• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predicting Gravitational Waves from Jittering-jets-driven Core Collapse Supernovae

    2024-01-16 12:18:22NoamSoker
    Research in Astronomy and Astrophysics 2023年12期

    Noam Soker

    Department of Physics, Technion, Haifa, 3200003, Israel; soker@physics.technion.ac.il

    Received 2023 August 11; revised 2023 September 23; accepted 2023 October 7; published 2023 October 26

    Abstract I estimate the frequencies of gravitational waves from jittering jets that explode core collapse supernovae(CCSNe)to crudely be 5–30 Hz, and with strains that might allow detection of Galactic CCSNe.The jittering jets explosion mechanism (JJEM) asserts that most CCSNe are exploded by jittering jets that the newly born neutron star (NS)launches within a few seconds.According to the JJEM, instabilities in the accreted gas lead to the formation of intermittent accretion disks that launch the jittering jets.Earlier studies that did not include jets calculated the gravitational frequencies that instabilities around the NS emit to have a peak in the crude frequency range of 100–2000 Hz.Based on a recent study, I take the source of the gravitational waves of jittering jets to be the turbulent bubbles(cocoons)that the jets inflate as they interact with the outer layers of the core of the star at thousands of kilometers from the NS.The lower frequencies and larger strains than those of gravitational waves from instabilities in CCSNe allow future,and maybe present,detectors to identify the gravitational wave signals of jittering jets.Detection of gravitational waves from local CCSNe might distinguish between the neutrino-driven explosion mechanism and the JJEM.

    Key words: gravitational waves – stars: neutron – stars: black holes – (stars:) supernovae: general – stars: jets

    1.Introduction

    Since the early days of gravitational wave detectors, core collapse supernovae (CCSNe) have been considered as potential sources of gravitational waves (, de Freitas Pacheco 2010), with intensified research in recent years (,Afle & Brown 2021; Gill et2022; Saiz-Pérez et2022).Gravitational waves from CCSNe are yet to be detected (,Szczepańczyk et2023).Recent studies concentrate on the expected gravitational waves from CCSNe during the explosion process (, Powell & Müller 2019; Lin et2023;Mezzacappa et2023;Pastor-Marcos et2023;Wolfe et al.2023;for more on the results of some studies see Section 3)and shortly after explosion,, in relation to magnetar formation(, Cheng et al.2023; Menon et al.2023).

    Studies that calculate the properties of gravitational waves from CCSN explosions ignore the role of jittering jets.The goal of this exploratory study is to estimate the expected contribution of jittering jets to gravitational wave emission from CCSNe.The motivation for this study results from recent studies that support the jittering jets explosion mechanism (JJEM) of CCSNe (,Soker 2022a, 2022c, 2023b; Shishkin & Soker 2023), and the very recent study by Gottlieb et al.(2023) who found that the turbulent cocoons that energetic relativistic jets form can be a strong source of gravitational waves.A cocoon is the convective bubble that a jet inflates, even if not relativistic (, Izzo et al.2019), and is filled with the shocked jet’s material and the shocked ambient material.Gottlieb et al.(2023) simulated relativistic and very energetic jets, ≈1052–1053erg, that are relevant to rare CCSNe where the pre-explosion core is rapidly rotating and the collapsing core is likely to form a black hole.There are many studies of such rare CCSNe that have fixed-axis jets; some do not consider gravitational waves from jets (e.g.,Khokhlov et al.1999; Aloy et al.2000; Maeda et al.2012;López-Cámara et al.2013; Bromberg & Tchekhovskoy 2016;Nishimura et al.2017; Wang et al.2019; Grimmett et al.2021; Gottlieb et al.2022; Perley et al.2022; Urrutia et al.2023a; Obergaulinger & Reichert 2023), while others do (e.g.,analytically Segalis & Ori 2001; Du et al.2018; Yu 2020;Leiderschneider & Piran 2021 and numerically Urrutia et al.2023b;Gottlieb et al.2023).The results of Gottlieb et al.(2023)are suitable to apply to the JJEM.

    In this study, however, I deal with non-relativistic jets where each jet-pair has a much lower-energy of ≈1050erg.The JJEM asserts that such jets explode most CCSNe (e.g., Soker 2010;Papish & Soker 2011; Soker 2020; Shishkin & Soker 2021;Soker 2023a).The newly born neutron star (NS), or in some cases a black hole,launches the jets as it accretes mass through an accretion disk.There are two sources of the angular momentum of the accretion disk (e.g., Soker 2023a).These are pre-collapse core rotation that has a fixed angular momentum axis, and the convective motion in the pre-collapse core (e.g., Papish &Soker 2014b; Gilkis & Soker 2015; Soker 2019; Shishkin &Soker 2022) or envelope (e.g., Quataert et al.2019; Antoni &Quataert 2022, 2023) that has a stochastically varying angular momentum axis.When the pre-collapse core angular momentum is low the accretion disk has rapidly varying axis direction.Each accretion episode through a given accretion disk lasts for a limited period of time and leads to one jet-launching episode of two opposite jets.A recently released James Webb Space Telescope (JWST) image hints at a point-symmetric structure in the ejecta of SN 1987A,as predicted by the JJEM(Soker 2023c).

    The convective fluctuations serve as seed perturbations that are amplified by instabilities behind the stalled shock,which is at ?100?150 km from the newly born NS.Namely, the same instabilities that give rise to gravitational waves in the frame of the neutrino-driven explosion mechanism (e.g., Mezzacappa et al.2020),which does not include jets,exist also in the JJEM.The JJEM has in addition the jittering jets that inflate turbulent bubbles (cocoons) that might emit gravitational waves according to the new results of Gottlieb et al.(2023).Note that the jittering jets in the JJEM result from the termination of accretion disks and the formation of new accretion disks.This is different from the jittering around a precession angle of a long-lived accretion disk as studied by, e.g., Katz (2022).

    In the present, still exploratory, study I present the first prediction, although very crude, for gravitational waves in the frame of the JJEM.I do this by appropriately scaling the recent results that Gottlieb et al.(2023) obtained for gravitational waves from much more energetic jets than the jittering jets(Section 2).I then present the general characteristic of the strain of JJEM-driven CCSNe (Section 3).I summarize the results(Section 4)and strongly encourage simulations of gravitational waves from jittering jets in CCSNe.

    2.Estimating Gravitational Waves from Jittering Jets

    The calculation of gravitational waves by CCSNe as expected in the JJEM requires very demanding three-dimensional hydrodynamical simulations.In this preliminary study I make crude estimates by scaling the results of Gottlieb et al.(2023) whoconduct simulationsof long-lived relativistic jets with energieserg.

    In the JJEM the jets are relatively short-lived and have a typical velocity of 0.3–0.5c (e.g., Papish & Soker 2014a;indeed,Guetta et al.2020 claim that neutrino observations limit the jets in most cases to be non-relativistic).In an explosion process there are ≈5–30 jet-launching episodes, with a typical activity time of each episode of?0.01–0.1s,anda typicalenergy ofthe two jets in each episodeoferg(Papish & Soker 2014a).

    Gottlieb et al.(2023)estimate the range of frequencies of the gravitational waves when the jets’axis is at a large angle to the line of sight (off-axis) to be betweenandwhere △tjcis the time the jets energize the cocoons, csis the sound speed, and △rshis the width of the shell formed by the shock.For their simulations, this range is≈0.1–2000 Hz.The on-axis emission, i.e., when the jets’ axis is at a very small angle to the line of sight, has a strain amplitude that is more than an order of magnitude smaller than for the off-axis emission and the strain amplitude peaks at frequencies of 10–100 Hz.I note that the simulations by Urrutia et al.(2023b),who study gravitational waves from jets in gamma-ray bursts but do not concentrate on turbulence,yield different spectra and lower strains.

    Figure 1.Density (left column with a color coding in logarithmic scale and units of g cm?3)and temperature(right column in log scale in units of K)maps at three times during the three-dimensional hydrodynamical simulation of jittering jets taken from Papish&Soker(2014b).There are three jet-launching episodes,each composed of two opposite jets,one episode after the other with activity times of 0–0.05 s in direction 1 in the lower panel, 0.05–0.1 s in direction 2,and 0.1–0.15 s in direction 3.I added double-lined arrows to point out the two opposite masses at the cocoon(bubble)head.While the first jet-pair inflates axisymmetric cocoons, the following cocoons largely deviate from axisymmetry.Velocity is proportional to the arrow length on the right column,with the inset showing an arrow for 30,000 km s ?1.

    Figure 2.A figure from Mezzacappa et al.(2023) to which I added a crude estimate of the characteristic spectrum of hf?1/2 from jittering jets in a CCSN at a distance of D=10 kpc(the horseshoe-shaped yellow zone).The signal in yellow is for one jet-launching episode.If several jet-launching episodes are considered to inflate only two opposite large bubbles(lower panel of Figure 1)then the strain will be larger, as it is about the sum of these episodes.Other marks are as in the original figure.The blue line is the calculation by Mezzacappa et al.(2023) of the characteristic gravitational wave strain from a CCSN of a 15M⊙stellar model.The five other lines represent the sensitivity curves of gravitational wave detectors: Advanced Laser Interferometer Gravitational Observatory (Advanced LIGO), Advanced VIRGO, and Kamioka Gravitational Wave Detector (KAGRA) that are current-generation gravitational wave detectors, and the more sensitive next-generation detectors,Cosmic Explorer and Einstein Telescope.The predicted full gravitational wave spectrum includes both the contributions from the regions near the NS that exist both in the JJEM and in the neutrino-driven explosion mechanism (blue line),and the contribution of the jittering jets.

    To scale for one pair of jittering jets I consider the threedimensional simulations by Papish & Soker (2014b).They simulated three pairs of jittering jets that have their axes on the same plane, such that each jet-launching episode lasts for 0.05 s.In Figure 1 I present the density and temperature maps in the jittering plane of these jets.In each jet-launching episode the two opposite jets are seen as two opposite high density(red color on the left column) strips touching the center.While the first jet-pair inflates axisymmetric cocoons (bubbles), the second and third jet-pairs inflate non-axisymmetric bubbles.This is seen by the compressed gas at the head of the cocoon(bubble) that I point out with the double-lined arrows.

    The relatively small ratio ofthat I find here shows that the typical spectrum of the gravitational waves of jittering jets is qualitatively different from the case that Gottlieb et al.(2023) study.In the case of the JJEM, I expect the spectrum to be in the narrow range of

    As seen in Figure 1,the size of the cocoon is smaller than the typical wavelength of ≈20,000 km, which makes phase cancellation very small.

    Scaling Equation(2) of Gottlieb et al.(2023) for the strain amplitude for one pair of jets out of many pairs in the JJEM gives

    I also consider the following quantity that is used in the study of gravitational waves from CCSNe (e.g., Mezzacappa et al.2023)

    where I scaled with the expected frequency range for jittering jets from Equation (1).

    I note that Equations (2) and (3) treat each jet-launching episode as an independent event.If several episodes are considered to inflate only two opposite large bubbles (lower panel of Figure 1) then the energy in the scaling of the equations should be the sum of several jet-launching episodes.Namely, the scaling energy should be ?few×1050to ?1051leading to a strain larger by a factor of a few to ten.

    3.Identifciation of Gravitational Waves from Jittering Jets

    Several papers calculated the gravitational wave properties from CCSNe when jets are not included (e.g., Radice et al.2019; Andresen et al.2021; Mezzacappa et al.2023), i.e., in the frame of the delayed neutrino explosion mechanism (e.g.,Bethe & Wilson 1985; Heger et al.2003; Janka 2012;Nordhaus et al.2012; Müller et al.2019; Fujibayashi et al.2021;Boccioli et al.2022;Nakamura et al.2022;Olejak et al.2022).Mezzacappa et al.(2020), for example, find that lowfrequency emission, ?200 Hz, is emitted by the neutrinodriven convection and the standing accretion shock instability in the gain layer behind the stalled shock,while high-frequency emission, ?200Hz, is emitted by convection in the proto-NS.These studies find that the emission is mainly at frequencies of≈10–2000 Hz with larger strain amplitudes at frequencies of≈100–1000 Hz (e.g., Srivastava et al.2019).

    Figure 3.The gravitational wave strain times distance as a function of time during the early explosion process.The upper panel is a schematic presentation of a possible waveform from jittering jets.The typical amplitude and frequency are according to Equations(2)and(1),respectively.The double-headed arrows present the contributions of four jet-launching episodes,E1–E4.The lower panel is from Mezzacappa et al.(2023)for calculations based on a simulation that does not include jets of an exploding stellar model of 15M⊙.

    The gain region and the convection in the proto-NS exist also in the JJEM.Neutrino heating plays roles also in the JJEM(Soker 2022b).Therefore, the contributions of the gain region and the proto-NS to gravitational waves in the JJEM are similar to those in the delayed neutrino explosion mechanism.In the JJEM there is the additional contribution of the cocoons that the jets inflate in the core and envelope of the exploding star.In Section 2,I crudely estimated this contribution for jittering jets interacting with the core of the exploding star.In Figure 2, I present results from Mezzacappa et al.(2023).The result is of the characteristic gravitational wave strain from a CCSN in the frame of the delayed neutrino explosion mechanism of a 15M⊙stellar model.I added my crude estimate of a typical contribution of jittering jets as the horseshoe-shaped yellow region on the graph.The frequency range is by Equation (1)and the strain is by Equation (3) and with the same scaling.

    The peak of the contribution of the jittering jets is at much lower frequencies than the peak of the other components of CCSNe.In addition, there will be variations with time as the jittering jets are active intermittently.As said, simulations of the JJEM are highly demanding because the calculations of gravitational waves require high-resolution simulations in order to resolve the convection in the cocoon and the head of the jetcore interaction.At this point I only present the possible schematic behavior of the strain as a function of time due to the contribution of jittering jets.In the upper panel of Figure 3, I schematically present such a gravitational wave signal due only to jittering jets.The frequency varies around ?16 Hz by Equation (1), and the typical value of the varying strain is by Equation(2)and with the same scaling.I describe the distance times the strain of four jet-launching episodes (but more are expected at a later time until the star explodes).Over the time period 0.2–0.7 s,the average frequency is 16 Hz.As commonly done, I take t=0 at the bounce of the shock wave from the newly born NS.There is some time delay until instabilities start to feed the intermittent accretion disks that launch the jets.These instabilities give rise to high-frequency-gravitational waves (e.g., Radice et al.2019; Andresen et al.2021).In the lower panel of Figure 3,I present one figure from Mezzacappa et al.(2023) that shows their calculation for the gravitational wave of a CCSN of a 15M⊙stellar model.The expected signal is the sum of all contributions.

    My crude estimate of gravitational waves from jittering jets shows that their signal is qualitatively different than that of the other components that are close to the NS, ?100 km.The jittering jets add long period modulations to the short-period waves from the other components.For a nearby CCSN, even the present Advanced LIGO detector might be able to separate the signal of the jittering jets from the other components.This depends on the signal-to-noise ratio that should be calculated with future simulations of jittering jets.Future detectors will be able to do so for CCSNe in the Local Group, at the same rate that they occur in the Local Group, about two CCSNe per century (e.g., Rozwadowska et al.2021).

    4.Summary

    Based on the very recent results by Gottlieb et al.(2023),which I scaled from long-lasting energetic relativistic jets in super-energetic CCSNe to short-lived low-energy non-relativistic jets in common CCSNe, I concluded that jittering jets lead to detectable gravitational wave signals.The source of the gravitational waves is the turbulence in the cocoons that the jets inflate (Figure 1).Whether present detectors can reveal the gravitational wave signals of jittering jets depends on the signal-to-noise ratio that simulations of jittering jets should calculate, and of course on the distance to the CCSN.Future detectors will be able to reveal the jittering jets signal from CCSNe in the Local Group (Figure 2), at a rate of about two per century.

    The frequencies of the expected gravitational wave signals from jittering jets are lower than the other components of CCSNe, as I mark by the yellow horseshoe-shaped region in Figure 2.I schematically present a gravitational wave signal from jittering jets in the upper panel of Figure 3,and compare it with calculations from a CCSN simulation that includes no jets from Mezzacappa et al.(2023).The signal from jittering jets can be clearly distinguished from the other gravitational wave sources in CCSNe (depending on the signal-to-noise ratio and the distance of the CCSN).

    This, still exploratory, study calls for the performance of highly demanding simulations of jittering jets and the calculation of their gravitational wave signals.The simulations must be of very high resolution as to resolve the turbulence in the cocoon.

    Because I expect jittering jets to explode most CCSNe, my prediction for the gravitational wave signals from nearby CCSNe differs from the prediction of studies that include no jets.

    Acknowledgments

    This research was supported by a grant from the Israel Science Foundation (769/20).

    ORCID iDs

    国产精品久久久av美女十八| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线观看免费| 日本成人三级电影网站| 欧美精品亚洲一区二区| 一级a爱视频在线免费观看| 此物有八面人人有两片| 国产欧美日韩一区二区三| 变态另类丝袜制服| 一夜夜www| 在线观看免费午夜福利视频| 99热这里只有精品一区 | 色老头精品视频在线观看| 亚洲av片天天在线观看| 99国产精品一区二区三区| 老司机在亚洲福利影院| 麻豆久久精品国产亚洲av| 女人高潮潮喷娇喘18禁视频| 一区福利在线观看| 免费高清视频大片| 久久精品影院6| 中文字幕人妻丝袜一区二区| 免费观看人在逋| 禁无遮挡网站| 久久久水蜜桃国产精品网| 91av网站免费观看| 欧美成人一区二区免费高清观看 | 丰满的人妻完整版| 亚洲av第一区精品v没综合| 国产成人av教育| 淫妇啪啪啪对白视频| 亚洲av五月六月丁香网| 午夜免费成人在线视频| 午夜免费观看网址| a级毛片a级免费在线| 1024香蕉在线观看| cao死你这个sao货| 麻豆成人午夜福利视频| 成年女人毛片免费观看观看9| 国产精品一区二区免费欧美| 婷婷亚洲欧美| 欧美一区二区精品小视频在线| 丁香欧美五月| 亚洲精品色激情综合| 成人亚洲精品一区在线观看| 亚洲一码二码三码区别大吗| 亚洲成a人片在线一区二区| 国内精品久久久久精免费| 精品久久久久久久人妻蜜臀av| 亚洲av片天天在线观看| 亚洲成人免费电影在线观看| 免费看a级黄色片| 午夜福利欧美成人| 色在线成人网| 宅男免费午夜| 最近最新中文字幕大全免费视频| 俺也久久电影网| xxxwww97欧美| 国产精品电影一区二区三区| 精品一区二区三区视频在线观看免费| 欧美又色又爽又黄视频| 午夜影院日韩av| 变态另类丝袜制服| а√天堂www在线а√下载| 在线观看免费午夜福利视频| 黄片播放在线免费| 中文亚洲av片在线观看爽| 亚洲精品在线观看二区| 日韩欧美一区二区三区在线观看| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器 | 精品第一国产精品| 两个人看的免费小视频| 最新美女视频免费是黄的| 国产成人av激情在线播放| 亚洲中文日韩欧美视频| 亚洲国产精品合色在线| 国产99白浆流出| 好男人电影高清在线观看| 一区福利在线观看| 亚洲中文av在线| 欧美激情高清一区二区三区| 久久亚洲真实| 制服诱惑二区| 欧美一级毛片孕妇| 人妻丰满熟妇av一区二区三区| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 久久香蕉激情| 色婷婷久久久亚洲欧美| 久久精品夜夜夜夜夜久久蜜豆 | 男人操女人黄网站| 人人妻人人看人人澡| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 成在线人永久免费视频| 熟女少妇亚洲综合色aaa.| 精品福利观看| 19禁男女啪啪无遮挡网站| 人人妻人人澡人人看| 亚洲午夜理论影院| 久热这里只有精品99| 国产成人影院久久av| 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 久久 成人 亚洲| 精品人妻1区二区| 18禁美女被吸乳视频| 亚洲男人的天堂狠狠| 国产精品免费视频内射| av有码第一页| 成熟少妇高潮喷水视频| 欧美成人午夜精品| 91成年电影在线观看| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 长腿黑丝高跟| 成年女人毛片免费观看观看9| 国语自产精品视频在线第100页| 少妇被粗大的猛进出69影院| 精品久久久久久久毛片微露脸| 国产精品美女特级片免费视频播放器 | 亚洲人成电影免费在线| 美女国产高潮福利片在线看| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 欧美久久黑人一区二区| 人人妻人人澡欧美一区二区| 69av精品久久久久久| 正在播放国产对白刺激| 亚洲精品一区av在线观看| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲电影在线观看av| 亚洲中文av在线| 性欧美人与动物交配| 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| 久久久精品国产亚洲av高清涩受| 看黄色毛片网站| 村上凉子中文字幕在线| 欧美黑人巨大hd| 精品国产乱子伦一区二区三区| 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看| 欧美成人午夜精品| 免费观看人在逋| 精品久久久久久久久久久久久 | 丝袜人妻中文字幕| 国产熟女xx| 中文字幕人成人乱码亚洲影| 一本久久中文字幕| 中文字幕高清在线视频| www日本黄色视频网| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| 在线永久观看黄色视频| 国产熟女午夜一区二区三区| 又黄又粗又硬又大视频| 波多野结衣高清作品| aaaaa片日本免费| 美女国产高潮福利片在线看| 国产av不卡久久| 人人妻人人澡人人看| 美女国产高潮福利片在线看| 亚洲av成人av| 亚洲免费av在线视频| 白带黄色成豆腐渣| 90打野战视频偷拍视频| 在线播放国产精品三级| 亚洲国产毛片av蜜桃av| 麻豆成人午夜福利视频| 国产精品免费视频内射| 丝袜美腿诱惑在线| 人人澡人人妻人| 亚洲美女黄片视频| 欧美色视频一区免费| 久久久久免费精品人妻一区二区 | 欧美黄色淫秽网站| 身体一侧抽搐| cao死你这个sao货| 9191精品国产免费久久| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 又黄又粗又硬又大视频| www.999成人在线观看| 夜夜夜夜夜久久久久| 黄色成人免费大全| 99国产综合亚洲精品| 亚洲天堂国产精品一区在线| 日本五十路高清| 一级片免费观看大全| 脱女人内裤的视频| 在线永久观看黄色视频| 可以免费在线观看a视频的电影网站| 夜夜看夜夜爽夜夜摸| 免费高清在线观看日韩| 精品久久久久久久久久久久久 | 久久久国产成人免费| 国产免费男女视频| 亚洲国产欧洲综合997久久, | 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 很黄的视频免费| 欧美不卡视频在线免费观看 | 在线观看免费午夜福利视频| 精品福利观看| 日韩欧美免费精品| 波多野结衣巨乳人妻| 久热这里只有精品99| 黄色片一级片一级黄色片| 午夜激情av网站| 国产午夜精品久久久久久| 校园春色视频在线观看| 村上凉子中文字幕在线| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 成人免费观看视频高清| 亚洲人成网站高清观看| 一区福利在线观看| 首页视频小说图片口味搜索| 动漫黄色视频在线观看| 69av精品久久久久久| 窝窝影院91人妻| av在线播放免费不卡| 99在线视频只有这里精品首页| 超碰成人久久| 淫秽高清视频在线观看| 最新美女视频免费是黄的| 男女午夜视频在线观看| 欧美色视频一区免费| 亚洲国产精品合色在线| 成在线人永久免费视频| 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 好男人在线观看高清免费视频 | 日韩大码丰满熟妇| 国产熟女xx| 国产91精品成人一区二区三区| 欧美色欧美亚洲另类二区| 少妇 在线观看| a级毛片a级免费在线| www.熟女人妻精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 午夜精品久久久久久毛片777| 欧美国产精品va在线观看不卡| 国产av不卡久久| 熟女少妇亚洲综合色aaa.| 亚洲精品国产区一区二| 啦啦啦 在线观看视频| 99在线视频只有这里精品首页| 欧美成人免费av一区二区三区| 亚洲七黄色美女视频| 国产熟女午夜一区二区三区| 精品一区二区三区av网在线观看| 一区二区三区激情视频| 亚洲国产欧洲综合997久久, | 人妻丰满熟妇av一区二区三区| 在线观看舔阴道视频| 91成人精品电影| 18禁美女被吸乳视频| 天堂影院成人在线观看| 欧美日韩黄片免| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| 成年人黄色毛片网站| 丁香六月欧美| 亚洲国产精品999在线| 亚洲一卡2卡3卡4卡5卡精品中文| 侵犯人妻中文字幕一二三四区| 欧美日韩亚洲综合一区二区三区_| 黄片播放在线免费| 国产精品 欧美亚洲| 久久精品91蜜桃| 一级片免费观看大全| 一本大道久久a久久精品| 国产一区二区在线av高清观看| 精品久久久久久久久久久久久 | 三级毛片av免费| 亚洲成人免费电影在线观看| 久久亚洲真实| 老司机在亚洲福利影院| 99国产精品一区二区蜜桃av| 亚洲专区字幕在线| 久久中文字幕一级| netflix在线观看网站| 国产精品一区二区三区四区久久 | 丁香欧美五月| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 欧美乱妇无乱码| 欧美 亚洲 国产 日韩一| 久久精品夜夜夜夜夜久久蜜豆 | 色综合亚洲欧美另类图片| 午夜福利视频1000在线观看| 亚洲av片天天在线观看| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 亚洲中文日韩欧美视频| 亚洲第一av免费看| 18禁裸乳无遮挡免费网站照片 | 精品人妻1区二区| 中亚洲国语对白在线视频| 免费在线观看日本一区| 日韩成人在线观看一区二区三区| 亚洲精华国产精华精| 国产99久久九九免费精品| 色在线成人网| 18美女黄网站色大片免费观看| 久久青草综合色| 婷婷精品国产亚洲av在线| 日本 欧美在线| 亚洲精品av麻豆狂野| 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| 91字幕亚洲| 麻豆成人午夜福利视频| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 日韩中文字幕欧美一区二区| 久久精品91无色码中文字幕| 777久久人妻少妇嫩草av网站| 国产高清有码在线观看视频 | 夜夜看夜夜爽夜夜摸| 精品久久久久久久末码| 亚洲专区国产一区二区| 精品久久久久久久末码| 老司机在亚洲福利影院| 色精品久久人妻99蜜桃| 精品不卡国产一区二区三区| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 99热这里只有精品一区 | av免费在线观看网站| 69av精品久久久久久| 99国产精品一区二区三区| 精品国产乱码久久久久久男人| 国产亚洲精品av在线| 国产三级黄色录像| 一级毛片高清免费大全| videosex国产| 国产亚洲精品综合一区在线观看 | 一进一出抽搐动态| 亚洲 国产 在线| 18禁黄网站禁片午夜丰满| 午夜视频精品福利| 麻豆国产av国片精品| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| 久久久久久免费高清国产稀缺| 俺也久久电影网| 欧美成人午夜精品| 亚洲色图 男人天堂 中文字幕| 欧美日韩黄片免| 一本一本综合久久| 国内少妇人妻偷人精品xxx网站 | 成人手机av| 久久香蕉精品热| 俺也久久电影网| 欧美成人午夜精品| 男人操女人黄网站| 欧美+亚洲+日韩+国产| 女警被强在线播放| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲男人的天堂狠狠| 欧美黑人精品巨大| 中文在线观看免费www的网站 | 国产色视频综合| 精品一区二区三区视频在线观看免费| 一级作爱视频免费观看| 日韩免费av在线播放| av福利片在线| 神马国产精品三级电影在线观看 | 一本综合久久免费| 一夜夜www| 激情在线观看视频在线高清| 中亚洲国语对白在线视频| 精品少妇一区二区三区视频日本电影| 黄片大片在线免费观看| 成人av一区二区三区在线看| 黄色片一级片一级黄色片| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 国产亚洲精品第一综合不卡| 精品日产1卡2卡| 亚洲片人在线观看| 两个人看的免费小视频| 久久久久久国产a免费观看| 亚洲中文日韩欧美视频| 午夜亚洲福利在线播放| 亚洲午夜精品一区,二区,三区| 国产成人精品久久二区二区91| 欧美乱色亚洲激情| 啪啪无遮挡十八禁网站| 亚洲 欧美 日韩 在线 免费| 久久午夜亚洲精品久久| 波多野结衣高清无吗| 国产区一区二久久| 欧美日本亚洲视频在线播放| 麻豆成人午夜福利视频| 变态另类成人亚洲欧美熟女| 免费高清视频大片| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 嫩草影院精品99| 91老司机精品| 一区福利在线观看| 欧美丝袜亚洲另类 | 亚洲国产欧美一区二区综合| 97碰自拍视频| 久久性视频一级片| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 窝窝影院91人妻| 亚洲av电影在线进入| 久久国产亚洲av麻豆专区| 黄片小视频在线播放| 级片在线观看| 高潮久久久久久久久久久不卡| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 国产精品永久免费网站| 两个人免费观看高清视频| 少妇的丰满在线观看| 久久久久久九九精品二区国产 | 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 日本a在线网址| 一边摸一边抽搐一进一小说| 亚洲专区字幕在线| videosex国产| 精品国产乱子伦一区二区三区| 香蕉av资源在线| 亚洲男人的天堂狠狠| 亚洲成人精品中文字幕电影| 午夜老司机福利片| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 中文资源天堂在线| 久久香蕉国产精品| 欧美一级a爱片免费观看看 | 国产三级黄色录像| 黄色a级毛片大全视频| 久久天堂一区二区三区四区| 观看免费一级毛片| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 视频区欧美日本亚洲| 一本综合久久免费| 视频在线观看一区二区三区| 悠悠久久av| 国产97色在线日韩免费| 欧美黑人精品巨大| 可以在线观看毛片的网站| 亚洲九九香蕉| 麻豆成人av在线观看| 真人一进一出gif抽搐免费| 自线自在国产av| 免费看日本二区| 久久精品国产清高在天天线| 麻豆一二三区av精品| 欧美日韩乱码在线| 国产精品亚洲一级av第二区| 国产成人一区二区三区免费视频网站| 美女午夜性视频免费| 欧洲精品卡2卡3卡4卡5卡区| 在线天堂中文资源库| 搡老熟女国产l中国老女人| 国产高清有码在线观看视频 | 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 久久精品影院6| 亚洲专区字幕在线| 在线观看免费日韩欧美大片| 男女午夜视频在线观看| 午夜久久久久精精品| 国产三级黄色录像| 曰老女人黄片| 国产真实乱freesex| 午夜影院日韩av| 国产高清videossex| 国产精品九九99| 不卡av一区二区三区| 午夜福利视频1000在线观看| 日本五十路高清| 日本在线视频免费播放| 国产精品九九99| 女性被躁到高潮视频| 国产亚洲av嫩草精品影院| 亚洲真实伦在线观看| 久久伊人香网站| 变态另类丝袜制服| 色老头精品视频在线观看| 欧美成狂野欧美在线观看| 午夜免费成人在线视频| 国产精品 欧美亚洲| 亚洲中文av在线| 曰老女人黄片| 国产精品美女特级片免费视频播放器 | 91九色精品人成在线观看| 国产精品久久视频播放| 嫩草影视91久久| 午夜成年电影在线免费观看| 成人免费观看视频高清| 国产精品99久久99久久久不卡| 日韩有码中文字幕| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 亚洲一码二码三码区别大吗| 亚洲国产欧美日韩在线播放| 婷婷丁香在线五月| 亚洲熟妇熟女久久| 欧美日韩瑟瑟在线播放| 国产真实乱freesex| 国产不卡一卡二| 成人欧美大片| 99久久无色码亚洲精品果冻| 亚洲 国产 在线| 国产精品 欧美亚洲| 亚洲无线在线观看| 亚洲五月色婷婷综合| 欧美色欧美亚洲另类二区| 1024香蕉在线观看| 久久精品亚洲精品国产色婷小说| 久久九九热精品免费| 久久人人精品亚洲av| 日韩欧美国产在线观看| 丝袜美腿诱惑在线| 不卡一级毛片| 久久久久国产一级毛片高清牌| 亚洲久久久国产精品| 在线十欧美十亚洲十日本专区| 99在线视频只有这里精品首页| 巨乳人妻的诱惑在线观看| 国产99久久九九免费精品| 日韩av在线大香蕉| 午夜福利高清视频| 国产成人啪精品午夜网站| 欧美性猛交黑人性爽| 侵犯人妻中文字幕一二三四区| 国产日本99.免费观看| 精品国产美女av久久久久小说| 日日夜夜操网爽| 一级片免费观看大全| 神马国产精品三级电影在线观看 | 精品国产亚洲在线| 亚洲欧美精品综合久久99| 亚洲精品美女久久av网站| 国产精品国产高清国产av| 一进一出抽搐动态| 香蕉av资源在线| 一本大道久久a久久精品| tocl精华| 亚洲片人在线观看| 精品国产国语对白av| www.www免费av| 天天躁狠狠躁夜夜躁狠狠躁| 国产99久久九九免费精品| 老鸭窝网址在线观看| 亚洲精品在线观看二区| 黄片播放在线免费| 欧美在线一区亚洲| av天堂在线播放| 最新美女视频免费是黄的| 51午夜福利影视在线观看| 日本免费一区二区三区高清不卡| 黄色丝袜av网址大全| 欧美日韩亚洲综合一区二区三区_| 国产一级毛片七仙女欲春2 | www.999成人在线观看| 欧美不卡视频在线免费观看 | 一本综合久久免费| 最近在线观看免费完整版| 一区福利在线观看| 欧美日本视频| 两性夫妻黄色片| 久久人人精品亚洲av| 精品国内亚洲2022精品成人| 精品久久久久久久末码| 村上凉子中文字幕在线| 国产精品电影一区二区三区| 欧美成人一区二区免费高清观看 | www.自偷自拍.com| 亚洲天堂国产精品一区在线| 日本a在线网址| 伊人久久大香线蕉亚洲五| 久久人妻av系列| 69av精品久久久久久| 午夜免费成人在线视频| 精品日产1卡2卡| 久久精品国产清高在天天线| 久久 成人 亚洲| 欧美午夜高清在线| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| 精品一区二区三区四区五区乱码| 色在线成人网| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| 免费在线观看视频国产中文字幕亚洲|