric function (which we will present it later).Also,1H1and0H1are the Wright(the Bessel-Maitland)function and Mittag-Leffler function withM1=m1=1, respectively.

    ?Fox’s H-function (generalized Fox-Wright function)

    Now, we present the Fox’s H-function as

    an empty product is interpreted as 1,and the integersv,w,s,rsatisfy the inequalities 0≤w ≤sand 1≤v ≤r.Assume the coefficientsMj >0 (j= 1,···,s) andNj >0 (j= 1,···,r) and the complex parametersmj(j=1,···,s)andpj(j=1,···,r)are so constrained that no poles of integrand in (2.6) coincide, andZis a suitable contour of the Mellin-Barnes type (in the complex?-plane) which separates the poles of one product from those of the other.Further, if we assume

    Here, Υ-?= exp(-?[log|Υ|+i arg(Υ)]), Υ/= 0 and i2=-1, and also log|Υ| represents the natural logarithm of|Υ| and arg(Υ) is not necessarily the principle value.

    Notice that, an empty product in (2.8), if it occurs, is taken to be one and the poles

    Note that contourZis one of the contours defined before which separates all polespj?in(2.9)to the left and all polesmi?in (2.10) to the right ofZ.

    ?G-function (generalized Hypergeometric function)

    The generalized hypergeometric function is defined by the following generalized hypergeometric series

    where Υ∈C,s,r ∈N0, andmi,pj ∈C,i=1,···,sandj=1,···,r.Forz ∈C, we have

    Ifmj/=-?,j=1,···,rand?∈N0, then the generalized hypergeometric series (2.12) can be represented in terms of the Mellin-Barnes integral of the form

    ?Five-parameter Mittag-Leffler function

    Letα1,α2,β1,β2,γ ∈Cbe five parameters satisfying Re(α1+α2)>0.The five-parameter Mittag-Leffler function applied to a single variablezis defined by the following power series:

    Let a mapping Θ from vector spaceUto normed linear spaceVhas Hyers-Ulam-Rassias stability.If we replace the control function of Hyers-Ulam-Rassias stability with Ξ[Υ], we say Θ has multi-stability property.

    3 Aggregation Function

    In this section we introduce the aggregation function to use it as a control function.

    Definition 3.1([1]) For fixedn ∈N andI ?R, an aggregation function is a functionA(n):In →Ithat is nondecreasing (in each variable), i.e., for alli ∈[1,···,n]

    is an aggregation function.

    4 Tri-additive ψ-Functional Inequality (1.1)

    In this section, we begin studying the tri-additiveψ-functional inequality (1.1) in complex normed spaces.Some recent developments and related references can be found in [12-15].

    Lemma 4.1([6]) Let the mappingL:G3→QsatisfyL(0,Ψ3,Ψ5) =L(Ψ1,0,Ψ5) =L(Ψ1,Ψ3,0)=0 and

    which implies that

    Hence, we get

    where we denote inf?=(inf?,inf?,inf?)=(+∞,+∞,+∞).

    We need to show that (ι,λ) is a complete VVGM-space.For the metric part, we prove the triangle inequality:λ(ι,?)(ι,?)+λ(?,?).

    Next, we deduce that (ι,λ) is complete.Assume{ωn}is a Cauchy sequence in (ι,λ).Then, for all∈1,∈2,∈3>0 there is an?∈1,∈2,∈3∈N such thatλ(ωm,ωn)(∈1,∈2,∈3) for allm,n ≥?∈1,∈2,∈3.From (4.9), we get

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈G.According to Lemma 4.1, we conclude that the mappingL′:G3→Qis tri-additive.□

    Corollary 4.3Suppose Θ≥0 andr >3 are in R and supposeL:G3→Qis a mapping satisfyingL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 and

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈G.Then there is a unique tri-additive mappingL′:G3→Qsatisfying

    for all Ψ1,Ψ3,Ψ5∈G.

    ProofWe define the control functionφby the coefficient

    φ(Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6)=Θ(‖Ψ1‖r+‖Ψ2‖r+‖Ψ3‖r+‖Ψ4‖r+‖Ψ5‖r+‖Ψ6‖r), (4.19)for all Ψ1,···,Ψ6∈Gand put P = 21-r.Then the result follows immediately from Theorem 4.2.□

    Theorem 4.4Supposeφ:G6→[0,∞) is a function such that

    5 Permuting Tri-derivations on Banach Algebras

    In this section, we pay attention on permuting tri-derivations on unitalC*-algebras and complex Banach algebras related to the tri-additiveψ-functional inequality (1.1).

    Lemma 5.1([16, Lemma 2.1]) SupposeL:G2→Qis a bi-additive mapping such thatL(Λ1Ψ1,Λ2Ψ3) = Λ1Λ2L(Ψ1,Ψ3) for all Ψ1,Ψ3∈Gand Λ1,Λ2∈Δ1:={? ∈C :|?| = 1}.ThenLis C-bilinear.

    Lemma 5.2SupposeL:G3→Qis a tri-additive mapping satisfyingL(Λ1Ψ1,Λ2Ψ3,Λ3Ψ5) = Λ1Λ2Λ3L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈Ψ5and Λ1,Λ2,Λ3∈Δ1.ThenLis Ctrilinear.

    ProofThe proof follows from a similar method to the proof of Theorem [16, Lemma 2.1].□

    for all Ψ1,Ψ3,Ψ5∈M, whereφis given in Theorem 4.2.

    In addition, if the mappingL:M3→M satisfiesL(Ψ1,Ψ3,Ψ5)=2L(Ψ1,Ψ3,Ψ5) and

    for all Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3,Ψ5∈M and for every permutation (δ(1),δ(2),δ(3)) of (1,2,3),then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofSuppose Λ1=Λ2=Λ3=1 in(5.2).Then the result follows diectly from Theorem 4.2 and [7, Theorem 3.3].□

    Corollary 5.4Suppose Θ≥0 andr >4 are in R, and supposeL: M3→M is a mapping satisfyingL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 and

    for all Λ1,Λ2,Λ3∈Δ1and all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there exists a unique Ctrilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3,Ψ5∈M and for every permutation (δ(1),δ(2),δ(3)) of (1,2,3),then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofPut P = 21-r.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.3 to complete the proof.□

    Theorem 5.5Supposeφ:M6→[0,∞) is a function such that there is 0<P<4 with

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL:M3→M satisfies (5.4), (5.5) andL(2Ψ1,Ψ3,Ψ5) = 2L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofThe proof follows from a similar method to the proof of Theorem 5.3.□

    Corollary 5.6Suppose Θ≥0 andr <3 are in R,and supposeL:M3→M is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then we can find a unique C-trilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL:M3→M satisfies (7.6), (7.7) andL(2Ψ1,Ψ3,Ψ5) = 2L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofPut P = 2r-1.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.5 to complete the proof.□

    Now, let M andU(M) be a unitalC*-algebra with uniteand unitary group, respectively.We have the following theorem:

    Theorem 5.7Supposeφ:M6→R is a function satisfying (5.1) and supposeL:M3→M is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there exists a unique C-trilinear mapping Z:M3→M satisfying (5.3).

    Also, if the mappingL:M3→M satisfies (5.5),L(2β,Ψ3,Ψ5)=2L(β,Ψ3,Ψ5) and

    for all Ψ2,Ψ3,Ψ5∈M and allβ ∈U(M), then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofIt follows directly from Theorem 5.3 and [7, Theorem 3.7].□

    Remark 5.8By a similar method to the proof last theorem, we can conclude that if(5.13) in Theorem 5.7 is replaced by

    for allβ,α,α1,α2∈U(M), then the C-trilinear mapping Z : M3→M is a permuting triderivation.

    Corollary 5.9Suppose Θ≥0 andr >3 are in R,and supposeL:M3→M is a mapping satisfying(7.4)andL(Ψ1,0,a)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then there exists a unique C-trilinear mapping Z : M3→M satisfying (7.5).Furthermore, if the mappingL:M3→M satisfies (7.7),L(2β,Ψ3,Ψ5)=2L(β,Ψ3,Ψ5) and

    ‖L(βΨ2,Ψ3,Ψ5)-L(β,Ψ3,Ψ5)Ψ2-βL(Ψ2,Ψ3,Ψ5)‖≤Θ(1+‖Ψ2‖r+2‖Ψ3‖r+2‖Ψ5‖r) (5.14)for allβ ∈U(M) and all Ψ2,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof using Theorem 5.7.□

    Theorem 5.10Supposeφ: M6→R is a function satisfying (5.10) and supposeL:M3→M is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then we can find a unique C-trilinear mapping Z : M3→M satisfying(5.11).In addition, if the mappingL: M3→M satisfies (5.5), (5.13) andL(2β,Ψ3,Ψ5) =2L(β,Ψ3,Ψ5)for all Ψ3,Ψ5∈M and allβ ∈U(M), then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofBy a similar method to the proof of Theorem 5.7, we can get the result.□

    Corollary 5.11Suppose Θ≥0 andr <3 are in R, and supposeL:M3→M is a mapping satisfying(7.4)andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mapping Z:M3→M satisfying (7.8).

    Also, if the mappingL: M3→M satisfies (7.7), (7.9) andL(2β,Ψ3,Ψ5) = 2L(β,Ψ3,Ψ5)for allβ ∈U(M)and all Ψ3,Ψ5∈M,then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 5.10.□

    6 Permuting Tri-homomorphisms in Banach Algebras

    In this section,we examine several aggregation functions and find the function that has the least error.Then we introduce it as a control function and express the results of the previous section.

    Example 6.1We consider the following aggregation function.Let

    Table 1 below shows the different values of the aggregations functions for Υ

    Table 1 The values of the aggregation functions

    Figure 1 below shows the different values of the aggregation functions.

    Figure 1

    By comparing the values obtained in Table 1 and Figure 1, we conclude that Min is the best control function because it minimizes the error, therefore in the following results, we use the Min as a control function.

    for all Ψ1,Ψ3,Ψ5∈M, whereφis given in Theorem 4.2.

    Moreover, if the mappingL:M3→N satisfies (5.5) and

    ‖L(Ψ1Ψ2,Ψ3Ψ4,Ψ5Ψ6)-L(Ψ1,Ψ3,Ψ5)L(Ψ2,Ψ4,Ψ6)‖≤φ(Ψ1,Ψ2,Ψ3,Ψ3,Ψ5,Ψ5), (6.3)for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt follows directly from Theorem 5.3 and [7, Theorem 4.1].□

    Corollary 6.3Suppose Θ≥0 andr >3 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 6.2.□

    Theorem 6.4Supposeφ: M6→[0,∞) is a function satisfying (5.10) for 0<P<4,and supposeL: M3→N is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ4∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    As well, if the mappingL:M3→N satisfies (5.5) and (6.3), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofBy a similar method to the proof of Theorem 6.2, we can obtain the result.□

    Corollary 6.5Suppose Θ≥0 andr <3 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    Also, if the mappingL: M3→N satisfies (7.7) and (7.11), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient tat defines the control functionφby (7.3).Then we complete the proof by Theorem 6.4.□

    Assuming M andU(M)are a unitalC*-algebra with uniteand unitary group respectively,we come to the following theorem:

    Theorem 6.6Supposeφ:M6→R is a function satisfying (6.1) and supposeL:M3→N is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying (6.2).

    Also, if the mappingL:M3→N satisfies (5.5) and

    for allβi,αi ∈U(M),i= 1,2,3, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofUsing Theorem 5.3 and [7, Theorem 4.5], we prove the theorem.□

    Corollary 6.7Suppose Θ≥0 andr >6 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there exists a unique C-trilinear mappingE:M3→N satisfying (7.10).

    Also, if the mappingL:M3→N satisfies (7.7) and

    for allβi,αi ∈U(M),i= 1,2,3, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 6.6.□

    Theorem 6.8Supposeφ: M6→R is a function satisfying (5.10) and supposeL:M3→N is a mapping satisfying (5.2) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying (6.6).

    As well, if the mappingL:M3→N satisfies (5.5) and (6.8), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofUsing a similar method to the proof of Theorem 6.6, we can get the result.□

    Corollary 6.9Suppose Θ≥0 andr <3 are in R,and supposeL:M3→N is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then we can find a unique C-trilinear mappingE:M3→N satisfying (7.12).

    Also, if the mappingL: M3→N satisfies (7.7) and (6.9), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    Proof It is the coefficient that defines the control functionφby (7.3).The we complete the proof by Theorem 6.8.□

    7 Applications

    Consider the following aggregation function by valued multi control function

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈G.Then there is a unique tri-additive mappingL′:G3→Qsatisfying

    for all Ψ1,Ψ3,Ψ5∈G.

    ProofWe define the control functionφby the coefficient

    for all Ψ1,···,Ψ6∈Gand put P = 21-r.Then the result follows immediately from Theorem 4.2.□

    Corollary 7.2Assume that Θ≥0 andr <3 are in R, and supposeL:G3→Qis a mapping satisfyingL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 and(7.1).Then we can find a unique tri-additive mappingL′:G3→Qsatisfying

    for all Ψ1,Ψ3,Ψ5∈G.

    for all Λ1,Λ2,Λ3∈Δ1and all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there exists a unique Ctrilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL: M3→M satisfiesL(2Ψ1,Ψ3,Ψ5) =2L(Ψ1,Ψ3,Ψ5) and

    for all Ψ1,Ψ2,Ψ3,Φ1,Φ2,Φ3,Ψ5∈M and for every permutation (δ(1),δ(2),δ(3)) of (1,2,3),then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofPut P = 21-r.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.3 to complete the proof.□

    Corollary 7.4Suppose Θ≥0 andr <3 are in R,and supposeL:M3→M is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then we can find a unique C-trilinear mapping Z:M3→M satisfying

    for all Ψ1,Ψ3,Ψ5∈M.Also, if the mappingL:M3→M satisfies (7.6), (7.7) andL(2Ψ1,Ψ3,Ψ5) = 2L(Ψ1,Ψ3,Ψ5) for all Ψ1,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofPut P = 2r-1.It is the coefficient that defines the control functionφby (7.3).Then we apply Theorem 5.5 to complete the proof.□

    Corollary 7.5Suppose Θ≥0 andr >3 are in R,and supposeL:M3→M is a mapping satisfying(7.4)andL(Ψ1,0,a)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ3,Ψ5∈M.Then there exists a unique C-trilinear mapping Z : M3→M satisfying (7.5).Furthermore, if the mappingL:M3→M satisfies (7.7),L(2β,Ψ3,Ψ5)=2L(β,Ψ3,Ψ5) and

    for allβ ∈U(M) and all Ψ2,Ψ3,Ψ5∈M, then the C-trilinear mapping Z : M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof using Theorem 5.7.□

    Corollary 7.6Suppose Θ≥0 andr <3 are in R,and supposeL:M3→M is a mapping satisfying (7.4) andL(Ψ1,0,Ψ5) =L(0,Ψ3,Ψ5) =L(Ψ1,Ψ3,0) = 0 for all Ψ1,Ψ3,Ψ5∈M.Then there is a unique C-trilinear mapping Z:M3→M satisfying (7.8).

    Also, if the mappingL: M3→M satisfies (7.7), (7.9) andL(2β,Ψ3,Ψ5) = 2L(β,Ψ3,Ψ5)for allβ ∈U(M)and all Ψ3,Ψ5∈M,then the C-trilinear mapping Z:M3→M is a permuting tri-derivation.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 5.10.□

    Corollary 7.7Suppose Θ≥0 andr >3 are in R,and supposeL:M3→N is a mapping satisfying(7.4)andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    Besides, if the mappingL:M3→N satisfies (7.7) and

    for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M, then the C-trilinear mappingE: M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient that defines the control functionφby(7.3).Then we complete the proof by Theorem 6.2.□

    Corollary 7.8Suppose Θ≥0 andr <3 are in R,and supposeL:M3→N is a mapping satisfying(7.4)andL(Ψ1,0,Ψ5)=L(0,Ψ3,Ψ5)=L(Ψ1,Ψ3,0)=0 for all Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6∈M.Then there is a unique C-trilinear mappingE:M3→N satisfying

    for all Ψ1,Ψ3,Ψ5∈M.

    Also, if the mappingL: M3→N satisfies (7.7) and (7.11), then the C-trilinear mappingE:M3→N is a permuting tri-homomorphism.

    ProofIt is the coefficient tat defines the control functionφby (7.3).Then we complete the proof by Theorem 6.4.□

    8 Conclusion

    Applying the CRM derived from an alternative fixed point theorem, we stabilized a triadditiveψ-functional inequality forψbeing a fixed complex number with 0/=|ψ|<1.In addition, we studied permuting tri-homomorphisms and permuting tri-derivations in unitalC*-algebras and Banach algebras associated with the above inequality.

    Conflict of InterestThe authors declare no conflict of interest.

    Authors’ contributionsThe authors equally conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

    内射极品少妇av片p| 久久久久久国产a免费观看| 亚洲精品一区av在线观看| 757午夜福利合集在线观看| 天堂影院成人在线观看| 日本撒尿小便嘘嘘汇集6| 一本久久中文字幕| 免费观看人在逋| 99热只有精品国产| 波多野结衣高清无吗| 国产精品一区二区三区四区免费观看 | 欧美成狂野欧美在线观看| 欧美性感艳星| 九色成人免费人妻av| 色吧在线观看| 九九久久精品国产亚洲av麻豆| 亚洲乱码一区二区免费版| 欧美不卡视频在线免费观看| 9191精品国产免费久久| 亚洲国产精品合色在线| 精品不卡国产一区二区三区| 一级a爱片免费观看的视频| 国产高清激情床上av| 人人妻,人人澡人人爽秒播| 日本黄大片高清| 欧美不卡视频在线免费观看| 好看av亚洲va欧美ⅴa在| 18+在线观看网站| av专区在线播放| 国产av一区在线观看免费| 91麻豆av在线| 国产视频内射| 精品人妻熟女av久视频| 日韩欧美精品免费久久 | 美女被艹到高潮喷水动态| 久久久久精品国产欧美久久久| 亚洲人成网站在线播| 国内精品久久久久久久电影| 成人性生交大片免费视频hd| 亚洲精华国产精华精| 免费观看人在逋| 舔av片在线| 久久人人爽人人爽人人片va | 亚洲av熟女| 亚洲熟妇中文字幕五十中出| 欧美午夜高清在线| 中文字幕人成人乱码亚洲影| 午夜影院日韩av| 免费看a级黄色片| 久久热精品热| 在线十欧美十亚洲十日本专区| 免费在线观看日本一区| 中文在线观看免费www的网站| 国产中年淑女户外野战色| 国产亚洲av嫩草精品影院| 久久久久九九精品影院| 国产伦精品一区二区三区视频9| 男人舔奶头视频| 波野结衣二区三区在线| 国产精品99久久久久久久久| 免费观看精品视频网站| 精品人妻一区二区三区麻豆 | 精品99又大又爽又粗少妇毛片 | 国产精品嫩草影院av在线观看 | eeuss影院久久| 久久精品人妻少妇| 好看av亚洲va欧美ⅴa在| aaaaa片日本免费| 国产精华一区二区三区| 亚洲精品色激情综合| 波多野结衣高清作品| 国产一区二区激情短视频| a级毛片a级免费在线| 亚洲最大成人av| 免费大片18禁| 国产高清有码在线观看视频| 亚洲黑人精品在线| 国模一区二区三区四区视频| 麻豆国产av国片精品| 很黄的视频免费| 麻豆av噜噜一区二区三区| 国产成人av教育| 性欧美人与动物交配| 亚洲国产精品久久男人天堂| 国产又黄又爽又无遮挡在线| 高潮久久久久久久久久久不卡| 波多野结衣巨乳人妻| 特级一级黄色大片| 黄色一级大片看看| 亚洲经典国产精华液单 | 在线观看午夜福利视频| 1024手机看黄色片| 少妇人妻精品综合一区二区 | 欧美日韩亚洲国产一区二区在线观看| 99热这里只有精品一区| 中文字幕人妻熟人妻熟丝袜美| 国产精品电影一区二区三区| 在线观看舔阴道视频| 99久久九九国产精品国产免费| 国产精品亚洲一级av第二区| 成人特级黄色片久久久久久久| 成人av一区二区三区在线看| 国产三级中文精品| 少妇被粗大猛烈的视频| 亚洲综合色惰| 国产av不卡久久| 欧美性感艳星| 一区二区三区免费毛片| 99在线视频只有这里精品首页| 国产视频内射| 亚洲第一电影网av| 免费观看精品视频网站| 亚洲,欧美,日韩| 免费av不卡在线播放| 久久精品人妻少妇| 亚洲美女视频黄频| 久久久久久国产a免费观看| 久久6这里有精品| av女优亚洲男人天堂| 欧美成人免费av一区二区三区| 观看免费一级毛片| 亚洲无线观看免费| 国产精品一区二区三区四区免费观看 | 国产精品一区二区三区四区久久| 日本精品一区二区三区蜜桃| 中文字幕熟女人妻在线| 日本 欧美在线| 无人区码免费观看不卡| 午夜福利成人在线免费观看| 国产在线精品亚洲第一网站| 在线国产一区二区在线| 欧美不卡视频在线免费观看| 一进一出抽搐gif免费好疼| 97人妻精品一区二区三区麻豆| 日韩欧美一区二区三区在线观看| 国产精品三级大全| 久久6这里有精品| 国产精华一区二区三区| 成年免费大片在线观看| 久久伊人香网站| 成人美女网站在线观看视频| 国产精品99久久久久久久久| 夜夜看夜夜爽夜夜摸| 99国产极品粉嫩在线观看| 久久精品国产亚洲av香蕉五月| 精品午夜福利在线看| 日韩欧美免费精品| 日韩高清综合在线| 能在线免费观看的黄片| 亚洲av不卡在线观看| 十八禁国产超污无遮挡网站| 国产精品野战在线观看| 搡老熟女国产l中国老女人| 性插视频无遮挡在线免费观看| 日韩有码中文字幕| 欧美最黄视频在线播放免费| 国产精品一区二区性色av| 国产成年人精品一区二区| 俺也久久电影网| 一本精品99久久精品77| 夜夜看夜夜爽夜夜摸| 国产91精品成人一区二区三区| a在线观看视频网站| 久久久久精品国产欧美久久久| 国产大屁股一区二区在线视频| 精品一区二区三区av网在线观看| 国产亚洲精品综合一区在线观看| 黄色配什么色好看| 日韩欧美 国产精品| 午夜影院日韩av| 97超视频在线观看视频| 偷拍熟女少妇极品色| 桃红色精品国产亚洲av| 国产视频内射| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 网址你懂的国产日韩在线| 999久久久精品免费观看国产| 久久国产乱子伦精品免费另类| 香蕉av资源在线| 国产一区二区激情短视频| 91久久精品国产一区二区成人| 日韩 亚洲 欧美在线| 日本三级黄在线观看| 99久久99久久久精品蜜桃| av福利片在线观看| 神马国产精品三级电影在线观看| 黄色女人牲交| 丰满乱子伦码专区| 97热精品久久久久久| 老司机午夜十八禁免费视频| 色尼玛亚洲综合影院| netflix在线观看网站| 亚洲成人免费电影在线观看| 日韩欧美国产一区二区入口| 国产私拍福利视频在线观看| 欧美一区二区亚洲| 精品一区二区三区视频在线| 午夜福利成人在线免费观看| 国产精品野战在线观看| 在线a可以看的网站| 日韩人妻高清精品专区| 丰满的人妻完整版| 嫩草影院精品99| 毛片一级片免费看久久久久 | 少妇裸体淫交视频免费看高清| 午夜精品在线福利| 亚洲第一欧美日韩一区二区三区| 国产av麻豆久久久久久久| 在线a可以看的网站| 亚洲国产精品sss在线观看| 国产黄a三级三级三级人| 亚洲五月天丁香| 久久久久性生活片| 男女那种视频在线观看| 日韩国内少妇激情av| 久久久久久九九精品二区国产| 婷婷六月久久综合丁香| av国产免费在线观看| 久久久成人免费电影| 淫秽高清视频在线观看| 国产精华一区二区三区| 校园春色视频在线观看| 99久久99久久久精品蜜桃| 午夜福利在线观看免费完整高清在 | 久9热在线精品视频| 亚洲av电影不卡..在线观看| 怎么达到女性高潮| 一个人看的www免费观看视频| 亚洲精品在线观看二区| 久久精品国产清高在天天线| 午夜亚洲福利在线播放| av女优亚洲男人天堂| 欧美高清性xxxxhd video| 看黄色毛片网站| 国产精品亚洲一级av第二区| 亚洲国产精品sss在线观看| 国产高潮美女av| 日本成人三级电影网站| av天堂中文字幕网| 一区二区三区高清视频在线| 欧美最新免费一区二区三区 | 国产高清激情床上av| 久久婷婷人人爽人人干人人爱| 亚洲国产欧洲综合997久久,| 国产精品女同一区二区软件 | 午夜亚洲福利在线播放| 18美女黄网站色大片免费观看| 免费在线观看成人毛片| 国产探花在线观看一区二区| 在线a可以看的网站| av中文乱码字幕在线| 五月玫瑰六月丁香| 亚洲aⅴ乱码一区二区在线播放| 九九热线精品视视频播放| 久久久久久久精品吃奶| 听说在线观看完整版免费高清| 毛片女人毛片| 欧美黄色淫秽网站| 亚洲欧美日韩高清在线视频| 成人国产综合亚洲| 午夜福利在线在线| 亚洲精品粉嫩美女一区| 国产精华一区二区三区| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看免费完整高清在 | 脱女人内裤的视频| 国产毛片a区久久久久| 三级国产精品欧美在线观看| 男人舔女人下体高潮全视频| 综合色av麻豆| 嫩草影院新地址| 久久天躁狠狠躁夜夜2o2o| av女优亚洲男人天堂| 人妻久久中文字幕网| 免费在线观看日本一区| 亚洲中文字幕一区二区三区有码在线看| 一个人免费在线观看的高清视频| 如何舔出高潮| 成人特级黄色片久久久久久久| 亚洲18禁久久av| 高清毛片免费观看视频网站| 中文字幕高清在线视频| 国产一区二区在线观看日韩| 亚洲最大成人手机在线| 国产午夜精品论理片| 人妻夜夜爽99麻豆av| 天堂动漫精品| 美女cb高潮喷水在线观看| 国产大屁股一区二区在线视频| 网址你懂的国产日韩在线| 成人三级黄色视频| 免费高清视频大片| 亚洲国产色片| 看免费av毛片| 精品人妻偷拍中文字幕| 国产av不卡久久| 免费人成视频x8x8入口观看| 精品无人区乱码1区二区| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| av欧美777| 久久6这里有精品| 亚洲国产精品成人综合色| 99久久精品国产亚洲精品| 可以在线观看毛片的网站| 永久网站在线| 美女高潮喷水抽搐中文字幕| 免费搜索国产男女视频| 国产v大片淫在线免费观看| 成人永久免费在线观看视频| 免费看a级黄色片| 亚洲无线在线观看| 精品一区二区三区视频在线| 国产色爽女视频免费观看| 亚洲专区国产一区二区| 国产一区二区在线观看日韩| 在线观看美女被高潮喷水网站 | 99热精品在线国产| 动漫黄色视频在线观看| 国产精品一及| 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 亚洲经典国产精华液单 | 又爽又黄无遮挡网站| 看片在线看免费视频| 国产高潮美女av| 88av欧美| 好男人在线观看高清免费视频| 成人美女网站在线观看视频| 成人特级黄色片久久久久久久| 黄色女人牲交| 欧美黑人巨大hd| 亚洲国产精品久久男人天堂| 成人国产综合亚洲| 深夜a级毛片| 国产黄色小视频在线观看| 麻豆av噜噜一区二区三区| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 国产精品精品国产色婷婷| 精品人妻熟女av久视频| 中文字幕av在线有码专区| 在线观看66精品国产| 在线免费观看的www视频| 成人无遮挡网站| 亚洲成av人片在线播放无| 一二三四社区在线视频社区8| 日韩欧美在线二视频| 亚洲国产日韩欧美精品在线观看| 麻豆久久精品国产亚洲av| 五月玫瑰六月丁香| 久久久久国内视频| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 噜噜噜噜噜久久久久久91| 免费av毛片视频| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 亚洲精品日韩av片在线观看| 亚洲国产日韩欧美精品在线观看| 日本熟妇午夜| 少妇的逼水好多| 亚洲专区国产一区二区| 色噜噜av男人的天堂激情| 国产成人影院久久av| 国产高清三级在线| 麻豆成人av在线观看| 亚洲片人在线观看| 午夜老司机福利剧场| 天堂网av新在线| 久久久久久九九精品二区国产| 欧美一区二区国产精品久久精品| x7x7x7水蜜桃| 国产伦在线观看视频一区| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 亚洲不卡免费看| 成人特级黄色片久久久久久久| 国产av不卡久久| 99热6这里只有精品| 国产精品国产高清国产av| 美女黄网站色视频| 成人无遮挡网站| 久久久精品大字幕| 欧美+亚洲+日韩+国产| 亚洲av一区综合| 成熟少妇高潮喷水视频| 国产午夜福利久久久久久| 日本成人三级电影网站| 长腿黑丝高跟| 国产亚洲欧美98| 日韩精品中文字幕看吧| 久久中文看片网| 亚洲欧美日韩高清专用| 赤兔流量卡办理| 精品人妻1区二区| 天天躁日日操中文字幕| 亚洲人成网站高清观看| 免费看a级黄色片| 69av精品久久久久久| 99热这里只有是精品50| 在线观看av片永久免费下载| 天美传媒精品一区二区| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 亚洲无线在线观看| a在线观看视频网站| 9191精品国产免费久久| 久久这里只有精品中国| 成人av在线播放网站| 很黄的视频免费| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产| 成人性生交大片免费视频hd| 搡老熟女国产l中国老女人| 欧美在线黄色| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| eeuss影院久久| 毛片女人毛片| 搞女人的毛片| 精品午夜福利在线看| 97超级碰碰碰精品色视频在线观看| 网址你懂的国产日韩在线| 亚洲无线在线观看| 国产高清三级在线| 在线观看av片永久免费下载| 狠狠狠狠99中文字幕| 成人美女网站在线观看视频| 最好的美女福利视频网| 亚洲aⅴ乱码一区二区在线播放| 一本精品99久久精品77| 人人妻,人人澡人人爽秒播| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看| 亚洲熟妇中文字幕五十中出| 夜夜躁狠狠躁天天躁| 88av欧美| 精品一区二区三区av网在线观看| 国产欧美日韩一区二区三| 在线免费观看不下载黄p国产 | 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 国产一区二区激情短视频| 亚洲欧美精品综合久久99| av天堂中文字幕网| 露出奶头的视频| 亚洲第一电影网av| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| www.色视频.com| 老司机午夜十八禁免费视频| 一个人看的www免费观看视频| 变态另类丝袜制服| 人妻久久中文字幕网| 91字幕亚洲| 国产成人影院久久av| 国产精品亚洲美女久久久| 亚洲18禁久久av| 精品久久久久久成人av| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 国产成+人综合+亚洲专区| www.999成人在线观看| 国产精品久久久久久久久免 | 欧美午夜高清在线| 在线看三级毛片| 成人特级黄色片久久久久久久| 一级毛片久久久久久久久女| 亚洲av成人精品一区久久| 中文字幕人成人乱码亚洲影| 青草久久国产| 日本熟妇午夜| 久久久久久国产a免费观看| 日本三级黄在线观看| 久久国产乱子伦精品免费另类| 日韩亚洲欧美综合| 免费无遮挡裸体视频| 俄罗斯特黄特色一大片| a级一级毛片免费在线观看| 在线十欧美十亚洲十日本专区| 哪里可以看免费的av片| 日本三级黄在线观看| 国产午夜精品久久久久久一区二区三区 | 俄罗斯特黄特色一大片| 日韩大尺度精品在线看网址| 久久精品夜夜夜夜夜久久蜜豆| 欧美色欧美亚洲另类二区| 日本黄色视频三级网站网址| 免费人成视频x8x8入口观看| 91在线观看av| 亚洲av美国av| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 久久久色成人| 亚洲精品一卡2卡三卡4卡5卡| 18禁在线播放成人免费| 日日夜夜操网爽| 欧美午夜高清在线| 精品日产1卡2卡| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| av天堂中文字幕网| 51午夜福利影视在线观看| 小蜜桃在线观看免费完整版高清| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 此物有八面人人有两片| 在现免费观看毛片| av福利片在线观看| 欧美日韩乱码在线| 天堂av国产一区二区熟女人妻| 宅男免费午夜| 欧美国产日韩亚洲一区| 欧美在线黄色| 国产精品伦人一区二区| 成人国产一区最新在线观看| 在现免费观看毛片| 国产亚洲精品久久久久久毛片| 一个人观看的视频www高清免费观看| 免费av观看视频| 亚州av有码| 高清在线国产一区| 搡老岳熟女国产| aaaaa片日本免费| 久久热精品热| 久9热在线精品视频| 亚洲国产高清在线一区二区三| 亚洲五月天丁香| 国产白丝娇喘喷水9色精品| 少妇裸体淫交视频免费看高清| 99久久99久久久精品蜜桃| 丰满乱子伦码专区| 国产探花在线观看一区二区| 国产私拍福利视频在线观看| 亚洲人成网站在线播| 久久国产乱子伦精品免费另类| 在线免费观看不下载黄p国产 | 欧美日韩黄片免| 亚洲欧美清纯卡通| 天天一区二区日本电影三级| 俄罗斯特黄特色一大片| 午夜免费男女啪啪视频观看 | 波多野结衣巨乳人妻| 国产私拍福利视频在线观看| 直男gayav资源| 久久99热这里只有精品18| 亚洲男人的天堂狠狠| 日本 av在线| 如何舔出高潮| 五月伊人婷婷丁香| 特大巨黑吊av在线直播| 亚洲国产精品999在线| 午夜激情福利司机影院| 97碰自拍视频| 国产中年淑女户外野战色| 大型黄色视频在线免费观看| 亚洲成人久久爱视频| 久久热精品热| 午夜激情福利司机影院| 亚洲人成网站在线播放欧美日韩| 嫩草影院入口| 欧美最新免费一区二区三区 | 国产单亲对白刺激| 午夜影院日韩av| 久久久久性生活片| 精品人妻1区二区| 久99久视频精品免费| ponron亚洲| 欧美乱妇无乱码| 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片| 欧美乱色亚洲激情| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 亚洲av成人av| 男女那种视频在线观看| 他把我摸到了高潮在线观看| 中文字幕免费在线视频6| 精品久久久久久,| 久久久久国内视频| 精品福利观看| 免费搜索国产男女视频| 757午夜福利合集在线观看| 亚洲最大成人av| 精品国内亚洲2022精品成人| 日韩欧美三级三区| 又爽又黄a免费视频| 久久婷婷人人爽人人干人人爱| 成人鲁丝片一二三区免费| 亚洲专区中文字幕在线| 午夜精品久久久久久毛片777| 亚洲第一区二区三区不卡| 午夜免费激情av| 在线观看免费视频日本深夜| 亚洲精华国产精华精| 伊人久久精品亚洲午夜| 欧美一区二区亚洲| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 真人做人爱边吃奶动态| www.999成人在线观看| 成人美女网站在线观看视频| 欧美黄色片欧美黄色片| 国产色爽女视频免费观看| 亚洲综合色惰| 一本精品99久久精品77| 午夜福利欧美成人| 在线看三级毛片| 神马国产精品三级电影在线观看| 能在线免费观看的黄片| ponron亚洲| bbb黄色大片| 久久久久久九九精品二区国产| 欧美xxxx性猛交bbbb|