摘要:新疆砂礫巖油藏儲層碎屑粒徑分布范圍廣,非均質(zhì)性強,針對這類儲層速敏性強、且速敏主控因素不明的問題,采取薄片分析、掃描電鏡、高壓壓汞、速敏性試驗等手段對瑪西斜坡百口泉組巖心進(jìn)行分析評價。結(jié)果表明:黏土礦物含量對樣品速敏影響較弱;物性是影響砂礫巖儲層敏感性的主要因素,滲透率比整體隨著流速增加呈現(xiàn)先快速下降然后緩慢下降的現(xiàn)象;當(dāng)液測滲透率小于0.1×10-3 μm2時,隨著儲層物性變好,喉道逐漸變大,一些原本難以通過喉道的礦物等可以隨著流體流動通過喉道,速敏指數(shù)隨著液測滲透率增加而下降;當(dāng)液測滲透率大于0.1×10-3 μm2時,參與滲流的喉道半徑變化小,但孔隙之間連通性好,連通喉道多,更多的原本在孔隙內(nèi)沒有運動的黏土礦物也開始隨著驅(qū)替流體發(fā)生運動,當(dāng)?shù)V物足夠多的時候會堵塞喉道,導(dǎo)致滲透率下降,速敏指數(shù)則隨著液測滲透率增大而增大。
關(guān)鍵詞:百口泉組; 致密砂礫巖; 儲層特征; 速敏特征; 控制因素
中圖分類號:TE 315"" 文獻(xiàn)標(biāo)志碼:A
引用格式:王蓓,胡藝瀟,周偉,等.瑪西斜坡百口泉組致密砂礫巖儲層速敏特征及主控因素[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2024,48(4):141-148.
WANG Bei, HU Yixiao, ZHOU Wei, et al. Velocity-sensitive characteristics and main controlling factors of tight glutenite reservoirs in Baikouquan Formation of Maxi slope[J]. Journal of China University of Petroleum(Edition of Natural Science),2024,48(4):141-148.
Velocity-sensitive characteristics and main controlling factors of tight glutenite reservoirs in Baikouquan Formation of Maxi slope
WANG Bei1,2, HU Yixiao3, ZHOU Wei1,2, ZHOU Hao1,2, KOU Gen1,2, LIU Sai1,2, XU Ning1,2, ZHU Peng3
(1.Experimental Research Institute of PetroChina Xinjiang Oilfield Company, Karamay 834000, China;
2.Xinjiang Autonomous Region Conglomerate Reservoir Key Laboratory, Karamay 834000, China;
3.State Key Laboratory of Oil and Gas Reservoir Geology and Exploiation(Chengdu University of Technology), Chengdu 610059, China)
Abstract:
The glutenite reservoir" in Xinjiang have" a strong velocity (flow rate) sensitivity and its main control factors are not clear because of its wide particle size distribution and strong heterogeneity. In this study, different techniques were used for core analysis with core samples from Baikouquan Formation in Maxi slope, including thin section analysis, scanning electron microscope, high-pressure mercury injection and velocity sensitivity experiments. The results show that the clay minerals content has a weak influence on the velocity sensitivity of the samples, while the physical property is the main factor affecting the sensitivity of the glutenite reservoir, and the permeability ratio decreases rapidly at first and then slowly declines with the increase of flow rate. When the permeability is less than 0.1×10-3 μm2, with the improvement of reservoir physical properties, the throat gradually becomes larger, and some minerals (particles) that were difficult to pass through the throat can pass through the throat along with the fluid flow, and so the velocity sensitivity index decreases with the improvement of permeability. When the permeability is greater than 0.1×10-3 μm2, the throat radius involved in flow changes little, but the pores are well connected and there are many connected throats. More clay minerals that did not move firstly in the pores begin to move along with the flowing displacement fluid. But when there are enough minerals (particles), the throat can be blocked, resulting in the decrease of permeability and the increase of velocity sensitivity index with the improvement of permeability.
Keywords:Baikouquan Formation; tight glutenite; reservoir characteristics; velocity-sensitive characteristics; controlling factors
準(zhǔn)噶爾盆地瑪湖凹陷具有有利的成藏條件,油氣資源豐富[1-3]。近年新疆油田在百口泉組砂礫巖油氣勘探中獲得了驚人的成果,但由于儲層黏土礦物成分不明,儲層物性差,孔喉結(jié)構(gòu)復(fù)雜,導(dǎo)致儲層速敏性不明[4-7]。所以亟需對百口泉組致密砂礫巖儲層的速敏特征及主控因素進(jìn)行深度剖析,為該類油藏的高效開發(fā)提供技術(shù)支持。目前對致密砂礫巖油藏的研究仍處于早期階段[8-11],主要聚焦在儲層物源分析、巖相特征、孔喉結(jié)構(gòu)、儲層預(yù)測等領(lǐng)域[12-15],而對致密砂礫巖油藏儲層速敏特征及其主控因素的研究較少。與此同時,致密砂礫巖顆粒粒徑分布廣泛,母巖礦物成分更復(fù)雜,再加上后期多種成巖綜合作用,使致密砂礫巖儲層物性、黏土礦物含量、速敏性等較致密砂巖油藏更為復(fù)雜[16-22],為了明確致密砂礫巖儲層速敏性,有必要對致密砂礫巖儲層的黏土礦物、物性及其所影響的速敏特征進(jìn)行深入研究?,斘餍逼掳倏谌M儲層為致密砂礫巖儲層,具有明顯的低孔、低滲特征[23-26],儲層以溶蝕孔為主,高嶺石、伊利石發(fā)育較好,在生產(chǎn)中易堵塞喉道,導(dǎo)致速敏效應(yīng)強,主控因素復(fù)雜。筆者針對瑪西斜坡百口泉組致密砂礫巖油藏存在的上述問題,首先采用薄片、掃描電鏡觀察明確樣品的主要碎屑成分、膠結(jié)物成分、黏土礦物特征與孔隙類型;其次利用孔滲測量,明確百口泉組的儲層物性范圍,通過壓汞試驗揭示孔喉展布特征;最后基于速敏試驗,結(jié)合儲層礦物類型、物性特征等對速敏效應(yīng)進(jìn)行評價,揭示致密砂礫巖儲層的速敏特征,并闡明致密砂礫巖儲層速敏效應(yīng)的主控因素。
1 巖心基本特征
試驗樣品選自位于瑪湖凹陷西斜坡取芯資料完善的X井與Y井,取芯層段位于百口泉組的百一段到百三段,埋深為3600~3800 m,覆蓋了瑪西斜坡百口泉組的儲層厚度,巖心以灰白色、灰綠色砂礫巖為主。
1.1 巖石學(xué)特征
根據(jù)室內(nèi)薄片觀察結(jié)果,百口泉組致密砂礫巖巖心碎屑顆粒分布廣泛,從粗砂到粗礫巖不等,一般粒徑為0.86~8.49 mm,大的礫石粒徑可達(dá)15 mm,分選差,磨圓度以次圓—次棱角狀為主,膠結(jié)致密,以線接觸為主。樣品常見碎屑與巖屑類型如圖1所示。儲層碎屑成分主要為石英與長石,巖屑成分主要為凝灰?guī)r、花崗巖、噴出巖和泥巖。
百口泉組致密砂礫巖巖心填隙物成分復(fù)雜多樣,雜基主要成分為粉土質(zhì)與粉細(xì)砂,膠結(jié)物中常見高嶺石、蒙脫石、伊利石、綠泥石等(圖2)。通過掃描電鏡可以發(fā)現(xiàn):高嶺石自形程度較好,而晶形較好的高嶺石易于分散轉(zhuǎn)移,堵塞喉道;伊利石多為絲狀,在高流速下易堵塞喉道;綠泥石主要為針葉狀與絨球狀,在水-巖反應(yīng)后易分散,從而堵塞喉道。
根據(jù)鑄體薄片結(jié)果顯示,百口泉組致密砂礫巖主要發(fā)育粒內(nèi)溶孔、粒間孔、微裂縫3種孔隙類型,整體面孔率為3%。
(1)粒內(nèi)溶孔主要發(fā)育在長石和巖屑中(圖3(a)、(b)),礫石中的鉀長石或斜長石被溶蝕,呈篩眼狀集合產(chǎn)出,一般孔徑為30~530 μm,約占總面孔率的48%;巖屑溶蝕孔主要是砂級凝灰?guī)r、花崗巖屑等溶蝕形成的孔隙,呈篩眼狀微孔集合產(chǎn)出,一般孔徑為10~150 μm,約占總面孔率的36%。
(2)粒間孔中粒間溶孔占據(jù)了絕對地位,主要為碎屑顆粒之間的方解石膠結(jié)物或是泥質(zhì)雜基等被部分溶蝕形成的(圖3(c)),主要孔徑分布在1~70 μm,占總面孔率的11%。
(3)微裂縫(圖3(d))主要為一些順層展布的微裂縫。縫寬在幾百納米到幾十微米不等,對儲層滲透率有一定的改善作用,占總面孔率的5%。
1.2 物性特征
研究區(qū)百口泉組孔隙度為2.1%~12.4%,平均值為6.82%,滲透率為(0.01~15.4)×10-3 μm2,平均值為1.82×10-3 μm2,儲層整體屬于致密儲層。篩選研究區(qū)取芯資料完善、巖心保存較好的井取樣進(jìn)行速敏試驗。選取樣品主要孔滲參數(shù)(表1),可以發(fā)現(xiàn):所選樣品平均孔隙度差距不大,但X井和Y井液測滲透率分別為(0.01~0.1)×10-3和(0.1~1)×10-3 μm2,差距較大。對所選樣品進(jìn)行黏土礦物含量測定,可以看出:兩口井黏土礦物總量差距不大,主要為伊/蒙混(30.52%~39.75%)和伊利石(23.46%~30.78%),其次是高嶺石(11.33%~27.81%)與綠泥石(10.46%~24.61%)。較高的伊/蒙混與伊利石和高嶺石等都會對速敏試驗結(jié)果產(chǎn)生一定影響。
1.3 樣品孔喉結(jié)構(gòu)特征
致密儲層往往有著孔喉直徑小、孔隙結(jié)構(gòu)復(fù)雜、孔隙度和滲透率低、喉道狹窄且連通性差等特征。對致密儲層孔喉特征研究一般采取高壓壓汞手段。
由所選樣品毛管壓力曲線特征(圖4(a))與最大進(jìn)汞飽和度對比(表2)可以發(fā)現(xiàn),X井的平均進(jìn)汞飽和度(64.99%)小于Y井(84.39%),且Y井的進(jìn)汞曲線更靠近左下方,說明其歪度越粗,喉道分選越好;X井毛管半徑主要分布范圍小于Y井(圖4(b)),說明X井物性較差,滲流能力更弱;X井的排驅(qū)壓力高于Y井,平均喉道半徑小于Y井,說明X井最大孔喉半徑與主要孔喉半徑均小于Y井,喉道尺寸決定了滲透率,這也驗證了Y井整體物性好于X井;Y井擁有更高的退汞效率和更低的飽和度中值壓力,說明Y井的主要孔喉分選性更好,更為集中。將孔喉半徑小于0.1 μm的孔隙定義為小孔,孔喉半徑大于0.1 μm的孔隙定義為大孔,通過孔隙占比可以看出,X井大孔隙占比極少(平均15.01%),而Y井大孔隙平均占比達(dá)30.18%。而大孔占比在致密儲層中起著決定性的作用,在后續(xù)速敏試驗中,兩口井速敏結(jié)果可能會因為不同孔隙占比有顯著的差異。
2 儲層速敏試驗
當(dāng)流體在儲集層中發(fā)生流動時,不同流速會攜帶地層中松散的黏土顆粒一同運動,而這些黏土顆粒會在一些較小的孔隙或喉道處堆積并封堵孔隙或喉道,從而導(dǎo)致儲層滲透率發(fā)生變化,此現(xiàn)象稱為速敏[27-28]。
為保證試驗結(jié)果可信度,在速敏試驗中采用的地層水礦化度與主要離子類型與現(xiàn)場一致。本次試驗步驟以及參數(shù)評價根據(jù)《儲層敏感性流動試驗平價方法標(biāo)準(zhǔn):SY-T 5358-2010》[29]進(jìn)行。試驗流程見圖5。
2.1 速敏性評價
圖6為滲透率比和速敏指數(shù)曲線。從圖6中可以看出,樣品滲透率比整體變化趨勢較一致,呈現(xiàn)先快速下降后變緩的現(xiàn)象,這是因為孔隙空間內(nèi)黏土礦物、自由顆粒在臨界流速下開始移動、聚集并逐級堵塞喉道,所以在后續(xù)試驗中流速變化時參與滲流的喉道數(shù)逐漸減少,導(dǎo)致滲透率比整體呈現(xiàn)先快速下降后變緩的現(xiàn)象。但X井整體變化趨勢較Y井更小,這是因為Y井憑借自身較好的物性可進(jìn)行多次試驗,隨著流速持續(xù)增大,兩端壓差變化增大,導(dǎo)致更多的膠結(jié)物脫落并堵塞控制滲流的喉道,所以Y井整體的滲透率比變化更大,下降更嚴(yán)重。
由圖6(c)可以看出,Y井整體敏感指數(shù)高,平均速敏指數(shù)為51.47%(中等偏強速敏),遠(yuǎn)高于X井平均速敏指數(shù)12.52%(弱速敏)。兩口井的速敏指數(shù)差異大,表明研究區(qū)儲層非均質(zhì)性強,速敏現(xiàn)象不可忽視。
2.2 主控因素
通常認(rèn)為速敏指數(shù)與巖心中的速敏礦物的含量存在一定的正相關(guān)性。但通過試驗發(fā)現(xiàn)速敏指數(shù)與高嶺石含量的相關(guān)性(圖7)弱。因此速敏礦物的含量并不是研究區(qū)速敏指數(shù)的主控因素。
造成這種現(xiàn)象的原因主要是:對于致密巖心,隨著樣品巖心的物性改善,其中參與滲流的喉道半徑增加,此時一些被卡在喉道的礦物能夠隨著驅(qū)替流體沖出喉道(圖8(a)),出現(xiàn)滲透率比上升的現(xiàn)象;而對于物性更好的巖心,巖心物性范圍變化明顯,且由于試驗驅(qū)替次數(shù)增加,流速變化大,水動力作用更強,孔隙中更多的黏土礦物(如高嶺石、絲狀伊利石、絨球狀綠泥石等)也開始隨著驅(qū)替流體流動,這些礦物聚集多時就會堵塞喉道(圖8(b)),出現(xiàn)滲透率比下降的現(xiàn)象。
圖9為速敏指數(shù)與滲透率關(guān)系。兩口井的速敏指數(shù)均與滲透率有較好的相關(guān)性。對于X井,速敏指數(shù)主要隨著液測滲透率增加呈下降趨勢且下降幅度小,而Y井的速敏指數(shù)變化規(guī)律則相反。產(chǎn)生這一現(xiàn)象的原因是:對于X井的致密樣品,隨著物性改善,平均喉道半徑增大,此時一些原本堵塞在喉道的礦物等隨著驅(qū)替流體流出巖心,出現(xiàn)速敏指數(shù)隨滲透率增大而下降的現(xiàn)象(圖9(a))。對于Y井的低滲巖心,盡管物性更好,但受限于儲層整體致密特性,參與流動的喉道大小變化小,孔喉之間連通性更好。在更高的試驗流速下水動力更強,此時能發(fā)生自由移動的礦物量增加顯著,喉道堵塞現(xiàn)象更強,造成速敏指數(shù)隨滲透率增大而上升(圖9(b))。
3 結(jié)束語
研究區(qū)百口泉組儲層孔喉半徑差異較大,平均喉道半徑為0.05~0.25 μm、不同的孔喉半徑直接影響著百口泉組儲層的物性,而物性對研究區(qū)速敏指數(shù)影響明顯。速敏指數(shù)與儲層滲透率相關(guān)性強,當(dāng)液測滲透率小于0.1×10-3 μm2時,隨著試驗樣品的孔喉半徑增大,速敏指數(shù)隨滲透率增加而下降;當(dāng)液測滲透率大于0.1×10-3 μm2,隨著試驗樣品孔喉半徑增大,速敏指數(shù)隨滲透率增加而上升。速敏試驗中速敏曲線呈先快速下降后變緩的變化趨勢。在研究區(qū)確立單井合理產(chǎn)量或注水速度時,盡量采取低流速生產(chǎn)、注水以避免速敏引起的滲透率下降,以提高最終采收率。
參考文獻(xiàn):
[1] 唐勇,宋永,郭旭光,等.準(zhǔn)噶爾盆地瑪湖凹陷源上致密礫巖油富集的主控因素[J].石油學(xué)報,2022,43(2):192-206.
TANG Yong, SONG Yong, GUO Xuguang, et al. Main controlling factors of tight conglomerate oil enrichment above source kitchen in Mahu Sag, Junggar Basin[J]. Acta Petrolei Sinica, 2022, 43(2):192-206.
[2] 陳程,彭夢蕓,趙婷,等.瑪湖凹陷北、西斜坡區(qū)百口泉組儲集層對比及勘探啟示[J].新疆石油地質(zhì),2022,43(1):18-25.
CHEN Cheng, PENG Mengyun, ZHAO Ting, et al. Reservoir comparison and exploration enlightenment of Baikouquan Formation in northern and western slopes of Mahu Sag[J]. Xinjiang Petroleum Geology, 2022,43(1):18-25.
[3] 楊智峰,唐勇,郭旭光,等.準(zhǔn)噶爾盆地瑪湖凹陷二疊系風(fēng)城組頁巖油賦存特征與影響因素[J].石油實驗地質(zhì),2021,43(5):784-796.
YANG Zhifeng, TANG Yong, GUO Xuguang, et al. Occurrence states and potential influencing factors of shale oil in Permian Fengcheng Formation of Mahu Sag, Junggar Basin[J]. Petroleum Geology amp; Experiment, 2021,43(5):784-796.
[4] 宮清順,壽建峰,姜忠朋,等.準(zhǔn)噶爾盆地烏爾禾油田三疊系百口泉組儲層敏感性評價[J].石油與天然氣地質(zhì),2012,33(2):307-313.
GONG Qingshun, SHOU Jianfeng, JIANG Zhongpeng, et al. Reservoir sensitivity evaluation of the Triassic Baikouquan Formation in Wuerhe Oilfield, Junggar Basin[J]. Oil amp; Gas Geology, 2012,33(2):307-313.
[5] 宋璠,楊少春,蘇妮娜,等.準(zhǔn)噶爾盆地北緣山前帶濕地扇沉積特征及控藏作用[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2016,40(3):25-35.
SONG Fan, YANG Shaochun, SU Nina, et al. Sedimentary characteristics and reservoir control of wetland fan in piedmont zone of northern margin of Junggar Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016,40(3):25-35.
[6] 付瑜,柳益群,蔣宜勤,等.準(zhǔn)噶爾盆地西北緣瑪湖凹陷三疊系百口泉組砂礫巖儲層孔隙結(jié)構(gòu)及滲流特征[J].西北地質(zhì),2020,53(2):223-234.
FU Yu, LIU Yiqun, JIANG Yiqin, et al. Pore structures and seepage characteristics of sand-conglomerate reservoirs of Baikouquan Formation in Trassic Mahu Sag, northwestern margin of Junggar Basin[J]. Northwestern Geology, 2020,53(2):223-234.
[7] 譚開俊,王國棟,羅惠芬,等.準(zhǔn)噶爾盆地瑪湖斜坡區(qū)三疊系百口泉組儲層特征及控制因素[J].巖性油氣藏,2014,26(6):83-88.
TAN Kaijun, WANG Guodong, LUO Huifen, et al. Reservoir characteristics and controlling factors of the Triassic Baikouquan Formation in Mahu slope area, Junggar Basin[J]. Lithologic Reservoirs, 2014,26(6):83-88.
[8] 王林生,艾建華,伍順偉,等.基于擴展彈性阻抗反演的致密砂礫巖儲層定量預(yù)測技術(shù):以瑪湖凹陷達(dá)13井區(qū)為例[J].油氣地質(zhì)與采收率,2022,29(3):36-44.
WANG Linsheng, AI Jianhua, WU Shunwei, et al. Quantitative prediction technology for tight glutenite reservoirs based on EEI inversion: a case of well Da13 area in Mahu Sag[J]. Petroleum Geology and Recovery Efficiency, 2022,29(3):36-44.
[9] 王偉.準(zhǔn)噶爾盆地瑪湖凹陷百口泉組構(gòu)造特征及其對成藏和沉積控制作用研究[D].成都:西南石油大學(xué),2016.
WANG Wei. Tectonic features of the Baikouquan Formation in the Mahu Depression of the Junggar Basin and its role in reservoir formation and sedimentation control[D]. Chengdu:Southwest Petroleum University, 2016.
[10] 曲永強,王國棟,譚開俊,等.準(zhǔn)噶爾盆地瑪湖凹陷斜坡區(qū)三疊系百口泉組次生孔隙儲層的控制因素及分布特征[J].天然氣地球科學(xué),2015,26(增1):50-63.
QU Yongqiang, WANG Guodong, TAN Kaijun, et al. Controlling factors and distribution characteristics of the secondary pore reservoirs of the Triassic Baikoukquan Formation in the Mahu slope area, Junggar Basin[J]. Natural Gas Geoscience, 2015,26(sup1):50-63.
[11] 王曉輝.準(zhǔn)噶爾盆地瑪湖凹陷三疊系百口泉組儲層特征研究[D].成都:西南石油大學(xué),2016.
WANG Xiaohui. Study on the reservoir characteristics of Triassic Baikouquan Formation in Mahu Depression, Junggar Basin[D]. Chengdu: Southwest Petroleum University, 2016.
[12] 張昌民,王緒龍,朱銳,等.準(zhǔn)噶爾盆地瑪湖凹陷百口泉組巖石相劃分[J].新疆石油地質(zhì),2016,37(5):606-614.
ZHANG Changmin, WANG Xulong, ZHU Rui, et al. Litho-facies classification of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016,37(5):606-614.
[13] 單祥,鄒志文,孟祥超,等.準(zhǔn)噶爾盆地環(huán)瑪湖地區(qū)三疊系百口泉組物源分析[J].沉積學(xué)報,2016,34(5):930-939.
SHAN Xiang, ZOU Zhiwen, MENG Xiangchao, et al. Provenance analysis of Triassic Baikouquan Formation in the area around Mahu Depression, Junggar Basin[J]. Acta Sedimentologica Sinica, 2016,34(5):930-939.
[14] 白玉湖,王蘇冉,徐兵祥,等.致密砂巖束縛水飽和度和微觀孔喉結(jié)構(gòu)關(guān)系實驗研究[J].中國海上油氣,2022,34(4):65-71.
BAI Yuhu, WANG Suran, XU Bingxiang, et al. Experimental study on the relationship between irreducible water saturation and micro pore throat in tight sand stone[J]. China Offshore Oil and Gas, 2022,34(4):65-71.
[15] 張波,劉成,柳雪青,等.致密砂巖巖電參數(shù)實驗方法對比研究[J].中國海上油氣,2022,34(4):175-183.
ZHANG Bo, LIU Cheng, LIU Xueqing, et al. Comparative study on experimental methods of rock-electrical parameters of tight sandstone[J].China Offshore Oil and Gas,2022,34(4):175-183.
[16] 郭華軍,單祥,李亞哲,等.瑪湖凹陷北斜坡百口泉組儲集層物性下限及控制因素[J].新疆石油地質(zhì),2018,39(1):63-69.
GUO Huajun, SHAN Xiang, LI Yazhe, et al. Lower limits of reservoir physical properties and controlling factors of Baikouquan Formation on the northern slope of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018,39(1):63-69.
[17] 杜猛,向勇,賈寧洪,等.瑪湖凹陷百口泉組致密砂礫巖儲層孔隙結(jié)構(gòu)特征[J].巖性油氣藏,2021,33(5):120-131.
DU Meng, XIANG Yong, JIA Ninghong, et al. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag[J]. Lithologic Reservoirs, 2021,33(5):120-131.
[18] 肖易航,鄭軍,蔣燕聰,等.油氣儲層混合潤濕體系研究進(jìn)展[J].科技通報,2022,38(1):1-7,25.
XIAO Yihang, ZHENG Jun, JIANG Yancong, et al. Research progress in mixed-wet system of oil and gas reservoirs[J]. Bulletin of Science and Technology, 2022,38(1):1-7,25.
[19] 操應(yīng)長,燕苗苗,葸克來,等.瑪湖凹陷夏子街地區(qū)三疊系百口泉組砂礫巖儲層特征及控制因素[J].沉積學(xué)報,2019,37(5):945-956.
CAO Yingchang, YAN Miaomiao, XI Kelai, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019,37(5):945-956.
[20] 肖萌,袁選俊,吳松濤,等.準(zhǔn)噶爾盆地瑪湖凹陷百口泉組礫巖儲層特征及其主控因素[J].地學(xué)前緣,2019,26(1):212-224.
XIAO Meng, YUAN Xuanjun, WU Songtao, et al. Conglomerate reservoir characteristics of and main controlling factors for the Baikouquan Formation, Mahu Sag, Junggar Basin[J]. Earth Science Frontiers, 2019,26(1):212-224.
[21] 胡鑫,鄒紅亮,胡正舟,等.扇三角洲砂礫巖儲層特征及主控因素:以準(zhǔn)噶爾盆地東道海子凹陷東斜坡二疊系上烏爾禾組為例[J].東北石油大學(xué)學(xué)報,2021,45(6):15-26,5-6.
HU Xin, ZOU Hongliang, HU Zhengzhou, et al. Reservoir characteristics and main controlling factors of glutenite reservoir in fan dalta glutenite: a case study of the Upper Urho Formation of Permian in the east slope of Dongdaohaizi Sag, Junggar Basin[J]. Journal of Northeast Petroleum University, 2021,45(6):15-26,5-6.
[22] 王然,鄭孟林,楊森,等.瑪南斜坡區(qū)上烏爾禾組弱膠結(jié)砂礫巖儲層特征及控制因素[J].特種油氣藏,2022,29(1):23-30.
WANG Ran, ZHENG Menglin, YANG Sen, et al. Characteristics and controlling factors of weakly cemented glutenite reservoir in permian Upper Urho Formation, south slope of Mahu Sag[J]. Special Oil amp; Gas Reservoirs, 2022,29(1):23-30.
[23] 王飛.松遼盆地徐家圍子斷陷沙河子組致密砂礫巖儲層特征與分類評價[D].大慶:東北石油大學(xué),2020.
WANG Fei. Characteristics and classification evaluation of dense sand and conglomerate reservoirs of the Shahezi Formation in the Xujiaweizi fault trap of the Songliao Basin[D]. Daqing:Northeast Petroleum University, 2020.
[24] LI Y, LI H, CAI J, et al. The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs[J]. Capillarity, 2018,1(2):11-18.
[25] 高陽,王永詩,李孝軍,等.基于巖石孔喉結(jié)構(gòu)的致密砂巖分類方法:以濟陽坳陷古近系為例[J].油氣地質(zhì)與采收率,2019,26(2):32-41,59.
GAO Yang, WANG Yongshi, LI Xiaojun, et al. Classification method of tight sandstone based on pore throat structure: a case study of Paleogene in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency, 2019,26(2):32-41,59.
[26] XIAO Y, HE Y, ZHENG J,et al. Modeling of two-phase ow in heterogeneous wet porous media[J]. Capillarity, 2022,5(3):41-50.
[27] 李群,郭建華,郭原草,等.華池油田華152區(qū)低滲透砂巖儲層敏感性及其形成機理[J].礦物巖石,2009,29(2):78-83.
LI Qun, GUO Jianhua, GUO Yuancao, et al. Sensitivity character and its mechanism analysis of low-permeability sand bodies in H152 block of Huachi Oilfield[J]. Mineralogy and Petrology, 2009,29(2):78-83.
[28] 王曉雯.致密油藏儲層敏感性評價及主控因素研究[J].特種油氣藏,2021,28(1):103-110.
WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil amp; Gas Reservoirs, 2021,28(1):103-110.
[29] 油氣田開發(fā)專業(yè)標(biāo)準(zhǔn)化技術(shù)委員會.儲層敏感性流動實驗平價方法標(biāo)準(zhǔn):SY-T 5358-2010[S].北京:石油工業(yè)出版社,2010.
(編輯 李志芬)
收稿日期:2023-09-12
基金項目:國家自然科學(xué)基金項目(42272180);四川省自然科學(xué)基金面上項目(2024NSFSC0201)
第一作者及通信作者:王蓓(1987-),女,高級工程師,碩士,研究方向為油氣田開發(fā)及滲流機制。E-mail:fcwp1@petrochina.com.cn。
文章編號:1673-5005(2024)04-0141-08"" doi:10.3969/j.issn.1673-5005.2024.04.015