• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved target detection algorithm based on Faster-RCNN

    2024-01-08 09:12:32BAIChenshuaiWUKaijunWANGDicongHUANGTaoTAOXiaomiao

    BAI Chenshuai,WU Kaijun,WANG Dicong,2,HUANG Tao,TAO Xiaomiao

    (1.School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China; 2.College of Intelligence and Computing,Tianjin University,Tianjin 300350,China)

    Abstract:Asymmetric convolution block network is introduced into the Faster-RCNN network model,and it is defined as improved target detection algorithm based on Faster-RCNN.In this algorithm,the convolution kernel of 3×3 in the network model is replaced by the asymmetric convolution block of 1×3+3×1+3×3.Firstly,the residual network ResNet is used as the backbone of the algorithm to extract the feature map of the image.The feature map passes through the convolution kernel block of 1×3+3×1+3×3 and then passes through two convolution kernels of 1×1.Secondly,the regional proposal network (RPN) is used to obtain the suggestion box of shared feature layer,and the suggestion box is mapped to the last feature map of convolution,and the anchor box of different sizes are unified by region of interest (RoI).Finally,the detection classification probability (Softmax loss) and detection border regression (Smooth L1 loss) are used for training.PASCAL_VOC data set is used.The results of mean average precision (mAP) show that the mAP value is increased by 0.38% compared with the original Faster-RCNN algorithm,the mAP value is increased by 2.68% compared with the RetinaNet algorithm,and the mAP value is increased by 3.41% compared with the YOLOv4 algorithm.

    Key words:Faster-RCNN; target detection algorithm; asymmetric convolution block; regional proposal network; regional pooling layer

    0 Introduction

    As one of the basic tasks in the fields of unmanned driving,video monitoring and early warning safety,target detection plays an important role in many researches.Especially in the densely populated places such as railway station,high-speed railway station and airport,the target detection technology is closely related to unmanned driving,video monitoring and security detection,and it is one of the most important research directions in 5G and artificial intelligence.With the rapid development of artificial intelligence and 5G technology,the research direction of using deep learning as target detection has attracted the interests of researchers,which makes deep learning be further developed in the direction of target detection.

    The traditional target detection method is divided into two kinds.One is the sliding window method,which needs to consider the aspect ratio of the object in the design of the window.It increases the complexity of the design,and the robustness and efficiency of hand-designed features are poor.The second target recognition method is based on selective search,which uses image segmentation method to connect the two most similar regions each time (depending on the overlapping degree of color,texture,size and shape),and uses the search box to locate the target in each iteration.In a word,the biggest disadvantage of sliding window is the redundancy of selection box,and selective search can effectively remove the redundant candidate box,greatly reduce the amount of calculation.Now,there are two types of object detection methods based on deep learning.The first one is a two-stage target detection method based on R-CNN,Fast-RCNN,Faster-RCNN,and Mask-RCNN,in which Faster-RCNN firstly generates a series of candidate frames,and then uses convolutional neural network to classify the samples.The second is a one-stage target detection algorithm based on regression represented by SSD,YOLOv3,and YOLOv4,which directly transforms the problem of target frame location into a regression problem instead of generating candidate frames.Because of the difference between the two methods,the performance is also different.The two-stage target detection method has advantages in detection accuracy and positioning accuracy,while the one-stage target detection algorithm has advantages in speed.

    Aiming at the field of driverless vehicle,the pedestrian,bicycle,battery car,pet,traffic signal,road sign and obstacle are studied.Considering the demand of high precision in the driving of unmanned vehicles,two-stage target detection method is more suitable,the original target detection method has been improved and optimized in this paper.Liu et al.[1]proposed a method to accurately learn and extract the characteristics of the rotating region and locate the rotating target.R-RCNN has three important new components,including the rotating RoI pool layer,the rotation regression model and the non maximum suppression (NMS) multitasking method among different classes.Girshick[2]proposed a method based on fast region for convolutional neural network (Fast-RCNN) for target detection.Fast-RCNN can use neural network to classify objects effectively.Ren et al.[3]proposed a Fast-RCNN,a region recommendation network based on candidate regions,which shared complete image features with detection networks[4-10].RPN is a network of regional recommendations,which can predict the target boundary and target score at each location at the same time.After end-to-end training,RPN generates high-quality region suggestion box,which is used in fast RCNN target detection model.RPN is trained from end to end,and high quality area suggestion box is generated,which is used in target detection model Faster-RCNN.Jeremiah et al.[11]proposed a Mask-RCNN target detection algorithm,which was the latest target detection algorithm for natural image target detection,location and instance segmentation.Lu et al.[12]proposed a new Grid-RCNN target detection algorithm.Grid guided positioning mechanism is used to achieve accurate target detection by the framework.Unlike the traditional target detection method based on regression,Grid-RCNN algorithm can capture spatial information clearly and has the position sensitive property of complete convolution structure.Liu et al.[13]proposed a method of SSD to detect the target in image by using a single convolutional neural network.The output space of the boundary frame is discretized into a set of default boxes,which has different aspect ratio and the ratio of each feature map location.Joseph et al.[14]proposed to predict the target score of each bounding box by using logical regression.Alexey et al.[15]used new functions to combine some of excellent algorithms to achieve relatively good results.

    A target detection algorithm is proposed based on the improved target detection algorithm based on faster RCNN.A structure neutral asymmetric convolution block[16]is used as the construction block of convolution kernel,and one-dimensional asymmetric convolution is used to enhance the square convolution kernel.The 3×3 convolution kernel of the basic network structure of the Faster-RCNN algorithm is modified into a (3×3+1×3+3×1) asymmetric convolution block,and the anchor parameters are optimized to improve the coincidence degree between the prior frame and the data set.Although the speed of the algorithm is slowed down,the target detection accuracy of the algorithm is improved.

    1 Target detection of ACBNet+Faster-RCNN

    1.1 ResNet network

    He et al.[17]proposed the residual network ResNet to solve the degradation problem.The basic idea is to provide the residuals of the previous layer to adapt it to the residual mapping,rather than provide an alternative structure[18-19].It is considered that the display of residuals is relatively easy to optimize.And it is easy to set the residuals of the previous layer to zero if the same display is the best compared with the non-linear layer simulation group in extreme cases.A simple execution tag is displayed and added to the stack output as shown in Fig.1.Fast connection can be obtained without any additional parameters or complex calculations.The whole network propagates back through SGD.

    Fig.1 Building block of residual learning

    A reference valuexis established for the input of each layer,and a residual function is formed,which is easier to optimize and can greatly deepen the network layer.In the residual blocks above,there are two layers,as shown in Eq.(1).W1,W2,Wiall represent weight,σrepresents the rectified linear unit (ReLU).Then,outputyis obtained through a shortcut and REeLU as shown in Eq.(2).

    F=W2σ(W1x),

    (1)

    y=F(x,{Wi})+x.

    (2)

    When the dimensions of the input and output need to be changed (such as changing the number of channels),a linear transformationWsofxcan be performed in the shortcut,as shown in Eq.(3).

    y=F(x,{Wi})+Wsx.

    (3)

    Fig.2 shows the network structure of resnet50.It is divided into five stages.In practical application,considering the computational cost,the remaining residual blocks are optimized,that is,the two convolution kernels (3×3) are replaced by asymmetric convolution blocks (1×1+3×3+1×1).

    Fig.2 ResNet network architecture

    In the new structure,the middle convolution layer (3×3) first reduces the computational complexity to the convolution layer (1×1),and then reverts to another convolution layer (1×1).The accuracy of the precision is maintained and the computational complexity is reduced.The first 1×1 convolution kernel compresses the channel of 256 into 64,which is then restored by 1×1 convolution.

    Tears came to my eyes as I realized what I had been a fool to judge Al as a failure. He had not left any material possessions behind. But he had been a kind loving father, and left behind his best love.

    1.2 Region proposal network

    After inputting the feature map into the network,a series of convolution kernels and ReLU×39×256-dimensional feature map are used to get the anchor points,and then used to select the scheme[20-23].Anchor points are generated,and the anchor point is a fixed size.Each point of the feature map is mapped back to the center point of the receptive field of the original image as the reference point,and thenKanchor points of different sizes and proportions around the reference points are selected.As shown in Fig.3,K=9 anchor points are generated at each slide position by using 3 ratios and 3 aspect ratios.Multiple region suggestions can be predicted by each feature point on the feature map.For example,the number of pixels of 51×51 is generated on the feature graph of 39×39×9 candidate boxes.

    As shown in Fig.3,nine candidate boxes are generated for a pixel at a certain position in the feature map.There are 256 channel feature mappings in the input RPN,and different 3×3 sliding windows are used to obtain the convolution value of the pixels in each channel at the same time.Finally,the convolution values of the pixels in each channel are added to obtain a new feature value.The 256-dimensional vector corresponds to two branches.One branch is the classification of the target and the background.The number of candidate boxes of 2K×18 and 256×18Kobtained through the 1×1 convolution kernel is 9.If the candidate frame is the target area,the position of the candidate frame in the target area needs to be determined.The other branch uses the 1×1 convolution kernel to get coordinates of 4K×1×256×36.Each box contains four coordinates (x,y,w,h),which is specific position.If the candidate frame is not the target area,the candidate frame is directly deleted without judging the subsequent position information.

    Classification branch:All anchor points of each image in the training set (including manual calibration) are divided into positive samples and negative samples.

    1) For each calibrated area,the anchor point with the largest overlap rate is recorded as a positive sample to ensure that each anchor point corresponds to at least one positive sample.

    2) For the remaining anchors,if the overlap ratio with the calibration area exceeds 0.7,it is recorded as a positive sample (each can correspond to multiple positive sample anchors).If the overlap ratio of any calibration is less than 0.3,it is recorded as a negative sample.

    Regression branch is shown in Eqs.(4)-(7).

    (4)

    (5)

    (6)

    (7)

    wherex,y,w,hrepresent the center coordinates and width and height of the box;x,xa,x*represent predicted box,anchor box and ground truth box;y,ya,y*represent predicted box,anchor box and ground truth box;w,wa,w*represent predicted box,anchor box and ground truth box;h,ha,h*represent predicted box,anchor box and ground truth box;trepresents the offset of the predict box relative to the anchor box;t*represents the offset of the ground true box relative to the anchor box.The learning goal is to make the former close to the value of the latter.

    In the middle of RPN,“cls” and “reg” respectively perform various calculations on these anchor points as shown in Eqs.(8)-(11).At the end of RPN,the initial screening (first remove the out-of-bounds anchor points,and then remove the duplication through the non-maximum suppression algorithm based on the classification results) and the initial offset (according to the regression result) of anchor points are realized by summarizing the results of the two branches.At this point,the output of box becomes proposal.

    The offset formulas are shown as Eqs.(8)-(11).

    (8)

    (9)

    (10)

    (11)

    Because anchor points usually overlap,suggestions for the same object will also overlap.In order to solve the problem of overlapping solutions,the NMS algorithm is adopted.If the intersection over union (IoU) between the two solutions is greater than a preset threshold,the solution with a lower score will be discarded.

    If the IoU value is too small,some objects may be lost.If the IoU value is too large,many objects may appear.The typical value of IoU is 0.6.After NMS treatment,the firstnrecommendations are sorted.

    1.3 Asymmetric convolution block

    Three parallel cores are used to replace the original cores by asymmetric convolution (AC) net,as shown in Fig.4.

    Fig.4 Overview of ACNet[16]

    Given a network,each squared convolution kernel is replaced by an ACB module and trained to convergence.Then the weights of the asymmetric core in each ACB are added to the corresponding position of the square core,and ACNet is transformed into the equivalent structure of the original network.ACNet can improve the performance of the benchmark model and has obvious advantages in PASCAL_VOC 2007 data.In addition,ACNet introduces 0 parameter,which can be combined with different CNN structures without adjusting the parameters carefully,and it is easy to implement on the mainstream CNN framework without additional inference time overhead.

    1.4 Improved Faster-RCNN algorithm

    An improved target detection algorithm based on Faster-RCNN is proposed.

    Step 1:Use the backbone feature of the backbone network ResNet to extract the Network and obtain a shared feature map.

    Step 2:Pass the shared feature map through an asymmetric convolution block,and then pass two (1×1 convolution kernel).

    Step 3:Use RPN to generate a bunch of anchor frames first,cut and filter,and then use SoftMax to determine whether the anchor is the foreground or the background.

    Step 4:Map the recommendation window to the convolution feature map of the last layer of the convolution kernel,and generate a fixed-size feature map for each RoI through the RoI pooling layer.

    Step 5:Use softmax loss function andL1smooth loss function for classification and regression,respectively.

    2 Experiment

    2.1 Experimental environment and datasets

    The experimental environment platform built in this paper has computer configuration i5-8250CPU,8 GRAM,64 bit windows 10 operating system and server configuration GeforceRTX2080×4.This algorithm is implemented on the basis of Faster-RCNN.The data is from PASCAL_VOC 2007,and 5 011 photos of different time,place and light are selected.Labelimg software is used to label the target in the image,and the XML file in VOC format is obtained as the label of the target detection datasets.

    2.2 ACBNet+Faster-RCNN target detection algorithm

    The model training process is divided into two iterations.In the first iteration,the parameter value of Batch_Size is 2,the parameter value of initial learning rate is 0.000 1,and the parameter value of epoch is 50.In the second iteration,the Batch_Size is set to 2,the initial learning rate is 0.000 01 and the epoch is set to 50.

    2.2.1 Mean average precision value

    For deep learning target detection algorithm,the detection accuracy of detection algorithm is very important.The mean average precision (mAP) is selected as the evaluation index.AP actually refers to the area under the curve drawn by using the combination of different precision and recall points.When different confidence levels are taken,different precision and recall are gotten.When enough confidence levels dense is obtained,a lot of precision and recall can be gotten.mAP is the average of AP values of all classes.The experimental results of mAP value are shown in Fig.5.

    (a) Faster-RCNN algorithm

    As shown in Fig.5,the experimental results of mAP of numerical indicators obtained by all methods are presented.The abscissa in Fig.5 is the AP value of a single class.There are 20 classes tested in this experiment.The ordinate is all the classes corresponding to this target detection.The top of each sub graph is the mAP value of each algorithm.From the mAP value at the top of each graph,it can be seen that the mAP numerical results obtained by proposed method are excellent compared with the other three algorithms.The most special one is that the mAP value is increased by 0.38% on the basis of the original Faster-RCNN algorithm.Compared with the RetinaNet algorithm,the mAP value of proposed method is increased by 3.02%.Compared with the YOLOv4 algorithm,the mAP value of proposed method is increased by 3.75%.It further shows that the proposed algorithm plays a good role in the process of target detection.

    2.2.2 Log average miss rate (LAMR)

    The target detection algorithms of deep learning are generally evaluated by the relationship curve between miss rate (MR) and average false positive per image (FPPI).In this paper,the logarithm mean value of MR when the logarithm of FPPI in the interval[0.01,100]is used as the evaluation standard of data,which is called LAMR for short.The experimental results of LAMR value are shown in Fig.6.

    (a) Faster-RCNN algorithm

    As shown in Fig.6,the experimental results of numerical index LAMR obtained by all methods are presented.The abscissa in Fig.6 is the MR value of a single class,and the ordinate is all the classes corresponding to this target detection.There are 20 classes in this experiment.LAMR refers to the logarithm average miss detection rate.So the smaller the experimental result of each class,the better the algorithm performance.The LAMR value of miss detection rate shown in Fig.6(a) is less than that of the comparison algorithm in Fig.6(b) and 6(c) among the 20 classes detected,especially the proposed algorithm is improved on the basis of the original algorithm.In the 20 experimental classes,the value of miss detection rate shown in Fig.6(d) is less than that of the original algorithm shown in Fig.6(a),which shows that the proposed algorithm has achieved good results in the process of target detection once again.

    3 Conclusions

    An asymmetric network block is proposed,which is further combined with the algorithm of Faster-RCNN,so that the 3×3 convolution core is replaced by (1×3+3×1+3×3) convolution core.Without adding any model parameters,the mAP value of the algorithm target detection is improved,the LAMR value of the algorithm target detection is reduced,the detection rate is improved and the stability of the algorithm is enhanced compared the improved algorithm with the original algorithm.

    Although relatively good results has been achieved in VOC2007 dataset,there are still two shortcomings in the application of this algorithm in target detection.Firstly,this algorithm is modified on the basis of Faster-RCNN algorithm,which makes the complexity of the algorithm model increase.Secondly,the applicability of this algorithm is very weak.If the model is applied to remote sensing images,railway images or high real-time scenes,its effect is not good.It can be considered to optimize the model,analyze the application scenarios of the target detection algorithm,eliminate the redundancy of the model,adjust the training parameters,and improve the performance of the target detection algorithm,so as to further improve the object detection algorithm based on deep learning in the next step.

    亚洲自拍偷在线| 亚洲中文字幕日韩| 大码成人一级视频| 黑人猛操日本美女一级片| 国产欧美日韩精品亚洲av| 亚洲熟女毛片儿| 麻豆成人av在线观看| 757午夜福利合集在线观看| av国产精品久久久久影院| 亚洲在线自拍视频| 欧美最黄视频在线播放免费 | www日本在线高清视频| 欧美人与性动交α欧美软件| a级毛片黄视频| 亚洲欧美日韩另类电影网站| 亚洲三区欧美一区| 中文亚洲av片在线观看爽| 欧美日韩黄片免| 国产无遮挡羞羞视频在线观看| 91在线观看av| 欧美黑人精品巨大| 国产真人三级小视频在线观看| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 黄频高清免费视频| 露出奶头的视频| 男女下面进入的视频免费午夜 | 夜夜看夜夜爽夜夜摸 | 丰满饥渴人妻一区二区三| 国产99白浆流出| www.自偷自拍.com| 亚洲五月色婷婷综合| 精品无人区乱码1区二区| xxx96com| 欧美精品亚洲一区二区| 1024香蕉在线观看| 日韩大码丰满熟妇| 怎么达到女性高潮| 黑人巨大精品欧美一区二区蜜桃| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 成在线人永久免费视频| 精品无人区乱码1区二区| 很黄的视频免费| 狠狠狠狠99中文字幕| svipshipincom国产片| 视频区图区小说| 母亲3免费完整高清在线观看| 精品乱码久久久久久99久播| 亚洲av电影在线进入| 99精国产麻豆久久婷婷| 亚洲黑人精品在线| 成人手机av| 99riav亚洲国产免费| 男人的好看免费观看在线视频 | 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| 激情在线观看视频在线高清| 精品国内亚洲2022精品成人| 国产成人欧美| 曰老女人黄片| 久久人人爽av亚洲精品天堂| 成人精品一区二区免费| 一本大道久久a久久精品| 成人精品一区二区免费| 老司机深夜福利视频在线观看| 最新在线观看一区二区三区| cao死你这个sao货| 免费在线观看完整版高清| 国产欧美日韩精品亚洲av| 欧美成人性av电影在线观看| 日韩大码丰满熟妇| 97超级碰碰碰精品色视频在线观看| 欧美久久黑人一区二区| 精品国产乱子伦一区二区三区| 无限看片的www在线观看| 亚洲自偷自拍图片 自拍| 制服人妻中文乱码| 亚洲av片天天在线观看| 国产无遮挡羞羞视频在线观看| 亚洲片人在线观看| 男女床上黄色一级片免费看| 天堂√8在线中文| 国产伦人伦偷精品视频| 日韩大码丰满熟妇| 欧美一级毛片孕妇| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 麻豆一二三区av精品| 女警被强在线播放| 久久久久国内视频| 久久人妻熟女aⅴ| 免费女性裸体啪啪无遮挡网站| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 80岁老熟妇乱子伦牲交| 波多野结衣一区麻豆| 精品国产乱子伦一区二区三区| 亚洲一区二区三区色噜噜 | 午夜精品在线福利| 精品国产国语对白av| av中文乱码字幕在线| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 午夜两性在线视频| 亚洲精品国产精品久久久不卡| 无人区码免费观看不卡| 免费日韩欧美在线观看| a级片在线免费高清观看视频| 成人手机av| 一级毛片精品| 国产又爽黄色视频| 国产色视频综合| 怎么达到女性高潮| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91| 午夜成年电影在线免费观看| 悠悠久久av| 久久久国产精品麻豆| 亚洲一区高清亚洲精品| 国产视频一区二区在线看| 成人手机av| 在线观看免费日韩欧美大片| 欧美日韩黄片免| 老汉色∧v一级毛片| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区三| 国产一区二区三区在线臀色熟女 | 一级毛片女人18水好多| 欧美精品亚洲一区二区| 在线免费观看的www视频| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 欧美黑人欧美精品刺激| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 又黄又粗又硬又大视频| 国产高清激情床上av| 超色免费av| 在线观看免费高清a一片| 亚洲自拍偷在线| a级毛片在线看网站| xxx96com| 美女大奶头视频| 夜夜爽天天搞| 两人在一起打扑克的视频| 日韩有码中文字幕| 亚洲av成人av| 性色av乱码一区二区三区2| 欧美激情高清一区二区三区| 精品熟女少妇八av免费久了| 黄色丝袜av网址大全| xxx96com| 好看av亚洲va欧美ⅴa在| 悠悠久久av| 人人妻人人爽人人添夜夜欢视频| 精品福利永久在线观看| 一级片'在线观看视频| 国产精品98久久久久久宅男小说| 两个人免费观看高清视频| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 一进一出抽搐gif免费好疼 | 老司机在亚洲福利影院| 久久精品人人爽人人爽视色| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 久久久久久大精品| xxx96com| 免费看a级黄色片| 国产精品久久视频播放| 搡老熟女国产l中国老女人| av视频免费观看在线观看| 麻豆国产av国片精品| 国产亚洲精品一区二区www| 精品人妻在线不人妻| 欧美日韩视频精品一区| 一本综合久久免费| 亚洲熟妇熟女久久| 多毛熟女@视频| 999精品在线视频| 亚洲九九香蕉| 黄色怎么调成土黄色| 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说| 热re99久久国产66热| 国产又色又爽无遮挡免费看| 精品久久久久久电影网| 国产99白浆流出| 免费观看人在逋| av天堂久久9| 嫩草影视91久久| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 午夜福利一区二区在线看| 久99久视频精品免费| 岛国在线观看网站| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 亚洲自拍偷在线| 一区二区三区精品91| 亚洲av成人一区二区三| 国产精品二区激情视频| 高清av免费在线| 老汉色∧v一级毛片| 美女高潮到喷水免费观看| 男女之事视频高清在线观看| 婷婷精品国产亚洲av在线| 午夜影院日韩av| 99精品欧美一区二区三区四区| 成人手机av| 成人国语在线视频| 人妻丰满熟妇av一区二区三区| 九色亚洲精品在线播放| 欧美av亚洲av综合av国产av| 国产精品爽爽va在线观看网站 | 国产片内射在线| 桃色一区二区三区在线观看| 日本a在线网址| 国产精品久久视频播放| 大码成人一级视频| 亚洲午夜理论影院| 妹子高潮喷水视频| 午夜免费观看网址| 制服诱惑二区| 欧美性长视频在线观看| 天堂动漫精品| svipshipincom国产片| 久久久久亚洲av毛片大全| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 亚洲国产欧美网| 丰满的人妻完整版| 大码成人一级视频| av中文乱码字幕在线| 国产精品成人在线| 老司机在亚洲福利影院| 香蕉丝袜av| 人人妻人人添人人爽欧美一区卜| 日韩欧美一区视频在线观看| 中文欧美无线码| 国产高清国产精品国产三级| tocl精华| 亚洲av第一区精品v没综合| 最近最新中文字幕大全免费视频| 日韩一卡2卡3卡4卡2021年| 怎么达到女性高潮| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 丰满迷人的少妇在线观看| 日韩精品青青久久久久久| 一夜夜www| 人妻久久中文字幕网| 欧美日韩精品网址| 一二三四在线观看免费中文在| 久久热在线av| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 女生性感内裤真人,穿戴方法视频| 亚洲人成电影免费在线| 看片在线看免费视频| 99久久人妻综合| 国产伦人伦偷精品视频| 老司机福利观看| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看 | 亚洲国产欧美一区二区综合| 自拍欧美九色日韩亚洲蝌蚪91| 国产乱人伦免费视频| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影| 丰满迷人的少妇在线观看| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 在线观看www视频免费| 日日干狠狠操夜夜爽| 成人精品一区二区免费| 长腿黑丝高跟| 黑人欧美特级aaaaaa片| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看| 新久久久久国产一级毛片| 青草久久国产| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 免费av中文字幕在线| 99国产精品99久久久久| 在线av久久热| 国产在线精品亚洲第一网站| 在线观看www视频免费| 天堂动漫精品| 免费在线观看亚洲国产| 高清欧美精品videossex| 在线观看一区二区三区| 高清毛片免费观看视频网站 | 50天的宝宝边吃奶边哭怎么回事| 美国免费a级毛片| 天天影视国产精品| 日韩人妻精品一区2区三区| 黑人欧美特级aaaaaa片| 大型黄色视频在线免费观看| 日韩视频一区二区在线观看| 多毛熟女@视频| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 国产精品一区二区在线不卡| av欧美777| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| 国产av又大| 国产精品亚洲一级av第二区| 久久精品成人免费网站| 欧美日韩瑟瑟在线播放| 黄频高清免费视频| 超碰成人久久| 狠狠狠狠99中文字幕| 欧美乱码精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 99久久99久久久精品蜜桃| 久久精品影院6| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 成人亚洲精品av一区二区 | 精品久久久久久成人av| 国产xxxxx性猛交| 夜夜夜夜夜久久久久| 自线自在国产av| 国产av又大| 夜夜看夜夜爽夜夜摸 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 国产精华一区二区三区| 精品国产亚洲在线| 如日韩欧美国产精品一区二区三区| 一级a爱视频在线免费观看| 久久人妻熟女aⅴ| 久久精品国产综合久久久| 五月开心婷婷网| 国产精品电影一区二区三区| 亚洲久久久国产精品| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 亚洲情色 制服丝袜| 搡老岳熟女国产| 国产欧美日韩一区二区精品| 黑人操中国人逼视频| 色尼玛亚洲综合影院| 亚洲精品中文字幕在线视频| 久久久久久久精品吃奶| 99久久99久久久精品蜜桃| 午夜福利,免费看| 色尼玛亚洲综合影院| 一级a爱片免费观看的视频| 女警被强在线播放| 欧美乱色亚洲激情| 男女做爰动态图高潮gif福利片 | 黄网站色视频无遮挡免费观看| 国产一区二区三区综合在线观看| 国产极品粉嫩免费观看在线| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人下体高潮全视频| 免费看十八禁软件| 免费在线观看日本一区| av天堂在线播放| 人成视频在线观看免费观看| 成人18禁高潮啪啪吃奶动态图| 在线观看66精品国产| 国产蜜桃级精品一区二区三区| 久久中文字幕一级| 久久精品亚洲av国产电影网| 美女 人体艺术 gogo| www国产在线视频色| netflix在线观看网站| 亚洲精品中文字幕在线视频| 一区福利在线观看| 日韩欧美免费精品| 日韩有码中文字幕| 亚洲情色 制服丝袜| 中文亚洲av片在线观看爽| 日本 av在线| 一夜夜www| 成人三级黄色视频| 91精品国产国语对白视频| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 亚洲av成人不卡在线观看播放网| 久久这里只有精品19| 亚洲精品在线观看二区| 性欧美人与动物交配| 亚洲国产精品999在线| 精品欧美一区二区三区在线| 亚洲片人在线观看| 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| 久久青草综合色| 久久精品影院6| 可以在线观看毛片的网站| 啦啦啦 在线观看视频| 丁香六月欧美| 91成年电影在线观看| 国产亚洲精品综合一区在线观看 | 91老司机精品| av有码第一页| av电影中文网址| 男女之事视频高清在线观看| 国产精品99久久99久久久不卡| 最近最新免费中文字幕在线| 中文亚洲av片在线观看爽| 久久九九热精品免费| 成人av一区二区三区在线看| 日韩一卡2卡3卡4卡2021年| 精品电影一区二区在线| 这个男人来自地球电影免费观看| 超碰成人久久| 欧美日韩亚洲综合一区二区三区_| 免费观看精品视频网站| 午夜福利一区二区在线看| 日本vs欧美在线观看视频| 久久国产精品影院| 欧美黑人欧美精品刺激| 高清在线国产一区| 丝袜在线中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| 久久久久九九精品影院| 免费日韩欧美在线观看| 十八禁网站免费在线| 免费av中文字幕在线| 国产不卡一卡二| 国产97色在线日韩免费| www.自偷自拍.com| 欧美日韩视频精品一区| 午夜两性在线视频| 1024香蕉在线观看| 亚洲avbb在线观看| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 国产高清videossex| 丁香欧美五月| 欧美丝袜亚洲另类 | 久久香蕉激情| 亚洲中文字幕日韩| 国产精品 国内视频| 在线十欧美十亚洲十日本专区| 日韩三级视频一区二区三区| 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 丝袜人妻中文字幕| 久久精品亚洲熟妇少妇任你| 视频区欧美日本亚洲| 校园春色视频在线观看| 国产av在哪里看| 国产成人一区二区三区免费视频网站| 国产91精品成人一区二区三区| 香蕉国产在线看| av片东京热男人的天堂| 丝袜在线中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久中文| 午夜免费观看网址| 国产激情久久老熟女| 丁香欧美五月| 国产精品亚洲av一区麻豆| 三上悠亚av全集在线观看| 久久精品成人免费网站| 午夜91福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 深夜精品福利| 一级片'在线观看视频| 亚洲精品一区av在线观看| tocl精华| 亚洲成人免费电影在线观看| cao死你这个sao货| 国产精品免费视频内射| 麻豆国产av国片精品| 亚洲美女黄片视频| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区综合在线观看| 美国免费a级毛片| 亚洲精华国产精华精| 每晚都被弄得嗷嗷叫到高潮| 国产单亲对白刺激| 在线免费观看的www视频| 美女福利国产在线| 精品福利永久在线观看| 国产高清视频在线播放一区| 中出人妻视频一区二区| 美女高潮喷水抽搐中文字幕| 91九色精品人成在线观看| 69av精品久久久久久| 亚洲精品在线美女| 桃色一区二区三区在线观看| 精品国产美女av久久久久小说| 两个人看的免费小视频| 亚洲狠狠婷婷综合久久图片| 国产精品1区2区在线观看.| 午夜精品久久久久久毛片777| 欧美日本亚洲视频在线播放| 正在播放国产对白刺激| 免费高清在线观看日韩| 高清欧美精品videossex| 久久中文字幕一级| 国产熟女xx| 露出奶头的视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲人成77777在线视频| 亚洲av片天天在线观看| 日韩视频一区二区在线观看| 我的亚洲天堂| 99热只有精品国产| 夜夜躁狠狠躁天天躁| a级片在线免费高清观看视频| 午夜成年电影在线免费观看| 在线观看一区二区三区激情| 国产国语露脸激情在线看| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 亚洲中文日韩欧美视频| 嫩草影院精品99| 欧美精品啪啪一区二区三区| 十八禁网站免费在线| 免费av中文字幕在线| 99久久99久久久精品蜜桃| 国产又色又爽无遮挡免费看| 丰满人妻熟妇乱又伦精品不卡| 国产主播在线观看一区二区| 国产精品 欧美亚洲| 精品国产美女av久久久久小说| xxx96com| 久久精品影院6| 黄色怎么调成土黄色| 91精品三级在线观看| xxx96com| 岛国视频午夜一区免费看| 久久国产精品人妻蜜桃| 9色porny在线观看| 亚洲国产看品久久| 老司机午夜福利在线观看视频| 国产又色又爽无遮挡免费看| 欧美日韩亚洲国产一区二区在线观看| 欧美在线黄色| 国产激情久久老熟女| 亚洲精品一二三| 精品第一国产精品| 欧美老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 美女午夜性视频免费| 久久久久国产一级毛片高清牌| www.自偷自拍.com| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 男人操女人黄网站| 日本免费一区二区三区高清不卡 | 亚洲av熟女| 99久久久亚洲精品蜜臀av| 熟女少妇亚洲综合色aaa.| 国产成年人精品一区二区 | 成人手机av| 一级a爱片免费观看的视频| 精品国产乱子伦一区二区三区| 18禁美女被吸乳视频| 12—13女人毛片做爰片一| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩精品亚洲av| 老熟妇乱子伦视频在线观看| 一进一出抽搐动态| 日韩欧美一区二区三区在线观看| 搡老熟女国产l中国老女人| 在线观看免费日韩欧美大片| 美女大奶头视频| 中文字幕av电影在线播放| 亚洲国产欧美一区二区综合| 国产av在哪里看| 久久人人爽av亚洲精品天堂| 免费观看人在逋| 亚洲成人久久性| 丰满人妻熟妇乱又伦精品不卡| 免费高清在线观看日韩| 精品国产亚洲在线| 欧美成人免费av一区二区三区| 19禁男女啪啪无遮挡网站| 久久国产精品影院| 国产区一区二久久| 丰满的人妻完整版| 无限看片的www在线观看| 中文字幕人妻熟女乱码| 国产免费av片在线观看野外av| 一本综合久久免费| 久9热在线精品视频| 国产蜜桃级精品一区二区三区| 精品久久久精品久久久| 欧美色视频一区免费| 亚洲国产看品久久| 国产亚洲精品综合一区在线观看 | 欧美一区二区精品小视频在线| 日本三级黄在线观看| 日韩欧美免费精品|