趙令浩,孫冬陽(yáng),胡明月,袁繼海,范晨子,詹秀春
(中國(guó)地質(zhì)調(diào)查局元素微區(qū)與形態(tài)分析重點(diǎn)實(shí)驗(yàn)室,國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心,北京 100037)
鋯石、榍石、磷灰石、獨(dú)居石等副礦物在地質(zhì)樣品中廣泛存在,這些礦物普遍鈾含量較高,因此成為U-Pb定年的目標(biāo)礦物[1-5]。同時(shí)相對(duì)于普通造巖礦物,副礦物是各種關(guān)鍵微量元素如Zr、Hf、P、Ti、Nb、Ta、稀土元素(REEs)、U、Th等的主要載體,通過(guò)副礦物微量元素特征可以為劃分年齡期次、解譯年齡意義提供參考。例如,利用鋯石Th/U比值及REEs配分模式特征區(qū)分巖漿及變質(zhì)成因鋯石[6-8];根據(jù)獨(dú)居石中Y含量區(qū)分其與石榴子石或磷釔礦共生[9];根據(jù)碎屑磷灰石中微量元素含量區(qū)分磷灰石成因及來(lái)源,進(jìn)而實(shí)現(xiàn)磷灰石U-Pb年齡溯源統(tǒng)計(jì)[10-11];另一方面副礦物微量元素含量可以提供礦物形成溫度、氧逸度等信息,例如鋯石Ti溫度計(jì)[12]、榍石Zr溫度計(jì)[13]、Ce氧逸度等[14]。變質(zhì)或部分熔融過(guò)程中,副礦物的參與可能對(duì)巖石與流體系統(tǒng)的關(guān)鍵微量元素或同位素體系產(chǎn)生明顯的影響[15-19],結(jié)合現(xiàn)代地質(zhì)體中副礦物U-Pb年齡、關(guān)鍵微量元素特征及同位素特征構(gòu)建變質(zhì)礦物P-T-t軌跡,反演礦物生長(zhǎng)過(guò)程,是“巖石年代學(xué)(Petrochronology)”研究中的重要組成部分[20]。因此,采用微區(qū)分析技術(shù)在有限的分析空間內(nèi)獲得更多的元素或同位素信息至關(guān)重要。
LA-ICP-MS技術(shù)因其高效、準(zhǔn)確的特征成為副礦物U-Pb定年的主要技術(shù)方法之一,近年來(lái)隨著含普通鉛副礦物U-Pb定年數(shù)據(jù)處理方法不斷完善和儀器測(cè)試能力的提高,U-Pb定年目標(biāo)礦物領(lǐng)域不斷拓展,尤其低/超低U礦物U-Pb定年方法的建立為解決傳統(tǒng)疑難地質(zhì)問(wèn)題提供有力的技術(shù)支撐[21-25]。
根據(jù)質(zhì)譜接收系統(tǒng)差異,激光剝蝕與多接收質(zhì)譜聯(lián)用構(gòu)成LA-MC-ICP-MS,該儀器具有高靈敏度特征,可以同時(shí)采集數(shù)種元素或同位素信號(hào),用于同位素比值的準(zhǔn)確測(cè)定,但無(wú)法進(jìn)行微量元素定量分析。為實(shí)現(xiàn)原位U-Pb同位素定年和微量元素含量同時(shí)檢測(cè),Kylander-Clark等(2013)[26]提出采用多接收質(zhì)譜和單接收質(zhì)譜串聯(lián)(LASS)設(shè)計(jì),分別用于U-Pb定年和微量元素定量分析。
激光剝蝕與單接收質(zhì)譜連接構(gòu)成LA-ICP-MS,盡管只有一個(gè)檢測(cè)器,但可實(shí)現(xiàn)大范圍質(zhì)量數(shù)元素/同位素快速順序檢測(cè),目前多用于微區(qū)微量元素定量分析和副礦物U-Pb同位素定年。單接收質(zhì)譜根據(jù)質(zhì)量分析器差異又可分為四極桿質(zhì)譜(Q-ICPMS)和扇形磁場(chǎng)質(zhì)譜(SF-ICP-MS),Hattendorf等(2003)[27]詳細(xì)對(duì)比了兩種質(zhì)譜結(jié)構(gòu)和性能的差異??傮w上,Q-ICP-MS順序掃描速度較快(2~50Hz),但靈敏度相對(duì)較低,廣泛應(yīng)用于鋯石、榍石、磷灰石等相對(duì)高U、Pb礦物U-Pb年齡與關(guān)鍵微量元素含量同時(shí)分析。SF-ICP-MS具有高靈敏度、高分辨率特征,其靈敏度可達(dá)1000~10000cps/(μg/g),根據(jù)副礦物中的U-Pb含量,扇形磁場(chǎng)質(zhì)譜更利于高空間分辨率和超低U含量樣品的U-Pb定年分析。例如Kooijman(2012)[28]采用LA-SF-ICP-MS實(shí)現(xiàn)了12μm鋯石U-Pb定年;Wu等(2020)[29]通過(guò)改造LA-SF-ICP-MS進(jìn)樣系統(tǒng),大幅度提升了質(zhì)譜儀的靈敏度,并且實(shí)現(xiàn)了高空間分辨率(5~16μm)鋯石U-Pb定年。另外,SF-ICP-MS與激光系統(tǒng)聯(lián)用實(shí)現(xiàn)了低/超低U礦物U-Pb定年,例如對(duì)U含量在ng/g級(jí)的碳酸鹽礦物進(jìn)行準(zhǔn)確的U-Pb定年等[23,30]。但是受限于磁場(chǎng)定位時(shí)間較長(zhǎng),掃描速度較慢,根據(jù)選擇分析元素質(zhì)量范圍,典型掃描速度1~5Hz,遠(yuǎn)低于Q-ICP-MS。盡管Latkoczy等(2002)[31]采用LA-SF-ICP-MS準(zhǔn)確測(cè)定了樣品中多元素含量,并提出通過(guò)優(yōu)化設(shè)置可以使分析不受質(zhì)譜掃描速度的影響,但相對(duì)于元素定量分析,尤其是在相對(duì)較少數(shù)據(jù)統(tǒng)計(jì)量的情況下,同位素比值的測(cè)定對(duì)于儀器準(zhǔn)確性和穩(wěn)定性提出更高的要求。為保證年齡結(jié)果的準(zhǔn)確性與穩(wěn)定性,目前報(bào)道的采用高分辨質(zhì)譜(SF-ICPMS)測(cè)定副礦物U-Pb年齡方法中一般僅測(cè)試與U-Pb年齡相關(guān)的同位素(202Hg~238U),無(wú)法同時(shí)進(jìn)行關(guān)鍵微量元素定量分析。在多期次生長(zhǎng)副礦物研究中,U-Pb年齡與微量元素含量分別測(cè)試一方面可能會(huì)受到礦物生長(zhǎng)空間影響,不便開(kāi)展多次取樣;另一方面非原位測(cè)試可能會(huì)導(dǎo)致測(cè)定年齡與微量元素所反映的溫度、壓力等地質(zhì)環(huán)境信息耦合困難。
基于鋯石U-Pb定年與微量元素含量同時(shí)測(cè)定在“巖石年代學(xué)”領(lǐng)域的重要性,本文采用激光剝蝕扇形磁場(chǎng)等離子體質(zhì)譜(LA-SF-ICP-MS),以25μm激光斑束對(duì)7種常見(jiàn)的鋯石U-Pb標(biāo)準(zhǔn)樣品,包括91500[32]、GJ-1[33]、Tanz[34]、SA01[35]、Temora1[36]、Ple?ovice[37]和Qinghu[38]進(jìn)行U-Pb年齡和Ti、Hf、REEs等關(guān)鍵元素含量的同時(shí)定量分析,探討LA-SF-ICP-MS同時(shí)進(jìn)行U-Pb定年和微量元素定量分析方法的可行性及其對(duì)年齡結(jié)果的影響。
實(shí)驗(yàn)中采用的鋯石U-Pb樣品按其年齡由高到低包括:91500[32]、GJ-1[33]、Tanz[34]、SA01[35]、Temora1[36]、Ple?ovice[37]和Qinghu[38],年齡范圍為1064~159Ma。這些礦物樣品具有穩(wěn)定的ID-TIMS U-Pb年齡,在世界范圍內(nèi)被廣泛用作U-Pb定年標(biāo)準(zhǔn)樣品。本文通過(guò)分析這些樣品以驗(yàn)證所建立測(cè)試方法的準(zhǔn)確性。
91500鋯石是應(yīng)用最為廣泛的鋯石U-Pb定年標(biāo)準(zhǔn)樣品。該樣品的ID-TIMS206Pb/238U年齡為1062Ma[32]。GJ-1鋯石是澳大利亞MacQuarie大學(xué)大陸地球化學(xué)與成礦作用研究中心實(shí)驗(yàn)室的U-Pb測(cè)定標(biāo)準(zhǔn)鋯石[33]。該鋯石的TIMS年齡結(jié)果不諧和,206Pb/238U和207Pb/235U年齡分別為599.8±1.7Ma和601.6±1.3Ma,但是LA-ICP-MS分析結(jié)果諧和,目前該樣品LA-ICP-MS分析中采用參考年齡為~603Ma。Tanz鋯石是中國(guó)地質(zhì)大學(xué)(武漢)團(tuán)隊(duì)開(kāi)發(fā)的鋯石U-Pb定年和Zr-O同位素組成標(biāo)準(zhǔn)樣品。該樣品的ID-TIMS年齡為566.16±0.77Ma,SIMS和LA-ICP-MS分析結(jié)果都介于564~569Ma,表明該樣品具有良好的U-Pb同位素均一性[34]。SA01鋯石是中國(guó)科學(xué)院地質(zhì)與地球物理研究所近年來(lái)開(kāi)發(fā)的鋯石U-Pb定年、Hf-O同位素組成微區(qū)測(cè)試標(biāo)準(zhǔn)物質(zhì)。該樣品的ID-TIMS年齡為535.1±0.3Ma[35]。Temora1鋯石產(chǎn)自澳大利亞Lachlan造山帶鎂鐵質(zhì)巖,目前常用作SHRIMP鋯石U-Pb定年標(biāo)準(zhǔn)樣品。該樣品的ID-TIMS年齡為416.75±0.24Ma[36]。Ple?ovice鋯石產(chǎn)自捷克富鉀麻粒巖,該樣品ID-TIMS測(cè)定的206Pb/238U年齡為337.13±0.37Ma[37]。Qinghu鋯石是中國(guó)科學(xué)院地質(zhì)與地球物理研究所離子探針實(shí)驗(yàn)室標(biāo)準(zhǔn)鋯石。該樣品的TIMS諧和年齡為159.38±0.12Ma[38]。
將所有鋯石樣品粘在PVC模具底部,然后向模具中注入環(huán)氧樹(shù)脂和固化劑,制備成直徑約24mm鋯石靶,并對(duì)樣品靶表面進(jìn)行打磨、拋光,直至樣品露出光潔表面。采用光學(xué)顯微鏡結(jié)合掃描電鏡拍攝樣品在透射光和放射光下照片及陰極發(fā)光(CL)圖片,觀察樣品內(nèi)部結(jié)構(gòu)特征,避免樣品裂隙及包裹體等對(duì)測(cè)試結(jié)果造成影響。在激光剝蝕分析前,利用去離子水及無(wú)水乙醇擦拭鋯石表面,并采用高壓N2流吹掃樣品,去除樣品表面的普通Pb污染。
鋯石U-Pb定年和微量元素含量分析在中國(guó)地質(zhì)調(diào)查局元素微區(qū)與形態(tài)分析重點(diǎn)實(shí)驗(yàn)室完成,采用ESL NWR 193UCArF準(zhǔn)分子激光器及ELEMENTⅡ扇形磁場(chǎng)高分辨電感耦合等離子體質(zhì)譜儀(SFICP-MS,美國(guó)ThermoFisher Scientific公司)。
本實(shí)驗(yàn)中激光剝蝕采用25μm激光斑束,頻率8Hz。以He氣作為吹掃氣體提高剝蝕氣溶膠傳輸效率[39],并通入1mL/min氮?dú)庖蕴岣邇x器靈敏度[40]。氣路上采用信號(hào)勻化裝置,增大氣溶膠擴(kuò)散空間,可有效地提高樣品剝蝕信號(hào)穩(wěn)定性。
SF-ICP-MS分析采用低分辨模式(M/△M=300)。實(shí)驗(yàn)前采用25μm激光線掃描NIST612進(jìn)行儀器調(diào)諧,使La和Th信號(hào)>1.5×105cps,信號(hào)穩(wěn)定性(RSD)為1%~2%,同時(shí)監(jiān)測(cè)ThO+/Th+控制氧化物產(chǎn)率<0.2%。選擇分析鋯石U-Pb同位素和微量元素,包括29Si、49Ti、89Y、91Zr、139La、140Ce、141Pr、146Nd、147Sm、151Eu、157Gd、159Tb、163Dy、165Ho、166Er、169Tm、172Yb、175Lu、178Hf、206Pb、207Pb、208Pb、232Th和238U,該質(zhì)量數(shù)范圍內(nèi)質(zhì)譜磁場(chǎng)定位4次,設(shè)置首次磁場(chǎng)定位時(shí)間為0.1s,其余磁場(chǎng)定位時(shí)間0.05s。206Pb、208Pb、232Th和238U測(cè)試時(shí)間10ms,207Pb測(cè)試時(shí)間20ms,其余各元素測(cè)試時(shí)間5ms,每次掃描總時(shí)間0.87s,有效分析時(shí)間占71%。多數(shù)鋯石中不含或含極低普通鉛,且采用單接收質(zhì)譜難以準(zhǔn)確測(cè)定204Pb用于普通鉛校正,為提高有效分析時(shí)間的比例,本方法中未檢測(cè)202Hg和204Pb。儀器工作條件見(jiàn)表1。
LA-ICP-MS測(cè)試前采用大激光斑束對(duì)樣品表面進(jìn)行預(yù)剝蝕,去除樣品表面可能存在的Pb同位素污染。樣品分析采用點(diǎn)剝蝕模式,點(diǎn)分析時(shí)間90s,包括儀器背景信號(hào)采集時(shí)間20s,激光剝蝕信號(hào)采集時(shí)間40s,以及吹掃時(shí)間30s。
采用91500鋯石和NIST610分別作為U-Pb同位素比值和微量元素定量分析的標(biāo)準(zhǔn)物質(zhì)。每分析10個(gè)未知樣品點(diǎn)插入分析一組標(biāo)準(zhǔn)樣品(2點(diǎn)91500鋯石和1點(diǎn)NIST610)以校正分餾效應(yīng)。
鋯石U-Pb年齡和微量元素含量數(shù)據(jù)處理采用GLITTER 4.0軟件完成[41],選擇標(biāo)準(zhǔn)樣品傳遞誤差1%(Std Uncertainty),所有樣品與91500標(biāo)準(zhǔn)鋯石截取相同信號(hào)區(qū)間。鋯石年齡諧和圖和加權(quán)平均圖繪制采用Isoplot[42]。鋯石微量元素含量計(jì)算分別以Si(SiO2含量32.8%)和Zr(ZrO2含量67.2%)作為內(nèi)標(biāo)。本文所有年齡值和同位素比值誤差均為2σ。
扇形磁場(chǎng)質(zhì)譜(SF-ICP-MS)具有低背景、高靈敏度特征,在鋯石U-Pb定年過(guò)程中可以有效地提高空間分辨率和分析的準(zhǔn)確度。因此,LA-SF-ICP-MS在低U-Pb含量年輕鋯石及其他的低U礦物如石榴子石、方解石等礦物定年中有獨(dú)特的優(yōu)勢(shì)。但由于SF-ICP-MS掃描多元素過(guò)程中磁場(chǎng)定位時(shí)間的影響,當(dāng)測(cè)量元素質(zhì)量數(shù)大范圍變化時(shí),其掃描速度明顯降低,因此采用LA-SF-ICP-MS測(cè)定鋯石年齡時(shí)一般僅檢測(cè)202Hg、204Pb、206Pb、207Pb、208Pb、232Th和238U等與U-Pb定年相關(guān)的7個(gè)同位素。本文中采用的方法在檢測(cè)U-Pb相關(guān)同位素的基礎(chǔ)上,同時(shí)檢測(cè)鋯石中的關(guān)鍵主、微量元素含量,包括Si、Ti、REEs、Hf等(表1),并對(duì)采集與未采集微量元素兩種方法定年結(jié)果進(jìn)行對(duì)比,測(cè)試結(jié)果如圖1、圖2、表2和表3所示。
圖1 LA-SF-ICP-MS鋯石U-Pb定年結(jié)果(激光斑束25μm)Fig. 1 Zircon U-Pb dating results by LA-SF-ICP-MS; Red data measured only U-Pb isotopes, while blue data determined U-Pb and key trace elements simultaneously (laser spot size 25μm).
表3 LA-SF-ICP-MS 鋯石多元素同時(shí)分析微量元素定量結(jié)果Table 3 Trace element results measured by LA-SF-ICP-MS, determining U-Pb and key trace elements simultaneously.
91500鋯石:測(cè)試樣品30點(diǎn),獲得單點(diǎn)206Pb/238U和207Pb/235U年齡分別為1045.7~1080.5Ma和1044.0~1093.0Ma,單點(diǎn)誤差分別為20.3~22.7Ma(1.9%~2.1%)和14.1~21.7Ma(1.7%~2.0%)。在諧和圖上所有樣品點(diǎn)呈現(xiàn)諧和特征,獲得U-Pb諧年齡1063.3±2.4Ma(圖1a),206Pb/238U加權(quán)平均年齡為1062.8±7.3Ma(圖1b),MSWD=0.24,與推薦值在誤差范圍內(nèi)一致。
GJ-1鋯石:測(cè)試樣品37點(diǎn),獲得單點(diǎn)206Pb/238U和207Pb/235U年齡分別為599.1~610.4Ma和563.4~618.3Ma,單點(diǎn)誤差分別為11.4~12.4Ma(~1.9%)和9.8~12.7Ma(1.6%~2.1%)。該樣品整體諧和年齡為603.8±1.6Ma(圖1c),206Pb/238U加權(quán)平均年齡為604.0±3.8Ma(圖1d),與推薦年齡在誤差范圍內(nèi)一致。
Tanz鋯石:測(cè)試樣品24點(diǎn),獲得單點(diǎn)206Pb/238U和207Pb/235U年齡分別為550.3~569.7Ma和542.5~577.1Ma,單點(diǎn)誤差分別為9.7~11.9Ma(1.7%~2.1%)和8.1~11.5Ma(1.5%~2.0%)。該樣品整體諧和年齡為559.5±1.7Ma(圖1e),206Pb/238U加權(quán)平均年齡為562.7±4.2Ma(圖1f),與推薦年齡在誤差范圍內(nèi)一致。
SA01鋯石:測(cè)試樣品22點(diǎn),獲得單點(diǎn)206Pb/238U和207Pb/235U年齡分別為526.0~541.6Ma和518.8~547.8Ma,單點(diǎn)誤差分別為10.4~12.1Ma(1.9%~2.3%)和9.5~17.2Ma(1.7%~3.3%)。該樣品整體諧和年齡為533.8±2.0Ma(圖1g),206Pb/238U加權(quán)平均年齡為534.5±4.7Ma(圖1h),與推薦年齡在誤差范圍內(nèi)一致。
Temora1鋯石:測(cè)試樣品26點(diǎn),獲得單點(diǎn)206Pb/238U和207Pb/235U年齡分別為405.8~426.6Ma和404.2~456.4Ma,單點(diǎn)誤差分別為8.1~10.0Ma(1.9%~2.3%)和7.0~16.5Ma(1.6%~3.8%)。該樣品整體諧和年齡為417.5±1.5Ma(圖2a),206Pb/238U加權(quán)平均年齡為416.7±3.4Ma(圖2b),與推薦年齡在誤差范圍內(nèi)一致。
Ple?ovice鋯石:測(cè)試樣品30點(diǎn),其中2個(gè)點(diǎn)分析結(jié)果可能受到蛻晶作用或包裹體影響,207Pb/235U明顯偏高外,其余28點(diǎn)單點(diǎn)206Pb/238U和207Pb/235U年齡分別為326.4~339.6Ma和321.0~342.4Ma,單點(diǎn)誤差分別為5.2~7.3Ma(1.5%~2.1%)和5.1~6.8Ma(1.4%~2.1%)。諧和圖上除了受影響的2個(gè)點(diǎn)偏離諧和線,其余各點(diǎn)的諧和年齡為334.6±1.0Ma(圖2c),206Pb/238U加權(quán)平均年齡為335.8±2.5Ma(圖2d),MSWD=0.29,與推薦值在誤差范圍內(nèi)一致。
Qinghu鋯石:測(cè)試樣品20點(diǎn),獲得單點(diǎn)206Pb/238U和207Pb/235U年齡分別為156.3~164.9Ma和154.3~176.4Ma,單點(diǎn)誤差分別為2.9~3.2Ma(1.8%~1.9%)和3.1~4.1Ma(2.0%~2.5%)。該樣品整體諧和年齡為160.1±0.6Ma(圖2e),206Pb/238U加權(quán)平均年齡為160.5±1.3Ma(圖2f),與推薦年齡在誤差范圍內(nèi)一致。
為探討LA-SF-ICP-MS鋯石U-Pb年齡和微量元素含量同時(shí)檢測(cè)對(duì)于年齡結(jié)果的影響,本文在相同實(shí)驗(yàn)條件下,僅檢測(cè)U-Pb定年相關(guān)同位素,每個(gè)樣品測(cè)試20點(diǎn),U-Pb年齡結(jié)果見(jiàn)圖1、圖2和表2。
91500鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為1045.3~1076.8Ma和1047.7~1106.4Ma,單點(diǎn)誤差分別為15.0~16.2Ma(~1.4%)和10.8~11.7Ma(~1.1%)。該樣品整體諧和年齡為1065.9±2.4Ma(圖1a),206Pb/238U加權(quán)平均年齡為1065.4±6.8Ma(圖1b)。
GJ-1鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為598.2~603.9Ma和587.6~603.5Ma,單點(diǎn)誤差分別為8.6~8.9Ma(~1.4%)和6.9~7.7Ma(1.2%~1.3%)。該樣品整體諧和年齡為600.5±1.3Ma(圖1c),206Pb/238U加權(quán)平均年齡為601.7±3.8Ma(圖1d)。
Tanz鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為556.3~568.1Ma和554.6~569.4Ma,單點(diǎn)誤差分別為8.3~8.6Ma(~1.5%)和6.9~7.3Ma(1.2%~1.3%)。該樣品整體諧和年齡為563.2±1.3Ma(圖1e),206Pb/238U加權(quán)平均年齡為564.6±3.7Ma(圖1f)。
SA01鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為525.4~539.6Ma和527.8~537.1Ma,單點(diǎn)誤差分別為8.2~9.2Ma(~1.5%)和8.3~8.8Ma(1.5%~1.7%)。該樣品整體諧和年齡為532.9±1.5Ma(圖1g),206Pb/238U加權(quán)平均年齡為533.2±3.8Ma(圖1h)。
Temora1鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為413.8~421.9Ma和412.6~427.2Ma,單點(diǎn)誤差分別為6.5~6.8Ma(~1.5%)和5.6~7.3Ma(1.3%~1.7%)。該樣品整體諧和年齡為418.2±1.1Ma(圖2a),206Pb/238U加權(quán)平均年齡為418.2±2.9Ma(圖2b)。
Ple?ovice鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為335.0~341.8Ma和333.7~340.9Ma,單點(diǎn)誤差分別為4.9~5.8Ma(1.3%~1.5%)和4.6~5.2Ma(1.5%~1.7%)。該樣品整體諧和年齡為337.7±0.9Ma(圖2c ),206Pb/238U加權(quán)平均年齡為337.8±2.3Ma(圖2d)。
Qinghu鋯石:?jiǎn)吸c(diǎn)206Pb/238U和207Pb/235U年齡分別為161.8~156.6Ma和165.5~156.2Ma,單點(diǎn)誤差分別為2.6~3.1Ma(1.6%~2.0%)和2.7~3.2Ma(1.7%~2.0%)。該樣品整體諧和年齡為159.4±0.5Ma(圖2e),206Pb/238U加權(quán)平均年齡為159.1±1.3Ma(圖2f)。
受SF-ICP-MS磁場(chǎng)定位時(shí)間的影響,本文中僅測(cè)U-Pb相關(guān)同位素方法質(zhì)譜單次掃描時(shí)間0.306s,在40s的激光剝蝕樣品時(shí)間內(nèi),采集元素信號(hào)強(qiáng)度數(shù)據(jù)134組;而U-Pb年齡與微量元素含量同時(shí)分析方法中質(zhì)譜單次掃描時(shí)間0.857s,在40s激光采樣時(shí)間內(nèi)獲得有效信號(hào)強(qiáng)度數(shù)據(jù)47組。
圖1和圖2對(duì)兩種方法定年結(jié)果的精密度和準(zhǔn)確度進(jìn)行了直觀地比較,相較之下,僅檢測(cè)U-Pb同位素方法定年結(jié)果數(shù)據(jù)點(diǎn)誤差更小,且數(shù)據(jù)點(diǎn)更為集中。
LA-SF-ICP-MS僅檢測(cè)U-Pb同位素方法定年結(jié)果206Pb/238U和207Pb/235U年齡誤差分別為1.5%和1.3%,單點(diǎn)206Pb/238U和207Pb/235U年齡一致性較好,RSD值分別為0.2%~0.9%和0.5%~1.3%;相比之下,U-Pb定年和多元素含量同時(shí)檢測(cè)方法獲得206Pb/238U和207Pb/235U年齡誤差略有增大,分別為1.9%和1.7%,單點(diǎn)年齡離散度增大,206Pb/238U和207Pb/235U年齡RSD值分別為0.4%~1.4%和1.2%~3.3%,其中207Pb/235U年齡RSD值增大明顯。
為探討兩種方法測(cè)定年齡結(jié)果精密度變化可能原因,本文以91500鋯石為例,統(tǒng)計(jì)了相同實(shí)驗(yàn)條件下,兩種方法測(cè)定206Pb、207Pb信號(hào)強(qiáng)度及238U/206Pb信號(hào)比值的相對(duì)標(biāo)準(zhǔn)偏差(RSD)。其中,僅檢測(cè)U-Pb同位素方法采集206Pb、207Pb信號(hào)和238U/206Pb信號(hào)比值的RSD分別為13%、13%和5.2%,而多元素含量同時(shí)檢測(cè)方法獲得206Pb、207Pb信號(hào)和238U/206Pb同位素信號(hào)比值的RSD分別為14%、19%和9.3%。多元素同時(shí)采集延長(zhǎng)了質(zhì)譜單次掃描時(shí)間,在一定程度上對(duì)于檢測(cè)同位素的信號(hào)強(qiáng)度及比值穩(wěn)定性造成影響,尤其是對(duì)于低含量同位素如207Pb的影響更為明顯。兩種測(cè)試方法同位素信號(hào)及比值變化特征與U-Pb定年結(jié)果變化特征相一致。綜合考慮數(shù)據(jù)處理過(guò)程中年齡不確定度計(jì)算方法和影響因素[43-46],因此,多元素同時(shí)檢測(cè)對(duì)于同位素信號(hào)強(qiáng)度穩(wěn)定性的影響可能是造成最終定年結(jié)果誤差變大的主要原因。
鋯石LA-ICP-MS定年過(guò)程中,多種因素都會(huì)對(duì)測(cè)試結(jié)果的精密度和準(zhǔn)確度造成影響,例如測(cè)試儀器狀態(tài)、標(biāo)準(zhǔn)樣品推薦值、數(shù)據(jù)處理方法及軟件應(yīng)用等。目前一般認(rèn)為L(zhǎng)A-ICP-MS鋯石U-Pb定年結(jié)果精密度為1%~2%,相對(duì)于推薦年齡LA-ICP-MS測(cè)試年齡結(jié)果偏差(準(zhǔn)確度)可達(dá)到1%[43-46]。本文實(shí)驗(yàn)結(jié)果表明,盡管多元素同時(shí)檢測(cè)可造成單點(diǎn)鋯石U-Pb年齡結(jié)果的變化范圍增大,但數(shù)據(jù)結(jié)果精密度仍優(yōu)于2%,并且多元素同時(shí)檢測(cè)對(duì)于樣品的諧和年齡和206Pb/238U加權(quán)平均年齡的準(zhǔn)確性沒(méi)有影響——僅檢測(cè)U-Pb同位素方法獲得各樣品諧和年齡和206Pb/238U加權(quán)平均年齡相對(duì)TIMS年齡偏差均小于0.5%,多元素同時(shí)檢測(cè)分析方法獲得各樣品諧和年齡和206Pb/238U加權(quán)平均年齡相對(duì)TIMS年齡偏差分別小于1.0%和0.7%,完全滿足U-Pb同位素地質(zhì)年代學(xué)測(cè)試要求,同時(shí),高精度和高空間分辨率的定年方法為精細(xì)刻畫(huà)復(fù)雜地質(zhì)過(guò)程提供技術(shù)支持[46]。
采用LA-SF-ICP-MS測(cè)定鋯石U-Pb年齡的同時(shí),對(duì)鋯石中Si、Ti、Y、Zr、Hf、REEs、Pb、Th和U等關(guān)鍵主、微量元素進(jìn)行定量分析。實(shí)驗(yàn)采用NIST610作為微量元素含量分析外標(biāo)物質(zhì),數(shù)據(jù)處理選擇Si(SiO2含量32.8%)或者Zr(ZrO2含量67.2%)作為內(nèi)標(biāo)元素,分析結(jié)果列于表3。
稀土元素檢出限在11~73ng/g之間,大部分小于20ng/g,其中La和Pr檢出限分別為20ng/g和13ng/g,這兩個(gè)元素在多數(shù)鋯石中極度虧損,較低的檢出限有利于這兩個(gè)元素的檢測(cè)準(zhǔn)確。Ti檢出限最高達(dá)302ng/g,Pb、Th、U檢出限最低,分別為15ng/g、4ng/g和2ng/g。本方法的檢出限能夠滿足鋯石中關(guān)鍵微量元素準(zhǔn)確定量需求。
由于天然鋯石中微量元素分布的不均勻性,因此,對(duì)鋯石微量元素含量的測(cè)定結(jié)果難以反映分析方法的精確度和準(zhǔn)確度。本實(shí)驗(yàn)中隨測(cè)NIST612和KL2-G作為質(zhì)量監(jiān)控樣品。10組監(jiān)控樣品結(jié)果表現(xiàn)良好的精密度(圖3a),NIST612中除Ti元素RSD略高外(4.8%),其余元素RSD值小于3%;KL2-G中含量較低的Tm和Lu的RSD值~5%,其余元素RSD值均小于5%。檢測(cè)結(jié)果平均值與標(biāo)準(zhǔn)樣品推薦值相比較,NIST612中Ti的相對(duì)誤差(8.5%)較高,其余元素的相對(duì)誤差均小于5%,準(zhǔn)確度較高;而KL2-G中各元素的相對(duì)誤差多在5%~10%之間,U的相對(duì)誤差最大達(dá)~17%。雖然KL2-G中各元素含量相對(duì)較低,但良好的測(cè)試精密度表明較高的相對(duì)誤差更可能是由于NIST610與KL2-G之間的基體差異的影響。盡管目前鋯石微量元素分析中常采用NIST610作為標(biāo)準(zhǔn)樣品,但研究表明NIST系列標(biāo)準(zhǔn)樣品與天然礦物基體差異明顯[47],其微量元素含量明顯高于鋯石,尤其是LREEs含量,因此對(duì)于鋯石微量元素含量準(zhǔn)確測(cè)定有待于進(jìn)一步研究??傮w上,本文建立的方法對(duì)于NIST612和KL2-G可獲得穩(wěn)定、準(zhǔn)確的分析結(jié)果。
內(nèi)標(biāo)元素的選擇是影響LA-ICP-MS分析結(jié)果準(zhǔn)確性的重要因素。盡管研究表明LA-ICP-MS測(cè)定鋯石微量元素含量過(guò)程中,在NIST610為外標(biāo)條件下,Zr相對(duì)于Si更適合作為內(nèi)標(biāo)元素[47]。本實(shí)驗(yàn)中分別采用Si和Zr作為內(nèi)標(biāo)元素進(jìn)行定量分析,所有鋯石樣品定量結(jié)果顯示采用Si作為內(nèi)標(biāo)元素計(jì)算結(jié)果總體上略高于Zr作為內(nèi)標(biāo)計(jì)算結(jié)果(圖3b)。對(duì)于91500和SA01樣品,采用Si內(nèi)標(biāo)各元素分析結(jié)果與文獻(xiàn)[35]和[48]推薦值相對(duì)誤差多小于10%,而采用Zr內(nèi)標(biāo)結(jié)果相對(duì)誤差在10%~20%之間。另外,由于鋯石與采用的標(biāo)準(zhǔn)樣品中Zr含量差異懸殊,在使用高擴(kuò)散空間勻化裝置條件下,鋯石分析后需要長(zhǎng)時(shí)間吹掃以降低儀器中Zr背景值,且可能影響標(biāo)準(zhǔn)樣品中Zr檢測(cè)準(zhǔn)確性。盡管檢測(cè)Si會(huì)增大SF-ICP-MS磁場(chǎng)變化范圍,在有效時(shí)間內(nèi)減少掃描次數(shù)(約減少5組數(shù)據(jù)),但綜合實(shí)驗(yàn)結(jié)果,對(duì)于U-Pb定年結(jié)果及誤差沒(méi)有明顯影響,因此本實(shí)驗(yàn)方法中檢測(cè)Si作為內(nèi)標(biāo)元素。
91500、SA01、GJ-1和Tanz顆粒內(nèi)部微量元素均一性較好,檢測(cè)結(jié)果除Ti、La誤差略高外,其余元素誤差均小于10%;Ple?ovice顆粒內(nèi)部元素均一性較差,所有檢測(cè)元素的相對(duì)誤差均大于10%;Qinghu和Temora1鋯石由于檢測(cè)點(diǎn)位于不同顆粒,因此微量元素含量結(jié)果相差較大??傮w上,按照鋯石中的U平均含量,91500 在球粒隕石標(biāo)準(zhǔn)化圖解上,所有鋯石樣品具有一致的虧損LREEs富集HREEs的特征,明顯的Ce正異常,Eu異常差別明顯,Temora1和Ple?ovice具有明顯的負(fù)Eu異常(圖4中a,c),Tanz鋯石呈現(xiàn)弱負(fù)Eu異常(圖4b),GJ-1和SA01中Eu呈現(xiàn)弱負(fù)異?;驘o(wú)異常(圖4中a,b)。 微量元素替代進(jìn)入鋯石中可能對(duì)鋯石結(jié)構(gòu)特征造成影響,LA-ICP-MS分析過(guò)程中影響激光剝蝕效率,從而影響U-Pb年齡結(jié)果[49-50],因此,在鋯石U-Pb定年過(guò)程中可以根據(jù)以上各個(gè)鋯石標(biāo)準(zhǔn)樣品的微量元素特征,結(jié)合儀器工作條件選擇與待測(cè)鋯石樣品基體更為匹配的標(biāo)準(zhǔn),以降低由此可能帶來(lái)的誤差。 采用激光剝蝕-扇形磁場(chǎng)高分辨等離子體質(zhì)譜(LA-SF-ICP-MS)建立了鋯石U-Pb年齡與微量元素含量同時(shí)檢測(cè)分析方法,并對(duì)常用的鋯石U-Pb定年標(biāo)準(zhǔn)樣品進(jìn)行分析。分析結(jié)果表明:相對(duì)于僅檢測(cè)U-Pb相關(guān)同位素方法,U-Pb定年及微量元素同時(shí)檢測(cè)方法在一定程度上影響了U-Pb同位素信號(hào)穩(wěn)定性,尤其是對(duì)低含量元素/同位素信號(hào)穩(wěn)定性的影響更為明顯,進(jìn)而對(duì)U-Pb定年結(jié)果精密度產(chǎn)生影響。相對(duì)僅檢測(cè)U-Pb同位素分析方法結(jié)果,多元素同時(shí)分析206Pb/238U年齡和207Pb/235U年齡變化范圍變大,其中206Pb/238U年齡RSD值從0.2%~0.9%增大至0.4%~1.4%;207Pb/235U年齡RSD值從0.5%~1.3%增大至1.2%~3.3%,單點(diǎn)年齡誤差從~1.5%增大至~2.0%。盡管如此,多元素同時(shí)檢測(cè)方法不會(huì)對(duì)樣品最終年齡結(jié)果產(chǎn)生明顯影響,該方法測(cè)定各樣品諧和年齡和206Pb/238U加權(quán)平均年齡與僅檢測(cè)U-Pb同位素方法測(cè)定年齡結(jié)果在誤差范圍內(nèi)一致,與TIMS年齡結(jié)果偏差均小于1%,完全滿足地質(zhì)年代學(xué)分析需求。同時(shí),測(cè)定各鋯石樣品中微量元素含量值與文獻(xiàn)報(bào)道范圍吻合,其中91500和SA01樣品中各元素測(cè)定值與文獻(xiàn)報(bào)道值相對(duì)誤差小于10%。綜合以上分析結(jié)果,采用LA-SF-ICP-MS建立的分析方法克服了高分辨質(zhì)譜儀掃描速度慢的缺點(diǎn),可以同時(shí)準(zhǔn)確測(cè)定鋯石的U-Pb年齡和關(guān)鍵微量元素含量。 盡管LA-ICP-MS鋯石U-Pb定年方法已十分成熟,但提高其空間分辨率,并且在有限的分析空間獲得更多的原位元素/同位素信息是研究者不變的追求。LA-SF-ICP-MS同時(shí)進(jìn)行U-Pb定年和微量元素含量分析,一方面可以充分利用高分辨質(zhì)譜高靈敏度特征實(shí)現(xiàn)高空間分辨率分析,另一方面原位微量元素含量的準(zhǔn)確測(cè)定可以獲得更多的地質(zhì)信息,為精細(xì)刻畫(huà)地質(zhì)演化環(huán)境和過(guò)程提供豐富地球化學(xué)數(shù)據(jù)。 致謝:中國(guó)科學(xué)院地質(zhì)與地球物理研究所王浩副研究員提供SA01鋯石樣品;中國(guó)地質(zhì)大學(xué)(武漢)羅濤副研究員提供Tanz鋯石樣品,在此表示感謝! BRIEF REPORT Significance:Zircon (ZrSiO4) is a common accessory mineral in both terrestrial and extraterrestrial rocks. It serves as the most frequently utilized mineral in determining the age, origin, and thermal history of rocks through U-Pb geochronology, primarily due to its high closure temperature, resistance to alteration, high uranium content, and minimal incorporation of common lead during its crystallization. Apart from age determination, zircon also provides various geochemical information, including trace elements (Ti, REEs), O isotopes, and Zr isotopes. By combining all these data, it assists in constructing metamorphicP-T-tpaths, which helps in inferring the mineral growth history,making it an integral component of “Petrochronology” research[20].Natural zircon, however, generally exhibits small grains and often possesses intricate internal structural features. Hence, higher analytical spatial resolution and acquiring more in-situ elemental/isotopic information within limited analytical space is crucial. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a routine technique for zircon UPb dating. The sector field mass spectrometer (SF-ICP-MS) possesses high sensitivity, offering possibilities for high spatial resolution U-Pb dating of zircon[28-29]and ultra-low uranium mineral content[21-25,30]. However, the usage of the magnetic sector mass analyzer results in slower scanning speeds[27]. Consequently, in the reported zircon U-Pb dating by LA-SF-ICP-MS, typically, only U-Pb-ages-related isotopes are detected, and simultaneous quantitative analysis of key trace elements cannot be conducted. This study optimized instrument parameters and enhanced signal stability to enable simultaneous determination of U-Pb dating alongside quantification of key elements such as Ti, REEs, and Hf. Seven commonly employed zircon U-Pb standard samples were measured to assess the feasibility of the method and its influence on U-Pb dating results. Methods:The experiments were carried out at the Key Laboratory of Elemental Microanalysis and Morphology of the China Geological Survey using an ESL NWR 193UC ArF excimer laser and the ELEMENT Ⅱ sector field inductively coupled plasma-mass spectrometer (SF-ICP-MS, ThermoFisher Scientific, USA). Helium gas was used as the carrier gas[39], while 1mL/min of nitrogen was introduced to boost instrument sensitivity[40]. A signal homogenization device with higher aerosol diffusion space was utilized to improve signal stability. Laser spot size and frequency were 25μm and 8Hz, respectively, with a laser energy density of 3J/cm2. SFICP-MS was employed in low-resolution mode (M/ΔM=300), with sensitivity of U about 5000cps/(μg·g-1), and signal stability RSD of 1% to 2%, oxide production rates (ThO+/Th+) below 0.2%. U-Pb isotopes and key trace elements were measured, including29Si,49Ti,89Y,91Zr,139La,140Ce,141Pr,146Nd,147Sm,151Eu,157Gd,159Tb,163Dy,165Ho,166Er,169Tm,172Yb,175Lu,178Hf,206Pb,207Pb,208Pb,232Th, and238U. The measuring time for206Pb,208Pb,232Th, and238U was 10ms,207Pb was 20ms, and the remaining elements were 5ms each, resulting in a total measuring time of 0.87s per reading, with an effective analysis time of 71%. Since most zircons contain no, or extremely low, common lead and single-collector mass spectrometry it makes it challenging to accurately measure204Pb for common lead correction.202Hg and204Pb were not detected to improve the proportion of effective analysis time. Detailed instrument operating condition parameters are provided in Table 1. The 91500 zircon and NIST610 were used as standard materials for U-Pb isotope ratios and trace element quantitative analysis, respectively. For every 10 unknown sample analyses, a set of standard samples was inserted to correct for fractionation effects. Each spot analysis consisted of a 20s background collection and 40s sample data acquisition and 30s flushing. Raw data were reduced offline using GLITTER 4.0 software package[41]. All samples shared the same signal interval as the standard zircon 91500 for analysis. Age calculations and Concordia diagram construction were performed by Isoplot/Ex version 2.23[42]. The uncertainty for all isotope ratios and age values in this study were reported at a 2σlevel. Two methods were used to determine zircon U-Pb ages. Method 1: Only U-Pb-related isotopes were measured,including202Hg,204Pb,206Pb,207Pb,208Pb,232Th, and238U. Single measuring time was 0.306s per reading, and within the 40s sampling time, data for 134 sets of element signal intensities were collected. Method 2: Simultaneous determination of U-Pb ages and trace elements content, including Ti, REE, Hf, and U-Pb isotopes206Pb,207Pb,208Pb,232Th,238U, etc. Single measuring time was 0.857s, and within the 40s sampling time, effective signal intensity data for 47 sets were obtained. Data and Results:The U-Pb dating results are shown in Fig.1 and Table 2, while the measured trace element contents are presented in Fig.3 and Table 3. (1) U-Pb dating results comparison Fig.1 provides a visual comparison of precision and accuracy of the results obtained by these two dating methods. It shows that the dating results from Method 1 exhibit smaller errors, and the data points are more concentrated. Using LA-SF-ICP-MS with solely U-Pb-related isotope detection, the dating results show an error of 1.5% and 1.3% for206Pb/238U and207Pb/235U, respectively. The consistency of single-point206Pb/238U and207Pb/235U ages is good, with RSD values ranging from 0.2% to 0.9% and 0.5% to 1.3%, respectively. In contrast, when employing Method 2, the errors for206Pb/238U and207Pb/235U ages increase slightly to 1.9% and 1.7%, respectively. The dispersion of single-point ages increases as well, with RSD values for206Pb/238U and207Pb/235U ages ranging from 0.4% to 1.4% and 1.2% to 3.3%, respectively. Particularly, the RSD value for207Pb/235U ages notably increases. To investigate potential causes for the variability in precision between the two methods, the RSD of the signal intensities of206Pb,207Pb, and238U/206Pb signal ratios of zircon 91500 obtained under the same experimental conditions were statistically analyzed. For Method 1, the RSD values for the collection of206Pb,207Pb signals, and238U/206Pb signal ratios were 13%, 13%, and 5.2%, respectively. Meanwhile, for method 2, the RSD values for206Pb,207Pb signals, and238U/206Pb isotope signal ratios were 14%, 19%, and 9.3%, respectively. Simultaneously collecting multiple elements extended the mass spectrometer’s single-scan time, which to some extent affected the stability of the detected element/isotope signals and their ratios, especially for low-content isotopes like207Pb. The fluctuation characteristics of isotopic signals and ratios corresponded to the changes in U-Pb dating results. Considering factors during data processing, age uncertainty calculation methods, and influencing elements[43-46], it can be inferred that the impact of simultaneous multi-element detection on the stability of isotope signal intensity might be the primary cause for the increased final dating result errors. Generally, the precision of LA-ICP-MS zircon U-Pb dating results is considered to be within 1% to 2%, while the accuracy of the measured age can reach 1% or better[43-46]. The experimental results in this study indicate that although simultaneous multi-element detection can increase the range of changes in single-point zircon U-Pb ages,the precision of the data is still better than 2%. Furthermore, simultaneous multi-element detection does not affect the accuracy of the sample’s concordia age and the206Pb/238U weighted average age. For method 1, the relative deviations of concordia ages and206Pb/238U weighted average ages for each sample compared to TIMS ages are less than 0.5%, while for method 2, these figures are less than 1.0% and 0.7%, respectively. (2) Quantitative results of trace elements The results of trace element analysis in zircon samples are shown in Table 3. The detection limits for REE range between 11ng/g and 73ng/g, with the majority being below 20ng/g. Among these, the detection limits for La and Pr are 20ng/g and 13ng/g, respectively. Ti has the highest detection limit, reaching up to 302ng/g, while Pb, Th,and U have the lowest detection limits at 15ng/g, 4ng/g, and 2ng/g, respectively. Si and Zr were employed as internal standard elements for quantitative analysis. All quantitative results of zircon samples using Si as the internal standard element show slightly higher values overall than those calculated using Zr as the internal standard element (Fig.2b). For the 91500 and SA01 samples, the analysis results using Si as the internal standard exhibit relative errors of less than 10% compared to the recommended values in literature [35]and [48]. However, when using Zr as the internal standard, the relative errors range between 10% and 20%.Furthermore, due to significant differences in Zr content between zircon and the selected standard samples,prolonged flushing is required after zircon analysis to decrease the background Zr levels in the instrument under conditions of high aerosol diffusion space. This prolonged flushing might impact the accuracy of Zr detection in the standard samples.3 結(jié)論