• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Revised Graduated Cylindrical Shell Model and its Application to a Prominence Eruption

    2024-01-16 12:18:32QingMinZhangZhenYongHouandXianYongBai
    Research in Astronomy and Astrophysics 2023年12期

    Qing-Min Zhang, Zhen-Yong Hou, and Xian-Yong Bai

    1 Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Nanjing 210023, China; zhangqm@pmo.ac.cn 2 Yunnan Key Laboratory of the Solar Physics and Space Science, Kunming 650216, China 3 School of Earth and Space Sciences, Peking University, Beijing 100871, China 4 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China 5 University of Chinese Academy of Sciences, Beijing 100049, China 6 Key Laboratory of Solar Activity and Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China Received 2023 May 21; accepted 2023 July 3; published 2023 October 25

    Abstract In this paper,the well-known graduated cylindrical shell(GCS)model is slightly revised by introducing longitudinal and latitudinal deflections of prominences originating from active regions (ARs).Subsequently, it is applied to the three-dimensional(3D)reconstruction of an eruptive prominence in AR 13110,which produced an M1.7 class flare and a fast coronal mass ejection (CME) on 2022 September 23.It is revealed that the prominence undergoes acceleration from ~246 to ~708 km s?1.Meanwhile,the prominence experiences southward deflection by 15°±1°without longitudinal deflection, suggesting that the prominence erupts non-radially.Southward deflections of the prominence and associated CME are consistent, validating the results of fitting using the revised GCS model.Besides, the true speed of the CME is calculated to be 1637±15 km s?1, which is ~2.3 times higher than that of prominence.This is indicative of continuing acceleration of the prominence during which flare magnetic reconnection reaches maximum beneath the erupting prominence.Hence, the reconstruction using the revised GCS model could successfully track a prominence in its early phase of evolution, including acceleration and deflection.

    Key words: Sun: flares – Sun: filaments – prominences – Sun: coronal mass ejections (CMEs)Supporting material: animation

    1.Introduction

    Solar flares and coronal mass ejections (CMEs) are the most powerful activities in the solar atmosphere, which have drastic and profound influences on the heliosphere(Chen 2011;Shibata& Magara 2011; Reames 2013).The primary origins of flares and CMEs are believed to be impulsive eruptions of solar prominences or filaments (Janvier et al.2015).Prominences observed in Hα or extreme-ultraviolet (EUV) wavelengths usually show helical structures (Kumar et al.2012), and fast rotations or untwisting motions are frequently detected during eruptions (Green et al.2007; Yan et al.2014; Shen et al.2019;Zhou et al.2023).Before loss of equilibrium, the gravity of a prominence is balanced by the upward tension force of magnetic dips within a sheared arcade or a flux rope(Liu et al.2012;Chen et al.2018; Zhou et al.2018; Luna & Moreno-Insertis 2021;Guo et al.2022).A magnetic flux rope comprises a bundle of twisted field lines, which are wrapping around a common axis(Titov & Démoulin 1999; Qiu et al.2004; Wang et al.2015;Gou et al.2023).Flux ropes play a central role in driving flares and CMEs (Amari et al.2003; Roussev et al.2003; Aulanier et al.2010;Cheng et al.2013;Inoue et al.2018;Mei et al.2020;Jiang et al.2021).Sometimes, they could be heated up to~10 MK before or during eruptions and are termed as hot channels (Zhang et al.2012; Cheng et al.2013; Zhang et al.2022b; Liu et al.2022), which are merely observed in 94 and 131 ? of the Atmospheric Imaging Assembly (AIA; Lemen et al.2012) on board the Solar Dynamics Observatory (SDO)spacecraft.Flux ropes propagate radially in most cases.However, a fraction of them undergo deflections and propagate non-radially (Guo et al.2019; Mitra & Joshi 2019; Hess et al.2020;Zhang et al.2022a).The inclination angle with the normal direction lies in the range of 15°–70°.In the typical three-part structure of CMEs, the dark cavity and bright core are considered to be a flux rope and the embedded prominence(Illing & Hundhausen 1985; Song et al.2023).

    The three-dimensional (3D) shape and direction of a CME are essential in estimating the arrival time and geo-effectiveness of a CME.The well-known cone model,resembling an ice cream, was proposed and applied to investigate the evolutions of morphology and kinematics of halo CMEs (Micha?ek et al.2003; Xie et al.2004).This model assumes a constant angular width and a constant linear speed during propagation in the radial direction (Zhang et al.2010).Considering that a part of prominences and the driven CMEs propagate non-radially,Zhang (2021) put forward a revised cone model and applied it to two prominence eruptions.The tip of the cone is located at the source region of CME.The model is characterized by four parameters: the length (r) and angular width (ω) of the cone,and two angles (φ1and θ1) denoting the deflections in the longitudinal and latitudinal directions.Using this model,Zhang(2022)satisfactorily tracked the 3D evolution of a halo CME as far as ~12 R⊙on 2011 June 21.

    Figure 1.(a) Positions of Earth(green circle) and two artificial satellites.SAT-1(maroon circle) and SAT-2(purple circle) have separation angles of ?15° and 90°with the Sun-Earth connection,respectively.(b)Positions of Earth(green circle),ahead STEREO(STA,maroon circle),and behind STEREO(STB,purple circle)on 2022 September 23.

    Thernisien et al.(2006) proposed the graduated cylindrical shell(GCS)model to perform 3D reconstructions of flux ropelike CMEs(Vourlidas et al.2013).The flux rope in their model looks like a croissant, which has two identical legs with a length of h and angular separation of 2α (Thernisien et al.2009; Thernisien 2011).The legs are connected by a circulus with varying cross sections so that the aspect ratio κ keeps constant.Another angle γ represents the tilt angle of the polarity inversion line (PIL) of the source region with a longitude φ and a latitude θ, respectively.Besides, electron number density (Ne) is considered to synthesize white-light(WL) images observed by coronagraphs.Thanks to multiperspective observations from the Large Angle and Spectrometric Coronagraph(LASCO;Brueckner et al.1995)on board the SOHO spacecraft and WL coronagraphs(COR1,COR2)on board the twin Solar TErrestrial RElations Observatory(STEREO; Kaiser et al.2008) spacecraft, the GCS model has been widely used to perform 3D reconstructions of CMEs(Mierla et al.2009; Cheng et al.2014; M?stl et al.2014;Liewer et al.2015; Lu et al.2017; Sahade et al.2023; Zhou et al.2023).Isavnin(2016)developed an analytic 3D model for flux rope-like CMEs that incorporate all major deformations during their propagations, such as deflection, rotation,“pancaking,” front flattening, and skewing.

    Table 1Parameters of φ1 and θ1 in Four Cases

    The 3D morphologies of eruptive prominences could be obtained using the triangulation technique when simultaneous observations from two or three perspectives are available(Thompson 2009; Li et al.2011; Bi et al.2013; Guo et al.2019).Deflection,kinking,and rotation of the prominences are found based on the 3D reconstruction.Until now, the GCS model has rarely been applied to the reconstruction of eruptive prominences,especially those propagating non-radially.In this paper, the GCS model is slightly modified and applied to reconstruct the shapes of an eruptive prominence in NOAA active region (AR) 13110(N16E84), which produced a GOES M1.7 class flare and a fast CME on 2022 September 23.The model is described in Section 2.The results of 3D reconstruction are presented in Section 3.A brief summary and discussions are given in Section 4.

    2.Revised GCS Model

    Figure 2.Different views of four artificial flux ropes (Case1?Case4) in the revised GCS model, see text for details.

    Similar to the revised cone model, the GCS model is also modified in two aspects:First,the tip of the two legs is located at the source region of the eruptive prominence rather than the solar center.This applies to flux ropes originating from active regions, instead of quiescent prominences with much longer extensions(Li et al.2011;Dai et al.2021;Zhou et al.2023).It should be emphasized that the footpoints of a flux rope have separation and are not strictly close to each other (Wang et al.2015).Moreover, the footpoints may experience long-distance migration during eruption(Gou et al.2023).In this respect,the assumption that the footpoints of a flux rope are cospatial is relatively strong.Second, the GCS symmetry axis passing through the circulus has inclination angles of φ1and θ1with respect to the local longitude and latitude, respectively.The parameters h, α, κ, γ, φ, and θ have the same meanings(Thernisien et al.2006).γ=0° and γ=90° indicate that the PIL is parallel and perpendicular to the longitude,respectively.Since the traditional GCS model reduces to the ice cream cone model when α=0 (Thernisien et al.2009), the revised GCS model also reduces to the revised cone model when α=0(Zhang 2021).

    The transform between the heliocentric coordinate system(HCS;Xh,Yh,Zh)and local coordinate system(LCS;Xl,Yl,Zl)is (Zhang 2022):

    where

    Figure 3.(a)GOES SXR light curves of the M1.7 flare in 1?8 ?(red line)and 0.5?4 ?(purple line).The dashed–dotted line marks the peak time(18:10:00 UT).(b)Height-time plots of the leading edges of the reconstructed flux rope(blue circles)and CME observed by STA/COR2(green diamonds).(c)Height-time plots of 3h(brown squares)and hLE(dark cyan squares).Linear fittings of hLE are performed before and after 17:53:00 UT,with the speeds being labeled.(d)Time variations of the fitted parameters, including 90 ?γ (green rhombuses), ωFO/2 (purple triangles), α (orange squares), θ1 (yellow circles), ωEO (yellow triangles), and φ1 (gray hexagons), respectively.

    The transform between LCS and GCS flux-rope coordinate system (FCS; Xf, Yf, Zf) is:

    where

    To reconstruct the shape of a flux rope in the revised model,observations from multiple viewpoints are needed as far as possible.In Figure 1(a),the relative positions of Earth and two artificial satellites (SAT-1 and SAT-2) are denoted with green,maroon,and purple circles,respectively.The separation angles between the artificial satellites with the Sun-Earth connection are denoted by ξ1and ξ2, respectively.Note that SAT-1 and SAT-2 could be the ahead STEREO (hereafter STA) and behind STEREO (hereafter STB), or Extreme-Ultraviolet Imager (EUVI; Rochus et al.2020) on board Solar Orbiter(SolO; Müller et al.2020), or Wide-Field Imager for Solar Probe Plus (WISPR; Vourlidas et al.2016) on board Parker Solar Probe (PSP; Fox et al.2016).Note that both SolO and PSP are much closer to the Sun than STEREO.Consequently,the transform between the SAT-1 coordinate system (Xs1, Ys1,

    Figure 4.AIA 131 ? images to illustrate the evolutions of the prominence and flare.The white arrows point to AR 13110,eruptive prominence,and hot flare loops.An animation showing the flare and prominence eruption in AIA 131 ? is available.It covers a duration of 50 minutes from 17:30 UT to 18:20 UT on 2022 September 23.The entire movie runs for 6 s.

    Zs1) and HCS is:

    where

    Similarly, the transform between the SAT-2 coordinate system (Xs2, Ys2, Zs2) and HCS is:

    where

    3.Application to a Prominence Eruption

    3.1.Flare and CME

    The event occurred in AR 13110, accompanied by an M1.7 flare and a fast CME.Figure 3(a) shows SXR light curves of the flare in 1–8 ?(red line)and 0.5–4 ?(purple line).The SXR emissions increase from 17:48:00 UT, peak at 18:10:00 UT,and decrease slowly until ~18:50:00 UT.Time evolutions of the prominence eruption and flare are illustrated by six 131 ? images observed by SDO/AIA in Figure 4 and the associated online movie (anim131.mp4).Panel (a) shows AR 13110 with weak brightening before eruption.The prominence shows up and stands out after ~17:46:00 UT (panel (b)).It continues to rise and expands in height, during which the flare loops brighten significantly (panels (c)–(d)).The prominence accelerates and the apex escapes the field of view (FOV) of AIA,leaving behind the hot post-flare loops that cool down gradually (panels (e)–(f)).It is noticed that the footpoints of the prominence remain in the AR without considerable separation.The morphological evolution of the prominence is similar in other EUV and 1600 ? wavelengths of AIA,indicating its multithermal nature (Zhang et al.2022a; Li et al.2022b).

    Figure 5.(a)–(c) Running-difference images of the related CME observed by LASCO/C2 during 18:12?18:36 UT.(d)–(i) Running-difference images of the CME observed by STA/COR2.The arrows point to the CME that first appears in the coronagraphs.

    In Figure 5, the top panels show running-difference WL images of the related CME observed by LASCO/C2.The CME7www.sidc.be/cactus/first appears at 18:12:00 UT and propagates eastward with an angular width of ~50°and at a speed of ~1644 km s?1(see Table 2).It is worth mentioning that the angular width is measured for the CME itself.Since an interplanetary shock wave was driven by the CME (Figures 5(b)–(c)), the recorded angular width of the CME reaches 189°, which is much wider than the CME itself.8cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL_ver1/2022_09/univ2022_09.htmlIn Figure 1(b), the green, maroon, and purple circles represent the positions of Earth, STA, and STB on 2022 September 23.The twin satellites had separation angles of ?17.9° and 12.9° with the Sun-Earth connection,although STB stopped working after 2016.The middle and bottom panels of Figure 5 show running-difference images of STA/COR2 during 18:23?19:38 UT.The CME enters the FOV of COR2 at 18:23:30 UT and propagates eastward with an angular width of ~64° (see Table 2).The height evolution of the CME leading edge in the FOV of COR2 is plotted with green diamonds in Figure 3(b).A linear fitting results in an apparent speed of ~1482 km s?1.

    3.2.3D Shapes of the Prominence

    Figure 6.Top panels: the prominence observed by AIA 304 ? (a1), SWAP 174 ? (b1), and EUVI 304 ? (c1) passbands around 17:55:40 UT.Bottom panels: the same images superposed with projections of the reconstructed flux rope (atrovirens, magenta, and blue dots).

    Table2 Parameters of the CME Produced by the Prominence Eruption, Including the Apparent Speed (Vapp), True Speed (V3D), Central Position Angle (CPA), and Angular Width (AW)

    In Figure 6, the top panels show the prominence simultaneously observed by AIA 304(base-difference image),SWAP 174(base-difference image), and EUVI 304(original image) passbands around 17:55:40 UT.Due to the low cadence(10 minutes)of EUVI 304passband,this is the only time when the prominence is entirely visible in all instruments.Owing to the smaller FOV of AIA than SWAP and EUVI, the whole prominence was captured by SWAP and EUVI, while the outermost part (i.e., apex) of the prominence was missed by AIA.It is obvious that the two legs are much brighter than the top of the prominence.In panel (c1), the prominence presents clear helical structure, implying that the magnetic fields supporting the prominence are most probably a flux rope.The bottom panels of Figure 6 show the same images, which are superposed with projections of the reconstructed flux rope (atrovirens, magenta, and blue dots)using the revised GCS model.The 3D reconstruction is performed by repeatedly adjusting the free parameters described in Section 2, while the source region location(φ=?84°,θ=15°)is fixed.The best-fit model is subjectively judged when projections of the flux rope nicely match the prominence in EUV images.From Figures 6(a2)–(c2), it is revealed that the fitting of the prominence using the revised GCS model is satisfactory.The derived parameters are:h=150″, α=45°, κ=0.087 (δ=5°), φ1=0°, θ1=16°, andedge-on width of the flux rope is ωEO=2δ=10°,and the faceon angular width is ωFO=2(α+δ)=100°.The flux rope axis deviates from the local vertical direction by 16° and the heliocentric distance (hHC) of the leading edge reaches~1.4 R⊙.

    Figure 7.Top panels:the prominence observed by AIA 304 ? and SWAP 174 ? around 17:57:27 UT.Bottom panels:the same images overlaid with projections of reconstructed flux rope (atrovirens and magenta dots).

    Although there is only one time of simultaneous observations of the prominence from multiple perspectives, 3D reconstruction could still be conducted using observations of telescopes along the Sun-Earth connection (Thernisien et al.2006).In Figure 7, the top panels show the prominence observed by AIA 304 ? and SWAP 174 ? around 17:57:27 UT.The prominence was fully visible in SWAP 174 ? image at 17:57:25 UT, but was partly visible in AIA 304 ? image at 17:57:29 UT.The bottom panels show the same images overlaid with projections of reconstructed flux ropes(atrovirens and magenta dots).Consistency between the shapes of prominence and flux ropes indicates that the fittings are still gratifying.The derived parameters are drawn in Figures 3(c)–(d).

    Before 17:54:00 UT, the prominence rose gradually and was entirely recorded in AIA 304 ? and SUTRI 465 ? passbands.Figure 8 shows 304 ? images(a1–a5)and 465 ? images(b1–b5)overlaid with projections of the reconstructed flux ropes(atrovirens and blue dots) during 17:49–17:53 UT.The prominence looks like an ear and the two legs are much clearer than the top.The reconstructed flux ropes coincide with the prominence much better at the legs than the top due to its irregular and asymmetric shape.The derived parameters are drawn in Figures 3(c)–(d).Linear fittings of hLEare separately performed during 17:49:17–17:52:17 UT and 17:53:30–17:57:30 UT,giving rise to true speeds of ~246 and ~708 km s?1of the erupting prominence.Accordingly, the prominence was undergoing acceleration during its early phase of eruption(17:49–17:57 UT).In Figure 3(b), time variation of hHCis plotted with blue circles, which has the same trend as hLE.

    Figure 8.AIA 304 ? images(a1–a5)and SUTRI 465 ? images(b1–b5)superposed with projections of the reconstructed flux ropes(atrovirens and blue dots)during 17:49?17:53 UT.

    The value of γ increases from 0° to 30°, which is probably indicative of counterclockwise rotation of the prominence axis during eruption (Fan & Gibson 2003; Zhou et al.2020).The edge-on width ωEOkeeps a constant of ~10°.The face-on width ωFOdecreases from ~162° to a minimum of ~100°around 17:53:45 UT and increases to ~104° around 17:57:25 UT.The inclination angle θ1increases slightly from 14°to 16°,suggesting a southward deflection of the prominence.The values of φ1remain 0°, meaning that there is no longitudinal deflection.In Table 2,the CPA of CME is 85°–88°,indicating a southward deflection of CME by 11°–14°.In this regard,deflections of the prominence and related CME are accordant,which justifies the results of fitting using the revised GCS model.Furthermore, the true speeds (V3D) of CME are estimated to be 1653 and 1622 km s?1using the apparent speeds in the FOVs of LASCO/C2 and STA/COR2,which are very close to each other.It is noted that the speed of CME(1637±15 km s?1) is ~2.3 times higher than that of prominence, implying continuing acceleration of the prominence between 17:57 UT and 18:23 UT.

    4.Summary and Discussion

    In this paper, the GCS model is slightly revised by introducing longitudinal and latitudinal deflections of prominences originating from ARs.Subsequently,it is applied to the 3D reconstruction of an eruptive prominence in AR 13110,which produced an M1.7 class flare and a fast CME on 2022 September 23.It is found that the prominence undergoes acceleration from ~246 to ~708 km s?1.Meanwhile, the prominence experiences southward deflection by 14°–16°without longitudinal deflection,suggesting that the prominence erupts non-radially.Southward deflections of the prominence and associated CME are consistent, validating the results of fitting using the revised GCS model.Besides,the true speed of the CME is calculated to be 1637±15 km s?1, which is ~2.3 times higher than that of prominence.This is indicative of continuing acceleration of the prominence during which flare magnetic reconnection reaches maximum beneath the erupting prominence.Hence, the reconstruction using the revised GCS model could successfully track a prominence in its early phase of evolution until ~1.5 R⊙, including acceleration and deflection.

    Morphological reconstructions of prominences/filaments are abundant using stereoscopic observations in UV, EUV, and Hα passbands from two or three viewpoints.The triangulation method has been widely used to perform reconstructions of both quiescent and AR prominences (Li et al.2011; Bi et al.2013;Guo et al.2019).However, this method utilizes simultaneous images from two perspectives.In the current study,there is only one moment (~17:55:45 UT) of observations from SDO/AIA and STA/EUVI when the triangulation method is usable(Figure 6).On the contrary, the revised GCS model is at work even if there are observations from a single perspective(Figures 7, 8), although more perspectives impose better constraints and have lower uncertainties.This is particularly advantageous to the reconstruction of hot channels since routine observations in hot emission lines (such as 94, 131 ?) with STEREO and SolO/EUI are still unavailable.Calculations of the thermal energies of hot channels using this model will be the topic of our next paper.

    Of course, there are limitations of the revised GCS model.First, the model is applicable to AR prominences whose footpoints are close to each other, instead of quiescent prominences with much larger sizes and extensions.Second,the model is applicable to coherent, loop-like prominences,rather than those presenting irregular and ragged shapes.Lastly, 3D reconstructions of prominences are severely constrained by the FOVs of solar telescopes working at UV,EUV, and Hα wavelengths, which is in contrast to the reconstructions of CMEs observed by coronagraphs with much larger FOVs.In Figure 3(b), the heliocentric distance of the flux rope leading edge reaches ~1.5 R⊙a(bǔ)t 17:57:25 UT,which is still blocked by the occulting disk of LASCO/C2.

    With the advent of peak year of the 25th solar cycle, largescale solar eruptions are booming, which have a sustained impact on the near-Earth space environment.Precise reconstructions of the shape and direction of eruptive prominences and the related CMEs will undoubtedly improve our ability to space weather forecasts.In the future, more case studies and statistical analysis are worthwhile using stereoscopic observations from spaceborne and ground-based telescopes, such as SDO/AIA, STEREO/EUVI, SolO/EUI, SWAP, SUTRI, the Chinese Hα Solar Explorer (CHASE; Li et al.2022a), and the New Vacuum Solar Telescope (NVST; Liu et al.2014).

    Acknowledgments

    The authors appreciate Profs.Hui Tian and Hongqiang Song for helpful discussions.SDO is a mission of NASA?s Living With a Star Program.AIA data are courtesy of the NASA/SDO science teams.SUTRI is a collaborative project conducted by the National Astronomical Observatories of CAS,Peking University,Tongji University, Xi’an Institute of Optics and Precision Mechanics of CAS and the Innovation Academy for Microsatellites of CAS.This work is supported by the National Key R&D Program of China 2022YFF0503003 (2022YFF0503000),2021YFA1600500 (2021YFA1600502), the National Natural Science Foundation of China (No.12373065) and Yunnan Key Laboratory of Solar Physics and Space Science under the No.YNSPCC202206.NSFC under grant No.12373065.

    99热6这里只有精品| 国产成人精品久久二区二区91| 一本大道久久a久久精品| √禁漫天堂资源中文www| 伦理电影免费视频| 亚洲美女黄片视频| 中文字幕最新亚洲高清| 欧美极品一区二区三区四区| 成人av在线播放网站| 最近最新中文字幕大全免费视频| 激情在线观看视频在线高清| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 欧美日韩福利视频一区二区| 久久中文字幕人妻熟女| 久久精品成人免费网站| 亚洲无线在线观看| 中亚洲国语对白在线视频| 日本 欧美在线| 国产欧美日韩一区二区精品| 久久午夜亚洲精品久久| 欧美日韩亚洲国产一区二区在线观看| 久久久国产成人免费| 久久九九热精品免费| x7x7x7水蜜桃| 狂野欧美白嫩少妇大欣赏| 男女视频在线观看网站免费 | 巨乳人妻的诱惑在线观看| 欧美一区二区精品小视频在线| 一区二区三区激情视频| 成人精品一区二区免费| 免费在线观看日本一区| 国内精品一区二区在线观看| 亚洲电影在线观看av| 精品人妻1区二区| 亚洲片人在线观看| 99国产综合亚洲精品| 国产亚洲精品久久久久5区| 亚洲av电影在线进入| 黄频高清免费视频| 精品国产乱码久久久久久男人| 国产三级黄色录像| 成在线人永久免费视频| 老汉色av国产亚洲站长工具| 免费电影在线观看免费观看| 欧美黑人精品巨大| 久久婷婷人人爽人人干人人爱| 亚洲国产看品久久| 国产精品av视频在线免费观看| 两个人免费观看高清视频| 亚洲精品美女久久av网站| 国产av一区二区精品久久| 亚洲精品美女久久久久99蜜臀| 久久天堂一区二区三区四区| 国产成年人精品一区二区| 18禁国产床啪视频网站| 亚洲精品粉嫩美女一区| 香蕉丝袜av| 成人手机av| 精品欧美一区二区三区在线| 99久久综合精品五月天人人| 人妻久久中文字幕网| 亚洲天堂国产精品一区在线| 欧美久久黑人一区二区| 欧美日韩国产亚洲二区| 婷婷亚洲欧美| 亚洲成人久久性| 亚洲熟女毛片儿| 成人特级黄色片久久久久久久| 村上凉子中文字幕在线| 欧美在线黄色| 在线永久观看黄色视频| 国产黄a三级三级三级人| 99国产精品一区二区蜜桃av| av超薄肉色丝袜交足视频| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区av网在线观看| 高潮久久久久久久久久久不卡| 国产麻豆成人av免费视频| 免费在线观看视频国产中文字幕亚洲| 国产精品亚洲美女久久久| 在线观看66精品国产| 国产精品影院久久| 亚洲av成人av| a在线观看视频网站| av片东京热男人的天堂| 特大巨黑吊av在线直播| 欧美一级a爱片免费观看看 | 国产伦人伦偷精品视频| 天堂√8在线中文| 亚洲aⅴ乱码一区二区在线播放 | 欧美又色又爽又黄视频| 国产高清激情床上av| 国产欧美日韩精品亚洲av| 欧美性猛交黑人性爽| 床上黄色一级片| 少妇裸体淫交视频免费看高清 | 欧美国产日韩亚洲一区| 精品国产乱子伦一区二区三区| 国产成人精品久久二区二区免费| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区视频了| av天堂在线播放| 99久久精品热视频| 一个人免费在线观看的高清视频| 国产成人精品无人区| 男人的好看免费观看在线视频 | 亚洲国产精品久久男人天堂| 婷婷丁香在线五月| 人妻丰满熟妇av一区二区三区| 成人永久免费在线观看视频| 亚洲专区中文字幕在线| 啦啦啦免费观看视频1| 国产又色又爽无遮挡免费看| 18禁观看日本| av国产免费在线观看| 嫩草影院精品99| 国产精品久久久久久人妻精品电影| 黄色片一级片一级黄色片| 一卡2卡三卡四卡精品乱码亚洲| 脱女人内裤的视频| 成人永久免费在线观看视频| 日本免费一区二区三区高清不卡| 久久精品夜夜夜夜夜久久蜜豆 | а√天堂www在线а√下载| 亚洲欧美日韩高清专用| 国产区一区二久久| 在线国产一区二区在线| 日本黄色视频三级网站网址| 长腿黑丝高跟| 色综合欧美亚洲国产小说| 欧美精品亚洲一区二区| 亚洲中文av在线| 免费在线观看亚洲国产| 在线十欧美十亚洲十日本专区| 久久精品aⅴ一区二区三区四区| 母亲3免费完整高清在线观看| 国产片内射在线| 国产一级毛片七仙女欲春2| av有码第一页| 亚洲第一电影网av| 此物有八面人人有两片| 人成视频在线观看免费观看| 国产99久久九九免费精品| 久久久久亚洲av毛片大全| 性色av乱码一区二区三区2| 蜜桃久久精品国产亚洲av| 亚洲成人免费电影在线观看| 国产亚洲精品久久久久5区| www.熟女人妻精品国产| 999精品在线视频| 悠悠久久av| 99在线视频只有这里精品首页| 亚洲欧美日韩高清在线视频| 搡老熟女国产l中国老女人| 少妇熟女aⅴ在线视频| av天堂在线播放| 欧美日韩中文字幕国产精品一区二区三区| 久久性视频一级片| 久久热在线av| 日韩中文字幕欧美一区二区| 国产在线观看jvid| 免费观看人在逋| 热99re8久久精品国产| 一级毛片女人18水好多| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 国产精品乱码一区二三区的特点| 国产成年人精品一区二区| 免费在线观看成人毛片| 在线观看66精品国产| 国产三级黄色录像| 亚洲国产精品久久男人天堂| 国产av在哪里看| 色精品久久人妻99蜜桃| 天堂av国产一区二区熟女人妻 | 日本a在线网址| 国产精品一区二区免费欧美| 色噜噜av男人的天堂激情| 成年人黄色毛片网站| 亚洲国产欧美网| 久久精品国产亚洲av香蕉五月| 精品熟女少妇八av免费久了| 日本成人三级电影网站| 久久中文字幕人妻熟女| 国产探花在线观看一区二区| 日韩精品免费视频一区二区三区| 成人av在线播放网站| www日本在线高清视频| 男女床上黄色一级片免费看| 老司机福利观看| 成人av一区二区三区在线看| 亚洲精品中文字幕一二三四区| 国产高清videossex| 欧美日韩精品网址| a级毛片a级免费在线| 欧美国产日韩亚洲一区| 日韩欧美国产一区二区入口| 18禁美女被吸乳视频| 欧美国产日韩亚洲一区| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av五月六月丁香网| 嫩草影院精品99| 久久久久精品国产欧美久久久| 人妻夜夜爽99麻豆av| 亚洲中文av在线| 色av中文字幕| 成人国产一区最新在线观看| 欧美黑人巨大hd| 久久久久久久久中文| 国产精品久久久人人做人人爽| av福利片在线| 少妇熟女aⅴ在线视频| 99在线人妻在线中文字幕| 欧美极品一区二区三区四区| 国产三级在线视频| 国产熟女午夜一区二区三区| 老司机在亚洲福利影院| 黄频高清免费视频| 国产亚洲精品综合一区在线观看 | 亚洲人成网站高清观看| 亚洲美女黄片视频| 女警被强在线播放| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| 国产片内射在线| 最好的美女福利视频网| 青草久久国产| 777久久人妻少妇嫩草av网站| a级毛片a级免费在线| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 99精品久久久久人妻精品| 国内精品一区二区在线观看| av有码第一页| 高潮久久久久久久久久久不卡| 国产一区在线观看成人免费| 国产区一区二久久| 成人国产一区最新在线观看| 久久久国产成人免费| 婷婷精品国产亚洲av| 欧美性猛交黑人性爽| 制服人妻中文乱码| 日韩精品免费视频一区二区三区| 国产单亲对白刺激| 成人国产一区最新在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 高潮久久久久久久久久久不卡| 亚洲真实伦在线观看| 男插女下体视频免费在线播放| 欧美乱码精品一区二区三区| 黄色视频不卡| 精品第一国产精品| 午夜福利18| 成年人黄色毛片网站| 欧美不卡视频在线免费观看 | 亚洲一区中文字幕在线| 欧美性猛交╳xxx乱大交人| 最新美女视频免费是黄的| av国产免费在线观看| 三级毛片av免费| 成人特级黄色片久久久久久久| 两个人视频免费观看高清| 日日夜夜操网爽| 久久天堂一区二区三区四区| 日本在线视频免费播放| 久久人人精品亚洲av| 香蕉国产在线看| 国产精品一区二区精品视频观看| 亚洲七黄色美女视频| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 亚洲国产中文字幕在线视频| 国产一区二区在线观看日韩 | av在线天堂中文字幕| 夜夜躁狠狠躁天天躁| 黄色女人牲交| 成熟少妇高潮喷水视频| www日本黄色视频网| 亚洲人与动物交配视频| 麻豆久久精品国产亚洲av| 男女视频在线观看网站免费 | 午夜免费激情av| 婷婷亚洲欧美| 一个人免费在线观看电影 | 精品电影一区二区在线| 香蕉国产在线看| 久热爱精品视频在线9| 日韩欧美免费精品| 91老司机精品| 日本精品一区二区三区蜜桃| 国产片内射在线| 五月伊人婷婷丁香| 久久久久国产一级毛片高清牌| 亚洲 国产 在线| tocl精华| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 亚洲午夜精品一区,二区,三区| 久久中文字幕人妻熟女| 欧美乱码精品一区二区三区| 国产精品精品国产色婷婷| 免费观看精品视频网站| 五月玫瑰六月丁香| 九色国产91popny在线| 黄色女人牲交| 伦理电影免费视频| 他把我摸到了高潮在线观看| 日韩欧美在线二视频| 97人妻精品一区二区三区麻豆| bbb黄色大片| 久久久久久免费高清国产稀缺| 男女视频在线观看网站免费 | 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区mp4| 69av精品久久久久久| 亚洲自偷自拍图片 自拍| 久久精品综合一区二区三区| 看黄色毛片网站| 波多野结衣高清作品| 成人18禁高潮啪啪吃奶动态图| 婷婷六月久久综合丁香| 成年女人毛片免费观看观看9| 欧美+亚洲+日韩+国产| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| a在线观看视频网站| 亚洲精品一卡2卡三卡4卡5卡| 69av精品久久久久久| 不卡av一区二区三区| 久久中文字幕一级| 久久精品国产综合久久久| 床上黄色一级片| 一级毛片女人18水好多| 国产午夜精品久久久久久| 日韩大尺度精品在线看网址| 天堂动漫精品| 国产激情欧美一区二区| 国产午夜精品久久久久久| 看免费av毛片| 国产精品日韩av在线免费观看| 欧美久久黑人一区二区| 波多野结衣高清作品| 91老司机精品| 19禁男女啪啪无遮挡网站| 91老司机精品| 床上黄色一级片| 啦啦啦韩国在线观看视频| 美女高潮喷水抽搐中文字幕| 91老司机精品| 19禁男女啪啪无遮挡网站| 一级毛片女人18水好多| 国产精品日韩av在线免费观看| 国产av麻豆久久久久久久| 99精品欧美一区二区三区四区| 男女那种视频在线观看| 男女床上黄色一级片免费看| 成人一区二区视频在线观看| 久久久国产精品麻豆| 一区二区三区国产精品乱码| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产欧美网| 亚洲人成77777在线视频| 亚洲午夜理论影院| 免费观看人在逋| 老司机深夜福利视频在线观看| 国产黄色小视频在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产一区二区三区在线臀色熟女| 无限看片的www在线观看| 国产伦人伦偷精品视频| 亚洲色图av天堂| 一级片免费观看大全| 亚洲va日本ⅴa欧美va伊人久久| 视频区欧美日本亚洲| 亚洲av中文字字幕乱码综合| 国产午夜精品久久久久久| 国产1区2区3区精品| 亚洲精品国产精品久久久不卡| 国产1区2区3区精品| 久久久久久大精品| 好看av亚洲va欧美ⅴa在| 嫩草影院精品99| 国产成+人综合+亚洲专区| 香蕉丝袜av| 亚洲va日本ⅴa欧美va伊人久久| 国产高清有码在线观看视频 | 视频区欧美日本亚洲| 亚洲av成人一区二区三| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 免费看十八禁软件| 麻豆久久精品国产亚洲av| 亚洲人成电影免费在线| 国产野战对白在线观看| 欧美丝袜亚洲另类 | 九色成人免费人妻av| 免费一级毛片在线播放高清视频| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 国产精品精品国产色婷婷| 国产精品野战在线观看| 久久中文看片网| 亚洲男人的天堂狠狠| 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 一进一出好大好爽视频| 久久久久性生活片| 精品日产1卡2卡| 老司机靠b影院| 欧美黑人巨大hd| 99久久99久久久精品蜜桃| 亚洲,欧美精品.| 少妇的丰满在线观看| 欧美+亚洲+日韩+国产| 日本一二三区视频观看| 日本熟妇午夜| 91成年电影在线观看| 久久久久久久久免费视频了| 亚洲国产精品999在线| 两性午夜刺激爽爽歪歪视频在线观看 | 99re在线观看精品视频| 午夜激情福利司机影院| 国产精品亚洲一级av第二区| 色综合站精品国产| 日本在线视频免费播放| 亚洲乱码一区二区免费版| 中文字幕精品亚洲无线码一区| 亚洲av成人不卡在线观看播放网| 最新在线观看一区二区三区| 亚洲美女视频黄频| 国产在线精品亚洲第一网站| 一个人免费在线观看的高清视频| 欧美激情久久久久久爽电影| 十八禁人妻一区二区| 国产一区二区三区视频了| 午夜老司机福利片| 欧美黄色片欧美黄色片| 精品福利观看| 久久久精品欧美日韩精品| 久久人妻av系列| 精品乱码久久久久久99久播| 制服人妻中文乱码| 欧美黑人精品巨大| 99久久综合精品五月天人人| 男女午夜视频在线观看| 亚洲人与动物交配视频| 女同久久另类99精品国产91| cao死你这个sao货| 99国产精品一区二区三区| 国产一区二区三区在线臀色熟女| 可以在线观看毛片的网站| 亚洲成人国产一区在线观看| 日韩av在线大香蕉| 免费在线观看成人毛片| 中文字幕av在线有码专区| 99精品欧美一区二区三区四区| 777久久人妻少妇嫩草av网站| 色播亚洲综合网| 国产精品免费视频内射| 叶爱在线成人免费视频播放| 欧美大码av| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 97人妻精品一区二区三区麻豆| 欧美3d第一页| 精品久久久久久,| 可以免费在线观看a视频的电影网站| 日韩欧美精品v在线| 黄色片一级片一级黄色片| 亚洲精品在线美女| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 亚洲电影在线观看av| 最近在线观看免费完整版| 三级国产精品欧美在线观看 | av欧美777| 国产高清videossex| 久久久久久久久久黄片| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久| 日韩欧美在线乱码| 99国产综合亚洲精品| 国产免费男女视频| 国产高清有码在线观看视频 | 黄色视频不卡| 亚洲午夜理论影院| 长腿黑丝高跟| 国产成人av激情在线播放| 亚洲片人在线观看| 亚洲人成伊人成综合网2020| 搡老岳熟女国产| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 久久久久国产一级毛片高清牌| 天天躁夜夜躁狠狠躁躁| 丝袜人妻中文字幕| 一区二区三区激情视频| 在线观看免费午夜福利视频| 伊人久久大香线蕉亚洲五| 亚洲一区高清亚洲精品| 日韩成人在线观看一区二区三区| 国产97色在线日韩免费| av在线播放免费不卡| 精品久久久久久成人av| 色噜噜av男人的天堂激情| 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| 亚洲avbb在线观看| 午夜a级毛片| 色av中文字幕| www日本黄色视频网| 特大巨黑吊av在线直播| 美女免费视频网站| 国产成人欧美在线观看| 日韩欧美精品v在线| 国产v大片淫在线免费观看| 在线视频色国产色| 精品久久蜜臀av无| 午夜福利18| 亚洲专区字幕在线| 淫秽高清视频在线观看| 看片在线看免费视频| 90打野战视频偷拍视频| netflix在线观看网站| 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看| 亚洲一码二码三码区别大吗| 亚洲色图av天堂| 久久精品91无色码中文字幕| 中文亚洲av片在线观看爽| 男插女下体视频免费在线播放| 欧美日韩黄片免| 久99久视频精品免费| 18禁观看日本| 午夜老司机福利片| 好男人电影高清在线观看| av片东京热男人的天堂| 美女黄网站色视频| 老司机深夜福利视频在线观看| 一本一本综合久久| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片女人18水好多| 午夜亚洲福利在线播放| 精品一区二区三区视频在线观看免费| 欧美黄色淫秽网站| 免费高清视频大片| 亚洲自偷自拍图片 自拍| 制服诱惑二区| av在线播放免费不卡| 亚洲av中文字字幕乱码综合| 18美女黄网站色大片免费观看| 午夜福利高清视频| 国产激情久久老熟女| 女生性感内裤真人,穿戴方法视频| 国内精品一区二区在线观看| 一进一出抽搐动态| 一进一出好大好爽视频| 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 日本免费一区二区三区高清不卡| 午夜福利成人在线免费观看| 一进一出好大好爽视频| 国产精品亚洲美女久久久| 国产av又大| 男女午夜视频在线观看| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 国产熟女午夜一区二区三区| 亚洲av成人一区二区三| 欧美又色又爽又黄视频| 亚洲人成伊人成综合网2020| 草草在线视频免费看| 桃色一区二区三区在线观看| 午夜福利欧美成人| 中文在线观看免费www的网站 | 欧美色欧美亚洲另类二区| 国产一区在线观看成人免费| 国产av一区在线观看免费| 国产一区二区在线av高清观看| 在线观看舔阴道视频| 我要搜黄色片| 国产免费男女视频| 一个人观看的视频www高清免费观看 | 久久中文字幕一级| 麻豆成人av在线观看| 最近在线观看免费完整版| 亚洲美女黄片视频| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| a在线观看视频网站| 人妻丰满熟妇av一区二区三区| 动漫黄色视频在线观看| 国产精品免费一区二区三区在线| 一个人免费在线观看电影 | netflix在线观看网站| 成在线人永久免费视频| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 91字幕亚洲| 女人被狂操c到高潮| 亚洲精品色激情综合| 精品久久久久久久久久免费视频| 一个人免费在线观看的高清视频| 亚洲色图av天堂| 最近在线观看免费完整版| 国产成人系列免费观看| 99热这里只有是精品50|