• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electro-hydraulic servo force loading control based on improved nonlinear active disturbance rejection control

    2024-01-08 09:11:32LIXiaoyuanGULichenGENGBaolongCHENGDonghongZHANGBenben

    LI Xiaoyuan,GU Lichen,GENG Baolong,CHENG Donghong,ZHANG Benben

    (School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)

    Abstract:The transient and dynamic loading accuracy of the valve controlled cylinder force loading system of the undercarriage actuator cylinder wear and life experiment platform is low,which cannot meet the accuracy requirements of the load spectrum,thus affecting the safety and reliability judgment of the actuator.An improved nonlinear active disturbance rejection control (INADRC) algorithm with higher accuracy and anti-interference ability is proposed based on control algorithm.First,the AMESim/Simulink co-simulation model of the electro-hydraulic servo force loading system is established.Secondly,in order to optimize its parameters,the INADRC controller is designed,and the genetic particle swarm algorithm is used.Finally,the performance of the controller is verified by simulating and experiment with three target signal tracking.The simulation and experimental results show that compared with PID control,nonlinear ADRC (NADRC) and other improved nonlinear ADRC (ONADRC),the average accuracy of the INADRC is improved by 4.15%,1.15% and 0.65%,which reflects the characteristics of high servo force transient,dynamic loading accuracy and strong anti-interference ability.

    Key words:undercarriage actuator cylinder; valve-controlled cylinder system; nonlinear active disturbance rejection control; genetic particle swarm optimization; electro-hydraulic servo force loading control

    0 Introduction

    Aircraft undercarriage system is one of the key systems of aircraft.Many accidents caused by landing gear system failure are fatal,such as failure of the landing gear actuator,the landing gear cannot be put down,and so on.Therefore,the reliability and safety of the aircraft landing gear actuator is essential.The key to judge the reliability and safety of the actuator is to carry out the electro-hydraulic servo force loading experiment.

    Electro-hydraulic servo system is a typical non-linear system.The parameters of the system are time-varying and uncertain.With the change of working conditions,the internal and external leakage and other external interference make the dynamic characteristics of the system more complex[1].The time-varying and nonlinear characteristics of the loading system must be considered to ensure the control accuracy and repeatability of the loading process.Although the traditional control algorithms such as PID and fuzzy control can basically meet the output requirements of the loading system,the accuracy,rapidity,and even stability of some nonlinear and time-varying control scenarios will be degraded to varying degrees.It is difficult to achieve the expected control effect.For example,in order to control the loading accuracy of the landing gear actuator life experiment platform to meet the requirements,it must be considered that the performance and operating parameters of the loading system components will change in varying degrees with the fatigue loading process of the system,and the unreasonable control parameters will lead to the decline of the control accuracy of the system.

    How to obtain better control quality has been extensively and deeply carried out.The controller of the loading system was designed based on the quantitative feedback theory (QFT),which solved the nonlinear problem caused by the rotation disturbance of the industrial CT hydraulic system,improved the dynamic characteristics of the system,and made it meet the requirements of dynamic loading of the rock samples[2].Several improved PID algorithms were tested[3].The results showed that the integral separation nonlinear PID controller could make the system response fast and there was no overshoot.Sliding mode control was introduced into the backstepping controller,which reduced the interference sensitivity of the system and improved the anti-interference tracking performance of the electro-hydraulic servo system[4].A control strategy combining feedforward inverse model with robust control was proposed,which improved the tracking performance of force control in flight simulator[5].A nonlinear robust double closed-loop control strategy was developed,which effectively suppressed the nonlinear and friction factors in the process of hydraulic cylinder movement,and improved the quality of system force control[6].A motion synchronization compound decoupling method was proposed to realize the multi-channel force control of the aircraft structural load testing machine[7].

    These methods have achieved good control effect,but they rely too much on the system model or need much model information.In 1998,Han Jingqing proposed the active disturbance rejection control (ADRC) without precise model.In 2003,Gao Zhiqiang simplified the nonlinear ADRC (NADRC) to the linear ADRC (LADRC),which promoted the engineering application and popularization of ADRC.At present,the deficiency of regulation ability has been exposed in some occasions for LADRC such as large time-delay system.LADRC can almost be regarded as a special case of NADRC.Therefore,NADRC has more freedom and possibility than LADRC,so it must also have better adaptability[8].

    In recent years,the application of NADRC has developed rapidly.Sun Bin applied NADRC system to permanent magnet motor speed regulation system,which effectively improved the anti-interference ability and tracking accuracy of the system and had good dynamic and static characteristics[9].Wang Gaolin applied NADRC controller to the direct drive permanent magnet traction system[10].The experiment showed that it could effectively reduce the reverse slip distance and speed in the starting process of elevator.Yao Fang designed the electric vehicle electronic parking NADRC controller,which was verified that the designed control scheme had strong robustness to internal and external disturbances in the parking process,and could realize fast and effective braking in the parking process[11].Shi Jia applied the designed NADRC control algorithm to the four rotor UAV and achieved good control results in the flight test with large eccentric load and strong interference with uncertain direction[12].

    According to the working load characteristics of the landing gear actuator,a new type offalfunction is used to construct an improved nonlinear extended state observer (INESO) for real-time state estimation and external disturbance rejection compensation of the actuator experiment platform loading system,which overcomes the time-varying and nonlinear characteristics of the electro-hydraulic loading system.The tracking control of high precision electro-hydraulic servo force loading system is realized.

    1 Design of INADRC controller

    The basic structure of INADRC is shown in Fig.1.INESO is used to estimate the state and disturbance information of the system in real time for INADRC.Nonlinear state error feedback (NLSEF) is used to realize the state feedback of nonlinear state and disturbance,so as to restore the controlled object full of disturbance,uncertainty and nonlinearity to the standard integral series type.The active disturbance suppression and reduction are realized.

    Fig.1 Basic structure of INADRC

    1.1 Improved nonlinear extended state observer

    INESO is the core part of INADRC,which is used to solve the core problem of disturbance observation in active disturbance rejection technology.The basic idea is to expand the total disturbance into a new state variable of the system,and then use the input and output of the system to reconstruct all the states including the original state variable and disturbance of the system.The INESO does not depend on the model that generates the disturbance,nor does it need direct measurement to observe the disturbance and get the estimated value.

    1.1.1 Newfalfunction

    The traditionalfalfunction is shown in Eq.(1).The second linear term is slower than the first nonlinear term near the origin.It also shows that the nonlinear term can better achieve “small error amplification” in this interval.In the interval far from the origin,the linear term converges faster than the nonlinear term.As a whole,it shows that there is room for improvement in the convergence performance of the traditionalfalfunction[13].

    (1)

    The new type offalfunction is shown in Eq.(2),and satisfies the properties 1) and 2).

    (2)

    1.1.2 Improved nonlinear extended state observer

    The discrete form of the INESO is shown in Eq.(3),and satisfies the properties 1)-3).

    2) If 0<β1<β2<β3<1,λ1>0,λ2>0,λ3>0 and other parameters are the same,the NESO ofC(ε1,β1) is faster than the NESO ofC(ε1,β2).

    3)C(ε,β) instead offal(s,β,δ) does not change the stability and convergence of NESO and speeds up the convergence of NESO.

    (3)

    whereλ1,λ2,λ3are determined by the sampling step of the system,and they can be the same;b1is approximately equal tob0.

    1.2 Tracking differentiator

    Tracking differentiator (TD) is used to solve the problem of reasonable extraction of the continuous signals and the differential signals from discontinuous or random noise measurement signals to improve control quality and simplify controller design.It is shown as

    (4)

    whereris the control gain determined by the transition process;h0is an integer multiple of the sampling periodh.

    1.3 Nonlinear state error feedback

    The specific form offhanis shown as Eq.(5).The three signals of error,error differential,and error integral generated by TD are combined to form NLSEF,in the form of Eq.(6).

    (5)

    (6)

    wherecis the damping factor;h1is the precision factor.

    1.4 Disturbance compensation

    Disturbance compensation forms the control quantity,shown as

    (7)

    whereb0is the compensation factor.

    2 INADRC controller parameter setting

    There are as many as 12 control parameters in the general form of INADRC,and as many as 8 even after being simplified.The current parameter setting mainly includes the empirical trial and error method and the artificial intelligence method.The ordinary empirical trial and error method is complex,time-consuming,laborious and subjective.It is difficult to guarantee its control accuracy and system stability.Therefore,the artificial intelligence method has a huge advantage in parameter tuning.The genetic algorithm particle swarm optimization (GAPSO) will be used to optimizea,b,β,h0,c,r,h1,b0in the controller.

    2.1 Genetic particle swarm algorithm

    Particles warm optimization (PSO) is widely used in fields such as multi-objective function optimization,system configuration,transportation and water conservancy systems because of its simple program and easy implementation.Each particle in the algorithm is a set of solutions.Through comparison among the particles,the fitness value is used to judge the pros and cons of the particles.First,a particle swarm is randomly generated in the feasible solution space,and each particle represents a feasible solution.The particle characteristics are represented by position,speed and fitness value.During the operation of the algorithm,the particles continuously move to the optimal position,that is the optimal position of the fitness value.During the iteration process,the particles update its speed and position through

    (8)

    (9)

    wherekis the current iteration number;ωis the inertia weight;c1andc2are acceleration factors;r1andr2are random numbers between[0,1];vidis the particle’sd-th dimensional velocity,which is in the interval[vmin,vmax];Xidis thed-th dimensional position of the particle,which is in the interval[Ld,Ud];Pidis the position of the individual extreme value; andPgdis the position of the group extreme value.

    The particle swarm algorithm updates the position of the particles by tracking the extreme value,but the particles tend to be similar in the process of continuous iteration,which is easy to fall into the local optimum.In order to improve the traditional particle swarm algorithm,the crossover and mutation operations of the genetic algorithm are introduced into the particle swarm algorithm to form the GAPSO.In GAPSO,the fitness value of all particles is first calculated,and all particles are sorted according to their fitness value.After the sorting is completed,the particles whose fitness value is worse than the average fitness value of the particles are discarded.Then the crossover operation is performed.The remaining particles with better fitness are randomly crossed with the individual extreme value or the group extreme value to obtain new particles,until the size of the particle swarm is restored to the original number.The position of the new particle can be obtained by[14]

    (10)

    (11)

    whereYtdis the position of the new particle generated by the crossover operation; andr3is a random number between[0,1].

    The mutation operation mutates the particle itself,and the better the fitness value of the particle,the smaller the probability of mutation.Assign a random number within[0,1]to the positions of all particles in each dimension.When the random number corresponding to thed-dimensional positionXidof the particle is less than the mutation probability value corresponding to the particle,the mutation operation ofXidis performed by

    (12)

    Integral of time multiplied by the absolute value of error (ITAE) is selected to calculate the fitness value of particles,and its definition is

    (13)

    wheree(t) is the error signal.

    The main parameters of GAPSO are shown in Table 1.

    Table 1 GAPSO parameters

    2.2 GAPSO realization process

    The implementation process of GAPSO is as follows,and the flowchart is shown in Fig.2.

    Fig.2 GAPSO algorithm flow

    1) Initialize the particle swarm.Determine the size of the particle swarm,the upper and lower limits of the particle position interval,the maximum number of iterations,and the minimum fitness value,etc.

    2) Calculate the fitness value of all particles.

    3) Compare the fitness value of each particle with the fitness value corresponding to the optimal position that the particle itself has experienced.If it is better,the current position of the particle is set to the new individual extreme value.If the optimal fitness value of the particle swarm is better than the fitness value corresponding to the population extremum,the particle position corresponding to the optimal fitness value is set as the new population extremum.

    4) Perform crossover and mutation operations on particle swarms

    5) If the current iteration number exceeds the set maximum iteration number,or the population optimal particle fitness value is less than the minimum fitness value,the algorithm ends,otherwise,it returns to step 2).

    3 Simulation

    In the design of the electro-hydraulic servo force loading system,in order to clarify the static and dynamic characteristics of the system,the computer simulation technology can be used to establish the model of the electro-hydraulic servo force loading system and design the control algorithm.AMESim provides a set of electro-hydraulic servo simulation modeling and analysis solutions,which can be connected with Simulink.Establishing a AMESim/Simulink co-simulation model can give full play to the modeling capabilities of AMESim and the algorithmic computing capabilities of Simulink[15].

    3.1 Establish co-simulation model

    In order to study the loading performance of the system,the method of simulating loading by the proportional relief valve has been widely applied to the hydraulic experiment platform[17].The schematic diagram of servo force loading is shown in Fig.3.It is composed of a three-phase motor,a gear pump,a proportional directional valve,a proportional relief valve,a single rod double-acting hydraulic cylinder,and a tension pressure sensor.

    1-Proportional relief valve; 2-PMSM; 3-Gear pump; 4-Tank; 5-Proportional directional valve; 6-Driving cylinder; 7-Mass; 8-Force sensor; 9-Loading cylinder; 10-Check valve; 11-Backpressure loading valve group; 12-Three-phase induction motor; 13-Control system

    The drive system is used to move the undercarriage actuator,the motor speed is 1 500 r/min,and the gear pump displacement is 6.3 mL/r.The loading system is used to simulate the wind load and external interference experienced when the landing gear actuator cylinder moves.The motor speed is 1 000 r/min,and the gear pump displacement is 4.3 mL/r.The AMESim simulation model of the hydraulic system is shown in Fig.4 which restores the working scene established by the valve-controlled cylinder system of the experiment platform.The simulation parameters are shown in Table 2,and the Simulink controller model is shown in Fig.5.

    Table 2 Experiment platform parameter

    Fig.4 AMESim model

    Fig.5 Simulink controller model

    3.2 Simulation results

    The main parameters of INADRC after GAPSO algorithm optimization are shown in Table 3.In order to verify the dynamic and static characteristics of INADRC controller optimized by GAPSO algorithm applied to electro-hydraulic servo force loading system,INADRC is compared with NADRC,PID and other improved NADRC (ONADRC),which forms such as Eq.(14)[13].The system constant signal,ramp signal,and sine signal are given.The simulation time is 10 s,and the step length is 0.01 s to run the AMESim/Simulink co-simulation model.The hydraulic cylinder force tracking curve and tracking error curve are obtained as shown in Fig.6.

    (14)

    Fig.6 Simulation results

    Table 3 INADRC controller parameter

    1) Constant loading.The transient performance of the system is tested by constant load[16].Given a target force signal of 20 kN,the interference force is 4 kN in 5 s,and the force tracking and error curves are shown in Fig.6(a) and 6(b).In terms of transient response,the transition times of INADRC,NADRC,PID,and ONADRC are 1.5 s,2 s,2 s,and 1.7 s,respectively,and only PID has 2 kN overshoot.In terms of anti-interference ability,the time taken for the four control modes to recover to the steady state is 1 s,1.2 s,1.2 s,and 1.1 s,respectively.It can be seen that the comprehensive performance of INADRC in transient response and anti-interference ability is better than other control methods.

    2) Ramp loading.Ramp loading is the most commonly used loading method for material testing machines and universal loading testing machines,which can verify the precise tracking ability of the controller.Set a ramp loading signal with a slope of 4 kN/s,and an interference force of 4 kN at 3 s.The resulting tracking and error curves are shown in Fig.6(c) and 6(d).Simulation results show that the performance of the four control algorithms is close,but it can be seen more clearly from the error curve that the tracking performance of INADRC is better.

    3) Sine wave loading.The sine wave loading can verify the dynamic performance of the controller.Given the target force signalF=10sin(0.2πt)+10,the interference force is 4 kN at 3 s,and the force tracking and error curves are shown in Fig.6(e) and 6(f).The simulation results show that the fastest response of INADRC is to track the sinusoidal loading curve in 0.2 s,and the error is always within 0.3 kN.In case of interference,the tracking target signal can be recovered faster.

    4 Experimental verification

    4.1 Experiment platform

    Fig.7 shows the electro-hydraulic servo force loading system experiment platform,which can be used to test and verify the proposed force loading control method.

    Fig.7 Experiment platform

    The driving part adopts GK6087-6AF61-2 PMSM with a speed of 1 500 r/min and a PG502A0043CH1 gear pump with a displacement of 6.3 mL/r.The reciprocating movement of the hydraulic cylinder is controlled by a proportional directional valve to simulate the expansion and contraction of the landing gear actuator cylinder.PMSM and proportional directional valve realize drive function.The loading part adopts YYF2-112M-4 three-phase asynchronous motor with the speed of 1 000 r/min and PG502A0043CH1 gear pump with the speed of 4.3 mL/r.

    Servo force loading function is achieved by controlling the rated pressure of the AGMZO-TERS-PS-10/315/Y proportional relief valve.Because the back pressure loading system oil is composed of 4 check valves and a proportional relief valve,there will be oil shortage after the loading cylinder moves,so the motor,gear pump and proportional reversing valve in the loading system realize the hydraulic cylinder replenishment function.

    Two UG21D63/36-300TYCR single-rod double-acting hydraulic cylinders of the same specification are installed on the same straight line in the experiment platform,and connect with mass block and PLD204A2 5T force sensor,which can collect the feedback force loading value in the loading system in real time.The parameters of the experiment platform are shown in Table 2.

    4.2 Measurement and control system

    Fig.8 shows that the control scheme of the electro-hydraulic servo force loading system experiment platform.The hardware of the control system mainly includes the WANDFLUH SD7 controller,the A/D board PCI1715U,the D/A board PCI1723 and the control host and so on.

    Fig.8 Schematic diagram of measurement and control

    Among them,the D/A board converts the digital control signal into an analog output signal,and then sends it to the proportional relief valve as a control signal to control the action of the hydraulic cylinder.The A/D conversion board converts the collected analog signals such as force,acceleration and displacement into digital signals and inputs them to the host,so as to perform mathematical operations through the control algorithm module in the lower computer[18-19].

    4.3 Experimental results

    Set the system pressure to 10 MPa and the ambient temperature to 27 ℃.The range of force sensor is 0 kN-50 kN,and the feedback electric signal is 0 V-10 V.Other working conditions are consistent with simulation working conditions,and the experimental parameters are shown in Table 2.

    It can be seen from Fig.9(a) and 9(b) that the transition times of the control algorithms of INADRC,NADRC,PID,and ONADRC are 1 s,1.3 s,2 s,and 1.2 s,respectively,and the PID control overshoot is 5 kN.Fig.9(c) and 9(d) shows that the average tracking errors of INADRC,NADR,PID,and ONADRC are 1.6%,1.8%,4.2%,and 2%.After adding 4 kN interference,the recovery time is 0.4 s,0.8 s,1 s and 0.8 s.INADRC has strong anti-interference ability in slope conditions.

    Fig.9 Experimental results

    Fig.9(e) and 9(f) shows that INADRC track the sinusoidal signal at 0.3 s,and the average error of INADRC is about 2.35%.In order to further quantitatively evaluate the performance of the four control methods,the mean square errorμand ITAE are introduced for further comparison and explanation.The results are obtained shown in Table 4.It can be seen that under the four tracking signals,the mean square error and ITAE indicators of INADRC are smaller than PID,NADRC,and ONADRC.

    Table 4 Performance index

    The error rates are shown in Table 5.The average error rates of INADRC,NADRC,PID,and ONADRC are 2.35%,3.5%,6.5%,and 3.1%.Experimental results show that INADRC is superior to NADRC,PID,and ONADRC in terms of control accuracy and anti-interference ability,which is consistent with the simulation results.

    Table 5 Error rate

    5 Conclusions

    1) Aiming at the problem that the accuracy of electro-hydraulic servo loading systems such as the actuator abrasion experiment platform is not high enough to meet specific needs,an improved nonlinear active disturbance rejection controller is designed,which effectively improves the force tracking control performance.

    2) A co-simulation model of AMESim and Simulink for the electro-hydraulic servo loading system is established to improve the efficiency of system design.

    3) Compared with PID control,NADRC,and ONADRC,the average accuracy of the INADRC is improved by 4.15%,1.15%,and 0.65% from the simulation and experimental conclusions of three given signals of constant value,sine,and ramp.It can be concluded that INADRC control has higher precision and anti-disturbance ability than other control measures.

    4) The GAPSO algorithm is used to obtain a large number of parameters of the nonlinear active disturbance rejection controller,which can meet the system performance index and provide a reference for engineering applications.

    久久精品aⅴ一区二区三区四区| 国产伦一二天堂av在线观看| 免费不卡黄色视频| 一区二区日韩欧美中文字幕| 一a级毛片在线观看| 亚洲精品在线观看二区| 国产无遮挡羞羞视频在线观看| 老熟妇仑乱视频hdxx| 日本黄色视频三级网站网址| 欧美精品亚洲一区二区| 欧美日韩av久久| av电影中文网址| 午夜91福利影院| 免费在线观看日本一区| 色综合婷婷激情| 欧美乱码精品一区二区三区| 欧美人与性动交α欧美软件| 一二三四在线观看免费中文在| 亚洲精品一卡2卡三卡4卡5卡| 午夜两性在线视频| 在线观看一区二区三区| 久久精品成人免费网站| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av | 18禁裸乳无遮挡免费网站照片 | 一个人观看的视频www高清免费观看 | 国产精品二区激情视频| 后天国语完整版免费观看| 极品教师在线免费播放| 51午夜福利影视在线观看| 黄色视频,在线免费观看| 精品久久久久久久久久免费视频 | 国产1区2区3区精品| 免费在线观看日本一区| 欧美乱码精品一区二区三区| 不卡一级毛片| 少妇粗大呻吟视频| 国产精品综合久久久久久久免费 | 成人永久免费在线观看视频| 欧美另类亚洲清纯唯美| 熟女少妇亚洲综合色aaa.| 美女扒开内裤让男人捅视频| 欧洲精品卡2卡3卡4卡5卡区| 人人澡人人妻人| 中文字幕高清在线视频| 国产免费男女视频| 97人妻天天添夜夜摸| 国产精品免费视频内射| 丝袜在线中文字幕| 91字幕亚洲| 精品久久久久久,| 亚洲国产精品999在线| 黄片小视频在线播放| 欧美老熟妇乱子伦牲交| 婷婷六月久久综合丁香| 亚洲一区高清亚洲精品| 亚洲第一欧美日韩一区二区三区| 国产精品成人在线| 在线看a的网站| 国产精品99久久99久久久不卡| 久久香蕉精品热| 亚洲 国产 在线| 十八禁网站免费在线| 成人手机av| 黑人欧美特级aaaaaa片| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| 真人一进一出gif抽搐免费| 久久午夜综合久久蜜桃| 精品国产超薄肉色丝袜足j| 一进一出好大好爽视频| 香蕉国产在线看| 正在播放国产对白刺激| 热re99久久精品国产66热6| 亚洲激情在线av| 免费搜索国产男女视频| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区| 日本vs欧美在线观看视频| 窝窝影院91人妻| 黄网站色视频无遮挡免费观看| 两个人免费观看高清视频| cao死你这个sao货| 级片在线观看| 亚洲精品成人av观看孕妇| 国产不卡一卡二| а√天堂www在线а√下载| 久久久久久亚洲精品国产蜜桃av| 高清欧美精品videossex| 国产男靠女视频免费网站| 色综合站精品国产| 色婷婷av一区二区三区视频| 免费在线观看视频国产中文字幕亚洲| 美女午夜性视频免费| 18禁美女被吸乳视频| 老司机午夜十八禁免费视频| 日韩免费高清中文字幕av| 亚洲精品在线观看二区| 日韩欧美免费精品| 精品久久久久久成人av| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 制服诱惑二区| 国产亚洲精品综合一区在线观看 | 一区福利在线观看| 欧美在线一区亚洲| 男女高潮啪啪啪动态图| 亚洲一区二区三区色噜噜 | aaaaa片日本免费| 亚洲午夜理论影院| 久久国产乱子伦精品免费另类| 国产精品av久久久久免费| 夜夜夜夜夜久久久久| 色综合婷婷激情| www.自偷自拍.com| 成年人免费黄色播放视频| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| www.自偷自拍.com| 欧美日韩乱码在线| 午夜成年电影在线免费观看| 亚洲 欧美 日韩 在线 免费| 18禁国产床啪视频网站| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 美女午夜性视频免费| 一个人观看的视频www高清免费观看 | 丁香欧美五月| 亚洲五月天丁香| 国产人伦9x9x在线观看| 亚洲精品国产区一区二| 午夜福利在线免费观看网站| 亚洲欧美精品综合久久99| 亚洲一区中文字幕在线| 国产不卡一卡二| 又大又爽又粗| 咕卡用的链子| 18禁国产床啪视频网站| 欧美丝袜亚洲另类 | 久久久久国产一级毛片高清牌| 9热在线视频观看99| 精品乱码久久久久久99久播| 精品无人区乱码1区二区| 国产免费男女视频| 国产欧美日韩精品亚洲av| 国产精品秋霞免费鲁丝片| 欧美人与性动交α欧美软件| 日韩欧美三级三区| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 99精品欧美一区二区三区四区| 国产熟女午夜一区二区三区| 国产成+人综合+亚洲专区| 日本 av在线| 91国产中文字幕| 一级毛片高清免费大全| 日韩欧美一区视频在线观看| 国产av又大| 亚洲av片天天在线观看| 一进一出好大好爽视频| 十分钟在线观看高清视频www| 亚洲专区国产一区二区| 亚洲人成77777在线视频| 校园春色视频在线观看| 超碰97精品在线观看| 俄罗斯特黄特色一大片| 国产精品一区二区免费欧美| 亚洲国产精品999在线| 这个男人来自地球电影免费观看| 色综合婷婷激情| 久久亚洲精品不卡| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看 | 韩国av一区二区三区四区| av欧美777| 制服诱惑二区| 麻豆一二三区av精品| 亚洲熟女毛片儿| 日韩成人在线观看一区二区三区| 午夜福利一区二区在线看| 在线视频色国产色| 日本精品一区二区三区蜜桃| а√天堂www在线а√下载| av片东京热男人的天堂| 淫妇啪啪啪对白视频| 亚洲精品成人av观看孕妇| 少妇被粗大的猛进出69影院| 国产伦人伦偷精品视频| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 亚洲av五月六月丁香网| 久久久国产欧美日韩av| 精品久久久久久久毛片微露脸| 国产精品成人在线| 搡老乐熟女国产| 亚洲一区中文字幕在线| 久久久久亚洲av毛片大全| 天堂动漫精品| 成人黄色视频免费在线看| 久久伊人香网站| 国产精品久久久久成人av| www.自偷自拍.com| 亚洲精品在线美女| 99国产精品99久久久久| 男男h啪啪无遮挡| 侵犯人妻中文字幕一二三四区| 亚洲成人精品中文字幕电影 | 日日干狠狠操夜夜爽| 国产精品98久久久久久宅男小说| 乱人伦中国视频| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 狂野欧美激情性xxxx| 欧美日韩国产mv在线观看视频| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| a在线观看视频网站| 久久人人爽av亚洲精品天堂| 国产亚洲av高清不卡| 国产高清激情床上av| 视频在线观看一区二区三区| 多毛熟女@视频| 亚洲av五月六月丁香网| 久久久久久免费高清国产稀缺| 国产99白浆流出| 十八禁网站免费在线| 日韩大码丰满熟妇| 精品久久久久久成人av| 777久久人妻少妇嫩草av网站| 新久久久久国产一级毛片| 女性生殖器流出的白浆| 91国产中文字幕| 级片在线观看| 国产精品乱码一区二三区的特点 | 日韩精品青青久久久久久| 男女做爰动态图高潮gif福利片 | 国产91精品成人一区二区三区| 亚洲黑人精品在线| av网站在线播放免费| 亚洲色图综合在线观看| 黄色 视频免费看| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 一级毛片女人18水好多| 在线观看免费视频日本深夜| 在线观看免费视频网站a站| 日韩大码丰满熟妇| 亚洲 欧美一区二区三区| 亚洲 国产 在线| 久久久久久久午夜电影 | 男女午夜视频在线观看| 一个人免费在线观看的高清视频| 操美女的视频在线观看| 欧美日韩瑟瑟在线播放| 免费av毛片视频| 亚洲国产精品一区二区三区在线| 午夜老司机福利片| 窝窝影院91人妻| 好男人电影高清在线观看| 欧美激情 高清一区二区三区| 麻豆成人av在线观看| 男女下面进入的视频免费午夜 | 美国免费a级毛片| 日韩成人在线观看一区二区三区| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 欧美成人午夜精品| 黄片小视频在线播放| 成人黄色视频免费在线看| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品男人的天堂亚洲| 老鸭窝网址在线观看| 丰满迷人的少妇在线观看| 亚洲中文字幕日韩| 国产精品久久视频播放| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| 亚洲欧美一区二区三区久久| 91成年电影在线观看| 亚洲情色 制服丝袜| 亚洲精品久久成人aⅴ小说| 亚洲人成伊人成综合网2020| 自线自在国产av| 桃红色精品国产亚洲av| 日韩精品中文字幕看吧| 香蕉丝袜av| 久久 成人 亚洲| 亚洲精品一二三| 成人三级做爰电影| 成人三级黄色视频| www国产在线视频色| 日韩欧美国产一区二区入口| 最近最新免费中文字幕在线| 精品国产乱子伦一区二区三区| 亚洲三区欧美一区| 淫妇啪啪啪对白视频| 在线视频色国产色| 久久久久久久久久久久大奶| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| a在线观看视频网站| 中文字幕高清在线视频| 一a级毛片在线观看| 成人手机av| 无人区码免费观看不卡| 久久久国产成人免费| 正在播放国产对白刺激| av免费在线观看网站| 一进一出好大好爽视频| 久久久久久久久久久久大奶| 国产精品一区二区在线不卡| 国产精品亚洲一级av第二区| 国产又爽黄色视频| 黑丝袜美女国产一区| 久久伊人香网站| 在线观看免费视频日本深夜| 19禁男女啪啪无遮挡网站| bbb黄色大片| www日本在线高清视频| 国产91精品成人一区二区三区| 国产av又大| 亚洲一区二区三区不卡视频| 搡老岳熟女国产| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 成在线人永久免费视频| 高清在线国产一区| 嫩草影视91久久| 后天国语完整版免费观看| 久久精品91蜜桃| 这个男人来自地球电影免费观看| 国产精品亚洲一级av第二区| 超色免费av| 777久久人妻少妇嫩草av网站| 高清黄色对白视频在线免费看| 一本大道久久a久久精品| 露出奶头的视频| 久久 成人 亚洲| 亚洲精品粉嫩美女一区| 久久影院123| 黄色女人牲交| 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 免费av中文字幕在线| 欧美av亚洲av综合av国产av| 日韩大码丰满熟妇| 久久这里只有精品19| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 精品电影一区二区在线| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 欧美一区二区精品小视频在线| tocl精华| 国产成人欧美| 精品熟女少妇八av免费久了| www.自偷自拍.com| 三级毛片av免费| 韩国精品一区二区三区| 精品国产一区二区久久| 黑人巨大精品欧美一区二区蜜桃| 夜夜夜夜夜久久久久| 免费看a级黄色片| x7x7x7水蜜桃| 欧美av亚洲av综合av国产av| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片 | 少妇的丰满在线观看| 欧美av亚洲av综合av国产av| 校园春色视频在线观看| 久热这里只有精品99| 女警被强在线播放| 午夜免费鲁丝| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 久久九九热精品免费| 免费观看精品视频网站| 亚洲欧美精品综合一区二区三区| 国产精品亚洲一级av第二区| 在线视频色国产色| 男人操女人黄网站| 老司机在亚洲福利影院| 天堂动漫精品| 成熟少妇高潮喷水视频| ponron亚洲| 五月开心婷婷网| 久久影院123| 好男人电影高清在线观看| 19禁男女啪啪无遮挡网站| 成人18禁在线播放| 日本五十路高清| 满18在线观看网站| 国产精品电影一区二区三区| 亚洲精品一二三| 久久久久国产一级毛片高清牌| 国产精品影院久久| 99riav亚洲国产免费| 国产亚洲精品综合一区在线观看 | 亚洲av熟女| 亚洲国产欧美网| 国产蜜桃级精品一区二区三区| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 人成视频在线观看免费观看| 日韩免费高清中文字幕av| 五月开心婷婷网| 久久久久久久久免费视频了| 久热这里只有精品99| 亚洲男人的天堂狠狠| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区三区在线| 一级片免费观看大全| 欧美不卡视频在线免费观看 | 黄色怎么调成土黄色| 亚洲片人在线观看| 黄色片一级片一级黄色片| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 久久香蕉精品热| 99riav亚洲国产免费| 欧美成人午夜精品| a在线观看视频网站| 国产精品国产高清国产av| 露出奶头的视频| 黄色a级毛片大全视频| 99热只有精品国产| 成人亚洲精品av一区二区 | 日本免费a在线| 丁香六月欧美| 99精品欧美一区二区三区四区| 熟女少妇亚洲综合色aaa.| 波多野结衣高清无吗| 后天国语完整版免费观看| 国产一区二区三区视频了| 久久精品亚洲av国产电影网| 午夜两性在线视频| 男人的好看免费观看在线视频 | 亚洲欧美精品综合一区二区三区| av网站免费在线观看视频| 日韩精品中文字幕看吧| 男女下面插进去视频免费观看| 欧美日韩瑟瑟在线播放| 满18在线观看网站| 亚洲国产精品合色在线| 性色av乱码一区二区三区2| 久久精品亚洲熟妇少妇任你| 麻豆成人av在线观看| 婷婷六月久久综合丁香| 性欧美人与动物交配| 日韩免费av在线播放| a在线观看视频网站| 日韩国内少妇激情av| 成人免费观看视频高清| 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美98| 男人舔女人的私密视频| 制服诱惑二区| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 亚洲人成77777在线视频| 欧美激情高清一区二区三区| 国产精品久久电影中文字幕| 日本欧美视频一区| 免费在线观看亚洲国产| 亚洲 欧美 日韩 在线 免费| av超薄肉色丝袜交足视频| 欧美乱码精品一区二区三区| 成年人免费黄色播放视频| 黄色丝袜av网址大全| 丁香欧美五月| 亚洲免费av在线视频| ponron亚洲| 制服诱惑二区| 亚洲欧美激情在线| 久久亚洲真实| a级毛片黄视频| 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全电影3 | 国产成人欧美在线观看| 国产精品影院久久| e午夜精品久久久久久久| 午夜a级毛片| 久久人人爽av亚洲精品天堂| 极品教师在线免费播放| 老司机亚洲免费影院| 日韩大码丰满熟妇| 婷婷精品国产亚洲av在线| 精品久久久久久成人av| 一二三四社区在线视频社区8| 搡老熟女国产l中国老女人| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 女人被狂操c到高潮| 少妇被粗大的猛进出69影院| 日日夜夜操网爽| 亚洲欧美一区二区三区黑人| 999久久久精品免费观看国产| 99热国产这里只有精品6| 日本欧美视频一区| 黄片播放在线免费| 亚洲狠狠婷婷综合久久图片| 国产精品久久久久成人av| 国产精品偷伦视频观看了| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 丁香欧美五月| 日韩大尺度精品在线看网址 | 亚洲黑人精品在线| 亚洲欧美精品综合一区二区三区| 欧美日韩瑟瑟在线播放| 久久中文字幕一级| av电影中文网址| 大陆偷拍与自拍| 91在线观看av| 香蕉丝袜av| 成人国语在线视频| 9191精品国产免费久久| 成年人免费黄色播放视频| 我的亚洲天堂| 亚洲av美国av| 怎么达到女性高潮| 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 久久精品国产清高在天天线| 久久午夜综合久久蜜桃| 国内久久婷婷六月综合欲色啪| 999精品在线视频| 夜夜爽天天搞| 亚洲国产精品合色在线| 一个人免费在线观看的高清视频| 日日爽夜夜爽网站| 在线天堂中文资源库| 9色porny在线观看| 天堂√8在线中文| 久久国产亚洲av麻豆专区| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美乱色亚洲激情| 高清黄色对白视频在线免费看| 天堂俺去俺来也www色官网| 性欧美人与动物交配| 亚洲成av片中文字幕在线观看| 欧美性长视频在线观看| tocl精华| 精品一品国产午夜福利视频| 看黄色毛片网站| 中亚洲国语对白在线视频| 亚洲伊人色综图| 国产高清国产精品国产三级| 99国产综合亚洲精品| 亚洲欧美激情在线| 可以免费在线观看a视频的电影网站| 亚洲熟妇中文字幕五十中出 | 欧美日韩视频精品一区| 国产又爽黄色视频| 久久国产亚洲av麻豆专区| 午夜福利在线观看吧| 新久久久久国产一级毛片| 黄片播放在线免费| 亚洲av熟女| 男人舔女人的私密视频| 国产高清国产精品国产三级| 男女之事视频高清在线观看| 午夜视频精品福利| 欧洲精品卡2卡3卡4卡5卡区| 黑丝袜美女国产一区| 精品一区二区三区视频在线观看免费 | 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 国产麻豆69| 精品一品国产午夜福利视频| 亚洲av成人一区二区三| 青草久久国产| avwww免费| netflix在线观看网站| 欧美精品一区二区免费开放| 天天影视国产精品| 成人精品一区二区免费| 大香蕉久久成人网| 午夜福利欧美成人| 精品卡一卡二卡四卡免费| 久久九九热精品免费| 日韩精品免费视频一区二区三区| 色综合婷婷激情| 久久性视频一级片| 欧美在线黄色| 色播在线永久视频| 制服诱惑二区| 精品人妻在线不人妻| 日韩免费高清中文字幕av| 一级作爱视频免费观看| 免费av毛片视频| 日韩国内少妇激情av| 视频区图区小说| 欧美黄色片欧美黄色片| 国产精品乱码一区二三区的特点 | 久久精品国产综合久久久| tocl精华| 黄色女人牲交| 男男h啪啪无遮挡| 久久九九热精品免费| 国产主播在线观看一区二区| 亚洲一区二区三区不卡视频| 在线观看日韩欧美| 18禁国产床啪视频网站| 色老头精品视频在线观看| 99久久精品国产亚洲精品| 老汉色av国产亚洲站长工具|