• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于GA-Elman神經(jīng)網(wǎng)絡(luò)的煤層氣臨界解吸壓力預(yù)測

    2024-01-01 00:00:00王健徐加放王博聞師浩林薛迦楊剛馬騰飛
    關(guān)鍵詞:煤層氣遺傳算法神經(jīng)網(wǎng)絡(luò)

    摘要:通過遺傳算法(GA)和Elman神經(jīng)網(wǎng)絡(luò),建立GA-Elman神經(jīng)網(wǎng)絡(luò)煤層氣臨界解吸壓力預(yù)測模型,以最小水平主應(yīng)力、儲(chǔ)層壓力、儲(chǔ)層溫度、埋深、含氣量以及見氣前日產(chǎn)水量6個(gè)儲(chǔ)層參數(shù)作為輸入數(shù)據(jù),對(duì)煤層氣臨界解析壓力進(jìn)行預(yù)測。結(jié)果表明,模型的預(yù)測值與實(shí)際值的相關(guān)系數(shù)高達(dá)0.99,平均絕對(duì)誤差僅為10.8%。

    關(guān)鍵詞:煤層氣; 臨界解析壓力; 神經(jīng)網(wǎng)絡(luò); 遺傳算法

    中圖分類號(hào):TD 712;TP 183"" 文獻(xiàn)標(biāo)志碼:A

    引用格式:王健,徐加放,王博聞,等.基于GA-Elman神經(jīng)網(wǎng)絡(luò)的煤層氣臨界解吸壓力預(yù)測[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,48(5):138-145.

    WANG Jian, XU Jiafang, WANG Bowen, et al. Prediction of critical desorption pressure of coalbed methane based on GA-Elman neural networks[J].Journal of China University of Petroleum(Edition of Natural Science),2024,48(5):138-145.

    Prediction of critical desorption pressure of coalbed methane

    based on GA-Elman neural networks

    WANG Jian1, XU Jiafang1, WANG Bowen1, SHI Haolin1, XUE Jiawen1, YANG Gang MA Tengfei2

    (1.School of Petroleum Engineering in China University of Petroleum (East China), Qingdao 266580, China;

    2.China United Coalbed Methane Company Limited, Beijing 100011, China)

    Abstract: A predictive model for the critical desorption pressure of coalbed methane (CBM) has been successfully developed, which employed a Genetic Algorithm (GA) and Elman neural network. The integrated six reservoir parameters in this model, including minimum horizontal principal stress, reservoir pressure, reservoir temperature, burial depth, gas content and daily water yield before gas breakthrough, were used as input data. And the critical desorption pressure of CBM was used as output result. It is shown that the predictive accuracy of this model is substantiated by a correlation coefficient of 0.99 between predicted and the actual values, coupled with mean absolute percentage error of 10.8%.

    Keywords: coalbed methane; critical desorption pressure; neural network; genetic algorithm

    中國煤層氣資源儲(chǔ)量非常豐富[1-3]。煤層氣主要以降壓的方式進(jìn)行開采,當(dāng)?shù)貙訅毫档矫簩託馀R界解析壓力以下時(shí),氣體開始從煤炭基質(zhì)中解析出來,然后通過儲(chǔ)層中的微孔隙進(jìn)行擴(kuò)散,最后滲流到井底,流動(dòng)產(chǎn)出[4-5]。滲透率對(duì)煤層氣單井產(chǎn)量至關(guān)重要,滲透率越高意味著壓降漏斗的范圍越大,流體流動(dòng)越容易,煤層氣產(chǎn)量越高[6]。中國煤層普遍特點(diǎn)為“高儲(chǔ)低滲”,即儲(chǔ)量高但滲透性差[7],另外煤層氣在開采過程中隨著儲(chǔ)層壓力的下降,儲(chǔ)層有效應(yīng)力也會(huì)增加,不可避免的會(huì)造成滲透率下降,影響產(chǎn)能。為保護(hù)儲(chǔ)層滲透性,在煤層氣開發(fā)前準(zhǔn)確預(yù)測煤層氣臨界解析壓力,進(jìn)而對(duì)煤層氣井產(chǎn)能進(jìn)行動(dòng)態(tài)預(yù)測是煤層氣開發(fā)過程中必不可少的一個(gè)環(huán)節(jié)[8]。煤層氣臨界解析壓力主要通過兩種方法獲得:一是直接測量,即在排采過程中利用井底壓力計(jì)讀取開始產(chǎn)氣時(shí)的井底壓力,或者通過氣柱壓力和套壓以及混合氣體液柱壓力進(jìn)行相應(yīng)計(jì)算得到[9];另一種是理論計(jì)算,如利用等溫吸附曲線結(jié)合儲(chǔ)層原始地層壓力以及含氣量,在曲線上找到對(duì)應(yīng)的臨界解吸壓力[10]。第一種方法精度高,但見氣時(shí)間與解析時(shí)間難以確定,需要進(jìn)行相應(yīng)的計(jì)算分析,該方法只適用于已見氣的井,在制定開發(fā)方案階段無法使用,并且無法對(duì)開采價(jià)值進(jìn)行評(píng)估[10];第二種方法適用性較廣,但計(jì)算得到的煤層氣臨界解吸壓力與實(shí)際解吸壓力往往不一致,誤差較大[11-12]。吳雅琴等[13]利用BP神經(jīng)網(wǎng)絡(luò)、模擬退火算法和遺傳算法預(yù)測煤礦瓦斯突出等級(jí),結(jié)果表明提出的模型能夠準(zhǔn)確、快速地預(yù)測煤與瓦斯突出。董維強(qiáng)等[14]利用循環(huán)神經(jīng)網(wǎng)絡(luò)對(duì)煤層氣產(chǎn)量進(jìn)行預(yù)測,模型預(yù)測誤差小于5%,具有良好的預(yù)測精度。楊建超等[15]利用灰色BP神經(jīng)網(wǎng)絡(luò)算法預(yù)測煤層氣直井剩余含氣量,結(jié)果表明預(yù)測數(shù)據(jù)與實(shí)測數(shù)據(jù)誤差相對(duì)較小。筆者利用遺傳算法(GA)對(duì)Elman神經(jīng)網(wǎng)絡(luò)進(jìn)行優(yōu)化,建立GA-Elman神經(jīng)網(wǎng)絡(luò)煤層氣臨界解析壓力預(yù)測模型,計(jì)算煤層氣臨界解析壓力,為準(zhǔn)確預(yù)測煤層氣臨界解析壓力提供一種新方法。

    1 GA-Elman神經(jīng)網(wǎng)絡(luò)算法原理

    Elman神經(jīng)網(wǎng)絡(luò)是一種動(dòng)態(tài)遞歸網(wǎng)絡(luò),特點(diǎn)為具有承接層,作用是儲(chǔ)存前一時(shí)刻隱含層神經(jīng)元的輸出數(shù)據(jù)并將其返回給網(wǎng)絡(luò)的輸入,使其對(duì)歷史數(shù)據(jù)具有一定的敏感性,增加了動(dòng)態(tài)信息的處理能力[16],使系統(tǒng)具有適應(yīng)時(shí)變特性的能力,增強(qiáng)了網(wǎng)絡(luò)的全局穩(wěn)定性,并且逼近能力優(yōu)于一般的神經(jīng)網(wǎng)絡(luò),收斂速度快,與BP神經(jīng)網(wǎng)絡(luò)相比,Elman神經(jīng)網(wǎng)絡(luò)能夠很好的克服訓(xùn)練時(shí)間長,計(jì)算復(fù)雜度高等缺點(diǎn)[17],具有較大的優(yōu)勢,其模型的具體結(jié)構(gòu)如圖1所示。

    由于Elman神經(jīng)網(wǎng)絡(luò)采用的是反向傳播算法來調(diào)整模型內(nèi)部的權(quán)值和閾值,因此存在易陷入局部極小值等缺點(diǎn),極易陷入局部最優(yōu)值而無法達(dá)到全局最優(yōu)。遺傳算法是模擬生物進(jìn)化的人工智能方法[18],它可對(duì)神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值進(jìn)行優(yōu)化,通過交叉和變異等操作[19],不斷地迭代進(jìn)化,最終得到最優(yōu)的權(quán)值和閾值。因此遺傳算法具有良好的全局尋優(yōu)能力,可以對(duì)復(fù)雜問題進(jìn)行充分地優(yōu)化,找到最優(yōu)解,利用遺傳算法對(duì)Elman神經(jīng)網(wǎng)絡(luò)預(yù)測模型進(jìn)行優(yōu)化,跳出局部最優(yōu),找到全局最優(yōu)值,可以補(bǔ)充Elman神經(jīng)網(wǎng)絡(luò)的不足,在一定程度上避免預(yù)測模型的缺點(diǎn),提高模型的預(yù)測精度[20],其具體實(shí)現(xiàn)步驟如下。

    步驟1:確定初始種群規(guī)模,隨機(jī)生成初始種群并對(duì)其進(jìn)行初始化,同時(shí)設(shè)置交叉概率、變異概率以及終止代數(shù)等參數(shù)。

    步驟2:計(jì)算每條染色體的適應(yīng)度值,即為對(duì)應(yīng)的預(yù)測結(jié)果與實(shí)際結(jié)果的誤差,進(jìn)而對(duì)其優(yōu)劣性進(jìn)行排序。計(jì)算公式為

    Pi=fi∑fi,

    fi=1Ei,

    Ei=∑k∑o(do-roo)2.(1)

    式中,Pi為選擇概率;fi為第i條染色體的適應(yīng)度;Ei為第i條染色體的誤差;k為學(xué)習(xí)樣本數(shù);下角o為Elman神經(jīng)網(wǎng)絡(luò)輸出節(jié)點(diǎn)數(shù);ro為目標(biāo)輸出值;d對(duì)應(yīng)的期望輸出值。

    步驟3:以第一步設(shè)置的交叉概率進(jìn)行相應(yīng)的交叉操作,沒有進(jìn)行交叉操作的染色體則進(jìn)行自我復(fù)制。具體實(shí)例見圖2。

    步驟4:為保證種群的多樣性,以設(shè)置的變異概率進(jìn)行變異操作,這一步驟可確保算法的有效性,實(shí)例示意見圖3。

    步驟5:計(jì)算每條染色體的適應(yīng)度值,同時(shí)將新產(chǎn)生的染色體帶入到原種群中,得到新種群。

    步驟6:對(duì)比每條染色體的適應(yīng)度,當(dāng)最優(yōu)的染色體符合要求時(shí),算法結(jié)束;否則,重復(fù)步驟2~5,直到滿足算法終止條件。

    整體算法流程見圖4。

    2 數(shù)據(jù)選擇及處理

    影響煤層氣臨界解析壓力(MPa)的因素有很多,其中以儲(chǔ)層壓力(MPa)、埋深(m)、含氣量(cm3/g)、儲(chǔ)層溫度(℃)、最小水平主應(yīng)力(MPa)、見氣前日產(chǎn)水量(m3/d)等為主,本文中借助文獻(xiàn)[9]中的數(shù)據(jù),通過GraphPadPrism軟件進(jìn)行相關(guān)性分析,探究上述因素對(duì)煤層氣臨界解析壓力的影響,其結(jié)果如圖5所示。

    圖5中的每個(gè)數(shù)據(jù)代表其對(duì)應(yīng)的橫坐標(biāo)與縱坐標(biāo)參數(shù)之間的相關(guān)性系數(shù),相關(guān)性越強(qiáng),系數(shù)的絕對(duì)值越大,反之越小,另外相關(guān)性系數(shù)為正數(shù)表示正相關(guān),反之為負(fù)相關(guān)。由圖可知,煤層氣臨界解析壓力與見氣前日產(chǎn)水量呈負(fù)相關(guān),與其他因素呈正相關(guān),相關(guān)性由強(qiáng)到弱分別為儲(chǔ)層壓力、儲(chǔ)層溫度、埋深和見氣前日產(chǎn)水量、最小水平主應(yīng)力、含氣量,相關(guān)性平均值為0.69,整體較高。其中儲(chǔ)層壓力與煤層氣臨界解析壓力相關(guān)性最強(qiáng),達(dá)到了0.83。另外含氣量與煤層氣臨界解析壓力相關(guān)性最弱,通過圖6所示的等溫吸附曲線[21]可知,含氣量與臨界解析壓力也密切相關(guān),相關(guān)性達(dá)到了0.4。由此可知,6個(gè)參數(shù)與煤層氣臨界解析壓力相關(guān)性較高,通過神經(jīng)網(wǎng)絡(luò)算法能夠很好地映射出兩者關(guān)系,可以作為神經(jīng)網(wǎng)絡(luò)預(yù)測模型的輸入?yún)?shù)對(duì)煤層氣臨界解析壓力進(jìn)行預(yù)測。

    利用文獻(xiàn)[9]中的數(shù)據(jù),以上述影響因素作為神經(jīng)網(wǎng)絡(luò)的輸入數(shù)據(jù),以煤層氣實(shí)際臨界解析壓力作為輸出數(shù)據(jù),建立GA-Elman神經(jīng)網(wǎng)絡(luò)預(yù)測模型,其數(shù)據(jù)特征如表1所示。

    由表1可知,一些參數(shù)由于具有不同的量綱單位,數(shù)量級(jí)差別大,如埋深和儲(chǔ)層壓力,數(shù)量級(jí)相差數(shù)百倍,如果不進(jìn)行歸一化,網(wǎng)絡(luò)模型在每一次迭代學(xué)習(xí)過程當(dāng)中都必須去適應(yīng)不同的分布,使得網(wǎng)絡(luò)的訓(xùn)練速度和訓(xùn)練效果大大降低,從而對(duì)算法學(xué)習(xí)過程產(chǎn)生相應(yīng)的影響,造成學(xué)習(xí)速率慢,學(xué)習(xí)時(shí)間長,無法快速找到合適的解,因此為了消除指標(biāo)之間的量綱影響,需要進(jìn)行數(shù)據(jù)歸一化處理[22-26],使得各參數(shù)處于同一數(shù)量級(jí),避免其影響預(yù)測模型的預(yù)測效果,加快模型收斂速度以及預(yù)測精度。對(duì)模型的輸入數(shù)據(jù)進(jìn)行歸一化處理[27],將所有的參數(shù)歸一化在區(qū)間[0,1]內(nèi),其計(jì)算公式為

    x′i=xi-xminxmax-xmin.(2)

    式中,x′i為歸一化后的數(shù)據(jù);xi為輸入數(shù)據(jù);xmin和xmax分別為對(duì)應(yīng)參數(shù)的最小值和最大值。

    選擇4種用于評(píng)價(jià)模型預(yù)測效果的指標(biāo),分別為相關(guān)系數(shù)(R2),平均絕對(duì)百分比誤差(EMAP),平均絕對(duì)誤差(EMA)以及均方根誤差(ERMS),計(jì)算公式[28-29]為

    R2=1-∑ni=1(yi-y′i)2

    ∑ni=1(y′i)2,

    (3)

    EMAP=1n

    ∑ni=1yi-y′i

    yi,(4)

    EMA=1n

    ∑ni=1yi-y′i,(5)

    ERMS=1n

    ∑ni=1(yi-y′i)2.(6)

    式中,yi為實(shí)際值;y′i為對(duì)應(yīng)的預(yù)測值;n為樣本個(gè)數(shù)。

    3 GA-Elman神經(jīng)網(wǎng)絡(luò)參數(shù)選擇

    神經(jīng)網(wǎng)絡(luò)傳遞函數(shù)以及隱含層的節(jié)點(diǎn)數(shù)對(duì)預(yù)測精度有較大的影響,須選取合適的隱層節(jié)點(diǎn)數(shù)以及傳遞函數(shù)來建立最優(yōu)的預(yù)測模型,然后利用遺傳算法對(duì)其進(jìn)行優(yōu)化。以18組數(shù)據(jù)作為訓(xùn)練集訓(xùn)練模型,5組數(shù)據(jù)作為預(yù)測集來驗(yàn)證模型的預(yù)測效果。

    3.1 神經(jīng)網(wǎng)絡(luò)隱層節(jié)點(diǎn)數(shù)選擇

    合適的隱層節(jié)點(diǎn)數(shù)對(duì)神經(jīng)網(wǎng)絡(luò)預(yù)測模型的準(zhǔn)確度至關(guān)重要[30]。采用經(jīng)驗(yàn)公式[31]確定隱層節(jié)點(diǎn)的取值范圍,公式定義為

    k=n+m+a.(7)

    式中,m為輸入層節(jié)點(diǎn)數(shù);n為輸出層節(jié)點(diǎn)數(shù);a為1到10的任意數(shù)。

    根據(jù)以上描述,分別建立不同隱層節(jié)點(diǎn)數(shù)的神經(jīng)網(wǎng)絡(luò)預(yù)測模型,并利用相關(guān)數(shù)據(jù)進(jìn)行訓(xùn)練和驗(yàn)證并對(duì)結(jié)果進(jìn)行計(jì)算分析,其結(jié)果如圖7所示。

    由圖7可知,當(dāng)隱層節(jié)點(diǎn)數(shù)為6時(shí),誤差最小,相關(guān)系數(shù)最大,預(yù)測效果最好。

    3.2 神經(jīng)網(wǎng)絡(luò)隱層傳遞函數(shù)選擇

    傳遞函數(shù)同樣對(duì)模型的預(yù)測性能有較大的影響[32]。采用圖8所示的3種傳遞函數(shù)(purelin、tansig和logsig),分別建立相應(yīng)的神經(jīng)網(wǎng)絡(luò)預(yù)測模型并驗(yàn)證其預(yù)測效果,Elman神經(jīng)網(wǎng)絡(luò)的動(dòng)量因子為09,學(xué)習(xí)率為0.05,訓(xùn)練精度為0.0001,最大迭代次數(shù)為10000;遺傳算法的個(gè)體數(shù)目為20,最大遺傳代數(shù)為50,交叉及變異概率分別為0.7和0.01。其結(jié)果如表2所示。

    由表2可知,當(dāng)隱含層傳遞函數(shù)為“l(fā)ogsig”時(shí),模型整體預(yù)測效果最好。

    4 結(jié)果分析

    4.1 模型訓(xùn)練

    圖9(a)為遺傳算法的進(jìn)化過程,其運(yùn)行50代時(shí)達(dá)到了終止條件,模型的適應(yīng)度值最小。把優(yōu)化后的權(quán)值及閾值帶入到神經(jīng)網(wǎng)絡(luò)模型中進(jìn)行進(jìn)一步訓(xùn)練,其誤差變化如圖9(b)所示??梢缘玫阶罴延?xùn)練性能達(dá)到0.1742。

    圖10為模型訓(xùn)練結(jié)果。從整體來看,訓(xùn)練數(shù)據(jù)的預(yù)測值曲線和實(shí)際值曲線具有相似的幅度和趨勢,大部分?jǐn)?shù)據(jù)差別較小,部分?jǐn)?shù)據(jù)有一定的差別,但在可接受范圍內(nèi),表明模型訓(xùn)練較為成功,對(duì)應(yīng)的權(quán)值和閾值如表3所示。

    4.2 預(yù)測結(jié)果對(duì)比

    為驗(yàn)證預(yù)測模型的預(yù)測效果,建立具有相同結(jié)構(gòu)的BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型,并對(duì)模型進(jìn)行訓(xùn)練及驗(yàn)證來進(jìn)行對(duì)比分析,結(jié)果如圖11所示。可以看出,3種模型中GA-Elman模型的預(yù)測值與實(shí)際值最接近,大部分?jǐn)?shù)據(jù)較為吻合。另外,由于神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值是隨機(jī)取值,然后利用訓(xùn)練數(shù)據(jù)對(duì)其進(jìn)行循環(huán)迭代訓(xùn)練直到達(dá)到終止條件,因此神經(jīng)網(wǎng)絡(luò)是根據(jù)訓(xùn)練數(shù)據(jù)來建立的,這往往會(huì)出現(xiàn)神經(jīng)網(wǎng)絡(luò)過度貼合訓(xùn)練數(shù)據(jù)而不能準(zhǔn)確映射出輸入?yún)?shù)與輸出參數(shù)的真實(shí)關(guān)系,進(jìn)而產(chǎn)生過擬合現(xiàn)象,導(dǎo)致測試數(shù)據(jù)的誤差比訓(xùn)練數(shù)據(jù)的誤差要大,通過圖10可知,與Elman預(yù)測模型的訓(xùn)練結(jié)果相比,GA-Elman預(yù)測模型對(duì)訓(xùn)練數(shù)據(jù)的預(yù)測效果略差,而圖11顯示GA-Elman預(yù)測模型的預(yù)測效果比Elman預(yù)測模型要好,說明GA-Elman預(yù)測模型在一定程度上避免了過擬合現(xiàn)象,適應(yīng)性更強(qiáng)。

    同時(shí),本文中還計(jì)算了3種神經(jīng)網(wǎng)絡(luò)以及利用常用的等溫吸附法(以延川南煤層為例[11])計(jì)算結(jié)果的誤差及相關(guān)系數(shù),結(jié)果如表4所示。

    通過對(duì)預(yù)測結(jié)果的計(jì)算分析可知,神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果遠(yuǎn)遠(yuǎn)優(yōu)于常用的等溫吸附法,在預(yù)測精度上有很大的優(yōu)勢。與其他神經(jīng)網(wǎng)絡(luò)預(yù)測模型相比,GA-Elman預(yù)測模型的精確度最高,相關(guān)系數(shù)達(dá)到0.99,ERMS、EMAP以及EMA分別為0.34、10.8%和03。由于使用的數(shù)據(jù)量較為有限,本文中提出的GA-Elman預(yù)測模型精確度還可通過更多的數(shù)據(jù)進(jìn)行進(jìn)一步的提升,為煤層氣開發(fā)過程當(dāng)中煤層氣臨界解析壓力預(yù)測提供更精確的數(shù)據(jù)支撐。

    5 結(jié) 論

    (1)建立煤層氣臨界解吸壓力預(yù)測模型,分析輸入?yún)?shù)與煤層氣臨界解吸壓力的相關(guān)性,選取合適的輸入?yún)?shù),同時(shí)對(duì)網(wǎng)絡(luò)結(jié)構(gòu)及傳遞函數(shù)進(jìn)行優(yōu)化篩選,對(duì)網(wǎng)絡(luò)權(quán)值進(jìn)行改進(jìn)完善,大大提升了預(yù)測精度。

    (2)與現(xiàn)有的煤層氣臨界解吸壓力預(yù)測方法相比,建立的GA-Elman神經(jīng)網(wǎng)絡(luò)預(yù)測模型準(zhǔn)確度大大提高,相關(guān)系數(shù)高可達(dá)0.99,平均絕對(duì)百分比誤差僅為10.8%,具有較好的預(yù)測效果。

    參考文獻(xiàn):

    [1] 秦勇,申建,史銳.中國煤系氣大產(chǎn)業(yè)建設(shè)戰(zhàn)略價(jià)值與戰(zhàn)略選擇[J].煤炭學(xué)報(bào),2022,47(1):371-387.

    QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of CMG industry in China[J]. Journal of China Coal Society, 2022,47(1):371-387.

    [2] 徐曉燕.基于灰色聚類的煤層氣資源評(píng)估[J].中國石油和化工標(biāo)準(zhǔn)與質(zhì)量,2021,41(12):13-14.

    XU Xiaoyan. Coal-bed methane resource assessment based on grey clustering[J]. China Petroleum and Chemical Standards and Quality, 2021,41(12):13-14.

    [3] 葉建平,侯淞譯,張守仁.“十三五”期間我國煤層氣勘探開發(fā)進(jìn)展及下一步勘探方向[J].煤田地質(zhì)與勘探,2022,50(3):15-22.

    YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology amp; Exploration, 2022,50(3):15-22.

    [4] 鐘子堯,吳曉東,韓國慶.煤層氣水平井壓力飽和度關(guān)系及半解析生產(chǎn)預(yù)測模型[J].石油科學(xué)通報(bào),2017,2(2):251-257.

    ZHONG Ziyao, WU Xiaodong, HAN Guoqing. Pressure and saturation relationship in CBM reservoir and the semi-analytical production forecast model for the horizontal well[J]. Petroleum Science Bulletin, 2017,2(2):251-257.

    [5] 史進(jìn),吳曉東,李偉超.中國煤層氣增產(chǎn)技術(shù)[J].內(nèi)蒙古石油化工,2009,35(21):89-91.

    SHI Jin, WU Xiaodong, LI Weichao. Stimulation technology of Chinas coal-bed methane[J]. Inner Mongolia Petrochemical Industry, 2009,35(21):89-91.

    [6] 劉海龍,吳淑紅.氣井產(chǎn)量遞減類型及氣藏地質(zhì)工程因素分析[J].河南科學(xué),2015,33(10):1812-1817.

    LIU Hailong, WU Shuhong. The CBM production decline type and gas reservoir geological and engineering influencing factors[J]. Henan Science, 2015,33(10):1812-1817.

    [7] 楊新樂,鞏天白,蘇暢,等. 氣-固耦合作用下煤層氣注熱開采熱量遷移規(guī)律數(shù)值模擬[J].安全與環(huán)境學(xué)報(bào),2021,21(4):1551-1558.

    YANG Xinle, GONG Tianbai, SU Chang, et al. Numerically simulated investigation for the thermal migration regularity of CBM in the process of heat injection exploitation under the gas-solid coupling condition[J]. Journal of Safety and Environment, 2021,21(4):1551-1558.

    [8] 石軍太,孫政,劉成源,等.一種快速準(zhǔn)確預(yù)測煤層氣井生產(chǎn)動(dòng)態(tài)的解析模型[J].天然氣工業(yè),2018,38(S1):43-49.

    SHI Juntai, SUN Zheng, LIU Chengyuan, et al. An analytical model for fast and accurate prediction of production performance of coalbed methane wells[J]. Natural Gas Industry, 2018,38(S1):43-49.

    [9] 胡修鳳.基于BP神經(jīng)網(wǎng)絡(luò)的沁中南煤層氣井解吸壓力預(yù)測及應(yīng)用[D].焦作:河南理工大學(xué),2017.

    HU Xiufeng. Prediction ofcoalbed methane wells desorption pressure based on BP neural networks and its applications in the central-southern qinshui basin[D]. Jiaozuo: Henan Polytechnic University, 2017.

    [10] 彭澤陽.考慮煤層氣孔隙水儲(chǔ)量計(jì)算與臨界解吸壓力確定方法[D].北京:中國石油大學(xué)(北京),2019.

    PENG Zeyang. Determiniation method for gas reserve and critical desorption pressure of coalbed methane by water effect[D]. Beijing: China University of Petroleum(Beijing), 2019.

    [11] 程偉,王平,陳磊,等.延川南煤層氣臨界解吸壓力誤差分析[J].中國煤層氣,2012,9(1):23-25.

    CHENG Wei, WANG Ping, CHEN Lei, et al. Analysis of errors obtained in calculation of CBM critical desorption pressure in Yanchuan South block[J]. China Coalbed Methane, 2012,9(1):23-25.

    [12] 朱慶忠,張小東,楊延輝,等.影響沁南—中南煤層氣井解吸壓力的地質(zhì)因素及其作用機(jī)制[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(2):41-49.

    ZHU Qingzhong, ZHANG Xiaodong, YANG Yanhui, et al. Geological factors affecting desorption pressure of CBM wells in the southern and central-southern Qinshui Basin and their influencing mechanism[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018,42(2):41-49.

    [13] WU Yaqin, GAO Ronglei, YANG Jinzhen. Prediction of coal and gas outburst: a method based on the BP neural network optimized by GASA[J]. Process Safety and Environmental Protection, 2020(133):64-72.

    [14] 董維強(qiáng),孟召平,沈振,等.基于循環(huán)神經(jīng)網(wǎng)絡(luò)的煤層氣井產(chǎn)氣量預(yù)測方法研究[J].煤炭科學(xué)技術(shù),2021,49(9):176-183.

    DONG Weiqiang, MENG Zhaoping, SHEN Zhen, et al. Research on coalbed methane well gas production forecast method based on cyclic neural network[J]. Coal Science and Technology, 2021,49(9):176-183.

    [15] 楊建超,姜在炳,范耀.基于灰色BP神經(jīng)網(wǎng)絡(luò)算法的煤層氣直井剩余含氣量模型[J].煤炭技術(shù),2021,40(6):10-13.

    YANG Jianchao, JIANG Zaibing, FAN Yao. Residualgas content model of vertical coalbed methane well based on grey BP neural network algorithm[J]. Coal Technology, 2021,40(6):10-13.

    [16] 任麗娜.基于Elman神經(jīng)網(wǎng)絡(luò)的中期電力負(fù)荷預(yù)測模型研究[D].蘭州:蘭州理工大學(xué),2007.

    REN Lina. Research onmedium-term electrical load forecasting model based on Elman neural network[D]. Lanzhou: Lanzhou University of Technology, 2007.

    [17] 丁碩,常曉恒,巫慶輝,等.Elman和BP神經(jīng)網(wǎng)絡(luò)在模式分類領(lǐng)域內(nèi)的對(duì)比研究[J].現(xiàn)代電子技術(shù),2014,37(8):12-14,18.

    DING Shuo, CHANG Xiaoheng, WU Qinghui, et al. Comparative study of elman and BP neural networks used for pattern classification[J]. Modern Electronics Technique, 2014,37(8):12-14,18.

    [18] 李增亮,孫召成,張琦,等.基于NURBS和遺傳算法的潮流能水輪機(jī)翼型優(yōu)化[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(5):141-147.

    LI Zengliang, SUN Zhaocheng, ZHANG Qi, et al. Tidal turbine hydrofoil optimization design based on NURBS and genetic algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018,42(5):141-147.

    [19] 劉兆年,趙穎,孫挺.渤海區(qū)域基于數(shù)據(jù)驅(qū)動(dòng)的鉆井提速[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,42(6):35-41.

    LIU Zhaonian, ZHAO Ying, SUN Ting. Data-drivendrilling acceleration in Bohai block[J]. Journal of Southwest Petroleum University (Science amp; Technology Edition),2020,42(6):35-41.

    [20] 鄭娟毅,崔卓,蘇海龍,等.基于改進(jìn)GA-Elman的無線智能傳播損耗預(yù)測方法[J].計(jì)算機(jī)工程,2021,47(7):155-160,167.

    ZHENG Juanyi, CUI Zhuo, SU Hailong, et al. Intelligent method based on improved GA-Elman for predicting the wireless propagation loss[J]. Computer Engineering, 2021,47(7):155-160,167.

    [21] 張瑤.熱力開采煤層氣解析滲流規(guī)律的研究[D].阜新:遼寧工程技術(shù)大學(xué),2014.

    ZHANG Yao. Study on coal-bed gas seepage through thermal exploiting[D].Fuxin: Liaoning Technical University, 2014.

    [22] 姜春雷,方碩,劉偉,等.基于卷積神經(jīng)網(wǎng)絡(luò)和遷移學(xué)習(xí)的特高含水油井生產(chǎn)預(yù)測[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(6):162-170.

    JIANG Chunlei, FANG Shuo, LIU Wei, et al. Production prediction of extra high water cut oil well based on convolution neural network and transfer learning[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023,47(6):162-170.

    [23] 李淑霞,于笑,吳伏波,等.基于神經(jīng)網(wǎng)絡(luò)的水合物藏降壓開采產(chǎn)能預(yù)測及參數(shù)優(yōu)化[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,47(1):89-97.

    LI Shuxia, YU Xiao, WU Fubo, et al. Prediction and parameter optimization of depressurization productivity of natural gas hydrate reservoirs based on neural network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023,47(1):89-97.

    [24] 鄭秋梅,商振浩,王風(fēng)華,等.基于深度神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)的海底管線水合物生成預(yù)測模型[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,44(5):46-51.

    ZHENG Qiumei, SHANG Zhenhao, WANG Fenghua, et al. Prediction model of submarine pipeline hydrate formation based on deep neural network and support vector machines[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020,44(5):46-51.

    [25] 于桂杰,趙崇,遲建偉,等.基于人工神經(jīng)網(wǎng)絡(luò)的連續(xù)油管疲勞壽命預(yù)測[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(3):131-136.

    YU Guijie, ZHAO Chong, CHI Jianwei, et al. Fatigue life prediction of coiled tubings based on artificial neural network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018,42(3):131-136.

    [26] 汪敏,楊桃,唐洪明,等.遷移深度神經(jīng)網(wǎng)絡(luò)的頁巖總孔隙度預(yù)測[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,45(6):69-79.

    WANG Min, YANG Tao, TANG Hongming, et al. Prediction for total porosity of shale based on transfer deep neural network[J]. Journal of Southwest Petroleum University (Science amp; Technology Edition), 2023,45(6):69-79.

    [27] 葉哲偉,易欽玨,羅良.基于LeNet模型的游梁式抽油機(jī)工況診斷研究[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,45(6):164-174.

    YE Zhewei, YI Qinjue, LUO Liang. Research on working condition diagnosis of beam pumping unit based on LeNet model[J]. Journal of Southwest Petroleum University (Science amp; Technology Edition), 2023,45(6):164-174.

    [28] TANG Songzhen, LI Mingjia, WANG Feilong, et al. Fouling potential prediction and multi-objective optimization of a flue gas heat exchanger using neural networks and genetic algorithms[J]. International Journal of Heat and Mass Transfer, 2020(152):119488-119488.

    [29] WEI L, WU Y Q, FU H, et al. Modeling and simulation of gas emission based on recursive modified Elman neural network[J]. Mathematical Problems in Engineering, 2018:9013839.

    [30] 廖明燕.基于神經(jīng)網(wǎng)絡(luò)多參數(shù)融合的鉆井過程狀態(tài)監(jiān)測與故障診斷[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,31(4):149-152.

    LIAO Mingyan. Drilling state monitoring and fault diagnosis based on multi-parameter fusion by neural network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2007,31(4):149-152.

    [31] 吳承昊,姚萬鵬,唐曉,等.基于BP神經(jīng)網(wǎng)絡(luò)的電場指紋點(diǎn)蝕信號(hào)補(bǔ)償系數(shù)[J].中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,45(3):142-147.

    WU Chenghao, YAO Wanpeng, TANG Xiao, et al. Compensation factor on pitting corrosion via field signature method based on BP neural network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2021,45(3):142-147.

    [32] BELAABED F, GOUDJIL K, ARABET L, et al. Utilization of computational intelligence approaches to estimate the relative head of PK-Weir for submerged flow[J]. Neural Computing and Applications, 2021,33(19):13001-13013.

    (編輯 劉為清)

    猜你喜歡
    煤層氣遺傳算法神經(jīng)網(wǎng)絡(luò)
    神經(jīng)網(wǎng)絡(luò)抑制無線通信干擾探究
    電子制作(2019年19期)2019-11-23 08:42:00
    2019年《中國煤層氣》征訂單
    中國煤層氣(2019年2期)2019-08-27 00:59:38
    煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
    中國煤層氣(2019年2期)2019-08-27 00:59:30
    基于自適應(yīng)遺傳算法的CSAMT一維反演
    一種基于遺傳算法的聚類分析方法在DNA序列比較中的應(yīng)用
    基于遺傳算法和LS-SVM的財(cái)務(wù)危機(jī)預(yù)測
    基于神經(jīng)網(wǎng)絡(luò)的拉矯機(jī)控制模型建立
    基于改進(jìn)的遺傳算法的模糊聚類算法
    復(fù)數(shù)神經(jīng)網(wǎng)絡(luò)在基于WiFi的室內(nèi)LBS應(yīng)用
    DFS-C02V煤層氣井高產(chǎn)因素簡析
    中國煤層氣(2015年6期)2015-08-22 03:25:29
    五河县| 阿瓦提县| 子洲县| 宜宾市| 政和县| 缙云县| 邮箱| 通城县| 磐安县| 象州县| 镇宁| 黑山县| 惠安县| 桂东县| 柞水县| 玉门市| 观塘区| 灌阳县| 潞西市| 渭南市| 伊吾县| 富川| 吴桥县| 连南| 甘泉县| 天全县| 新丰县| 乳山市| 密山市| 达拉特旗| 普定县| 黄梅县| 虹口区| 斗六市| 麻栗坡县| 汉寿县| 广元市| 同心县| 和政县| 内乡县| 宁晋县|