摘要:電化學(xué)檢測技術(shù)因其操作容易、儀器簡單、成本低廉、分析快速等優(yōu)點(diǎn),在醫(yī)療診斷、環(huán)境監(jiān)測、食品安全等領(lǐng)域得到廣泛的應(yīng)用.但電極的有限活性表面積和較差的抗干擾性能,使得電化學(xué)傳感技術(shù)在實(shí)際樣品分析中的靈敏度和特異性受到了一定的限制.近年來,研究者相繼發(fā)展了具有比率信號輸出的電化學(xué)分析技術(shù).相比于傳統(tǒng)電化學(xué)分析技術(shù),比率電化學(xué)傳感分析方法具有更高的靈敏度和穩(wěn)定性,更好的選擇性和再現(xiàn)性.基于此,文中綜述了比率電化學(xué)傳感器的最新研究進(jìn)展,重點(diǎn)闡述比率電化學(xué)傳感器的設(shè)計策略、信號轉(zhuǎn)換方法和實(shí)際應(yīng)用.同時,還簡要探討了比率電化學(xué)傳感器面臨的挑戰(zhàn)和未來的發(fā)展方向,旨在為新型、高效的比率電化學(xué)傳感器的設(shè)計和應(yīng)用提供一個較為全面的參考.
關(guān)鍵詞:電化學(xué)傳感器;比率策略;傳感器構(gòu)建;信號轉(zhuǎn)換
中圖分類號:O 657.1"" "文獻(xiàn)標(biāo)志碼:A """文章編號:1001-988Ⅹ(2024)06-0028-25
Ratiometric electrochemical sensors:From design to application
LI Jian-ying1,RAO Hong-hong2,LUO Ming-yue1,ZHANG Ke-hui2,
ZHANG Ke-xin1,LIU Hai-le1,XUE Zhong-hua1
(1.College of Chemistry and Chemical Engineering,Northwest Normal University,Lanzhou 730070,Gansu,China;
2.School of Chemical Engineering,Lanzhou City University,Lanzhou 730070,Gansu,China)
Abstract:Electrochemical sensors have been widely used in medical diagnosis,environmental monitoring and food safety fields due to its convenient operation,instrument miniaturization,low lost,and rapid diagnostic capabilities.However,the low active surface area and poor anti-interference performance of the electrode limit the sensitivity and specificity of the electrochemical sensing technique in the analysis of real samples.In recent years,researchers have successively developed electrochemical analysis technique with the ratio signal output mode.Ratiometric
electrochemical sensors exhibit superior sensitivity and stability,excellent selectivity and reproducibility
compared to traditional electrochemical analytical techniques.Based on above feature,the present paper provides a comprehensive review of the latest advancements in ratiometric electrochemical sensors,focusing on their design strategy,signal conversion method,and practical application.Additionally,the challenges and future development directions of ratio electrochemical sensors are briefly discussed,aiming to provide a comprehensive reference for the design and application of new and efficient ratio electrochemical sensors.
Key words:electrochemical sensor;ratiometric strategy;sensor design;signal conversion
傳統(tǒng)分析檢測技術(shù),如電感耦合等離子體質(zhì)譜(ICP-MS)[1]、高相液相色譜(HPLC)[2,3]、原子吸收光譜法(AAS)[4,5]、表面增強(qiáng)拉曼散射(SERS)[6,7]、熒光分析法(FL)[8,9]等已被廣泛應(yīng)用于疾病診斷、環(huán)境監(jiān)測、食品安全等領(lǐng)域,并顯示出了優(yōu)異的分析檢測性能.這些方法通常需要昂貴的儀器設(shè)備,且操作復(fù)雜、分析時間長、分析成本高,限制了其實(shí)際應(yīng)用[10,11].相比這些儀器分析方法,電化學(xué)分析技術(shù)具有樣品用量少、環(huán)境干擾小、分析操作簡便、成本低廉、檢測快速等優(yōu)勢[12-14],可以極大地彌補(bǔ)上述傳統(tǒng)儀器分析技術(shù)的缺點(diǎn),在原位、實(shí)時、連續(xù)監(jiān)測方面具有巨大的應(yīng)用潛力和良好的發(fā)展前景.就電化學(xué)分析技術(shù)原理而言,主要是通過分析物與電極表面識別元件的相互作用,將其轉(zhuǎn)化為可測量的電化學(xué)信號的傳感策略.通常利用分析物在電極表面發(fā)生的電化學(xué)反應(yīng),將化學(xué)或生物信息快速轉(zhuǎn)換成可識別的、且與分析物濃度變化相關(guān)的電流或電阻等電信號,從而實(shí)現(xiàn)分析物的定性或定量分析目的[15].
從信號傳導(dǎo)路徑來看,傳統(tǒng)的電化學(xué)傳感器通常為單信號輸出,故容易受到電極(表面和形態(tài))、探針負(fù)載密度以及環(huán)境條件等內(nèi)外因素的影響,從而引發(fā)一些非特異性的吸附,導(dǎo)致傳感器在重現(xiàn)性、穩(wěn)定性和可靠性等方面受到限制,有時甚至出現(xiàn)假陰性或假陽性結(jié)果[16,17].近年來,比率電化學(xué)傳感策略被相繼報道,并在提升傳統(tǒng)電化學(xué)傳感器重現(xiàn)性、穩(wěn)定性和可靠性等方面展現(xiàn)出了一定的前景.比率傳感策略最早應(yīng)用于熒光傳感領(lǐng)域,被證明可以顯著提高目標(biāo)物檢測靈敏度.隨著多學(xué)科的不斷交叉與融合,比率電化學(xué)傳感器在電化學(xué)分析中也愈來愈受到研究者的關(guān)注,在醫(yī)療診斷、環(huán)境分析、食品安全等領(lǐng)域展現(xiàn)出了優(yōu)異的應(yīng)用性能.本文系統(tǒng)總結(jié)了比率電化學(xué)傳感器的構(gòu)建及分類,重點(diǎn)介紹比率電化學(xué)信號轉(zhuǎn)換方法的設(shè)計、工作原理及最新應(yīng)用進(jìn)展,展望了其面臨的挑戰(zhàn)和未來的發(fā)展方向,以期為比率電化學(xué)傳感器的設(shè)計和應(yīng)用提供有益的幫助.
1 比率電化學(xué)傳感器的構(gòu)建及分類
比率電化學(xué)傳感器利用兩種電活性物質(zhì)在不同電位下產(chǎn)生的分析信號,通過同一傳感體系中的雙信號響應(yīng)的比值進(jìn)行目標(biāo)物的定量分析[18,19].在這種體系中,兩種分析信號將環(huán)境因素引起的信號變化值進(jìn)行歸一化處理,可有效消除系統(tǒng)干擾、提高檢測信噪比,進(jìn)而實(shí)現(xiàn)目標(biāo)物的高性能傳感[20,21].比率電化學(xué)傳感系統(tǒng)的傳感模式與單信號電化學(xué)傳感器相似,可采用微分脈沖伏安法(DPV)、方波伏安法(SWV)、循環(huán)伏安法(CV)等輸出信號[22].但對于比率電化學(xué)傳感策略而言,要求兩種信號具有高靈敏、高穩(wěn)定和高選擇性.因此,合理選擇特異性雙通道電化學(xué)信號,是比率電化學(xué)傳感器設(shè)計的關(guān)鍵[23-15].
比率電化學(xué)傳感器通常將兩個相對獨(dú)立的電化學(xué)信號進(jìn)行比值處理,進(jìn)而對目標(biāo)物進(jìn)行分析檢測.雙信號比值分析設(shè)計可有效減少個體或環(huán)境因素的影響,對目標(biāo)物給出更準(zhǔn)確、更可靠的分析結(jié)果,其特點(diǎn)是通過內(nèi)置的校正機(jī)制消除假陽性/假陰性誤差,能夠在相對較低的濃度下通過比率增強(qiáng)信號進(jìn)行分析信號的有效增敏.依據(jù)兩種電化學(xué)響應(yīng)信號對分析物的依賴性,可將比率電化學(xué)傳感器分為以下兩類:單信號依賴型和雙信號依賴型(圖1).無論哪種比率電化學(xué)傳感策略,所使用的電化學(xué)活性分子可以是內(nèi)源性電活性分子,如目標(biāo)物或目標(biāo)物誘導(dǎo)獲得的電活性分子,也可以是沉積在電極表面或分散在電解質(zhì)溶液中的外源性電活性物質(zhì).
1.1 單信號依賴型比率電化學(xué)傳感器
單信號依賴型比率電化學(xué)傳感器主要通過目標(biāo)物的特異性識別,引入依賴于目標(biāo)物濃度變化的電信號作為響應(yīng)信號,同時引入另一個獨(dú)立的且在檢
測前后強(qiáng)度幾乎保持恒定電信號,作為目標(biāo)物識別中的內(nèi)置校正信號(參比信號),以兩種信號的強(qiáng)度比值作為輸出信號,實(shí)現(xiàn)對目標(biāo)物的定量分析檢測.接著研究者成功構(gòu)建了“Turn-on”和“Turn-off”兩種信號轉(zhuǎn)導(dǎo)模式比率電化學(xué)傳感器(圖1(a)).引入的內(nèi)參比電活性分子,既為傳感界面提供了穩(wěn)定性支撐,同時又極大地降低了環(huán)境因素對傳感器分析性能帶來的誤差,顯著增強(qiáng)了檢測精確度、重現(xiàn)性和穩(wěn)定性.表1總結(jié)了最近報道的單信號依賴型比率電化學(xué)傳感器在電化學(xué)分析中的各種性能.
1.2 雙信號依賴的比率電化學(xué)傳感器
雙信號依賴型比率電化學(xué)傳感器通常采用兩種不同的電化學(xué)探針,二者通過不同的作用機(jī)制對目標(biāo)物產(chǎn)生變化趨勢相反的兩種響應(yīng)信號.一種信號顯著增強(qiáng)(Turn-on),另一種信號顯著降低(Turn-off).基于“Turn-on”和“Turn-off”兩種信號轉(zhuǎn)導(dǎo)模式的整合,可構(gòu)建“on-off”型雙信號依賴型比率電化學(xué)傳感器(圖1(b)).這類比率電化學(xué)傳感器可通過探針與電極間的距離調(diào)節(jié)予以實(shí)現(xiàn),或者通過從電極表面引入或去除探針來調(diào)節(jié)它們對目標(biāo)物的電化學(xué)響應(yīng),特別適合于復(fù)雜樣品中的特定目標(biāo)物定性識別和定量分析.表2總結(jié)了近幾年雙信號依賴型比率電化學(xué)傳感器進(jìn)展情況,重點(diǎn)對其電活性探針、目標(biāo)物、電化學(xué)信號的傳感模式、檢測限等重要參數(shù)進(jìn)行了梳理.
2 比率電化學(xué)傳感器的信號轉(zhuǎn)換
眾所周知,電化學(xué)傳感器構(gòu)建的關(guān)鍵是設(shè)計能夠特異性響應(yīng)目標(biāo)物的識別單元,進(jìn)而通過可檢測的電化學(xué)信號實(shí)現(xiàn)電化學(xué)分析檢測.其中的信號轉(zhuǎn)換策略直接決定了傳感體系對目標(biāo)物檢測的準(zhǔn)確度和靈敏度,尤其對低含量目標(biāo)物而言,可靠靈敏的信號轉(zhuǎn)換策略是實(shí)現(xiàn)靈敏分析的必要條件.盡管比率電化學(xué)傳感器已在醫(yī)學(xué)、環(huán)境、食品等領(lǐng)域得到廣泛應(yīng)用,包括對有機(jī)大分子、有機(jī)小分子和無機(jī)離子等的超靈敏檢測,但各傳感器在信號轉(zhuǎn)換方法上大同小異,基本原理都是通過識別單元與目標(biāo)分子結(jié)合前后電活性分子在電極表面電化學(xué)響應(yīng)信號的改變,進(jìn)而直接或間接來反映檢測體系中目標(biāo)分子的含量(圖2(a)).根據(jù)分析信號來源,比率電化學(xué)傳感器可分為以下三種類型:無信號源比率電化學(xué)傳感器(圖2(b)),其信號響應(yīng)分子通常是由原位生的電活性分子組成;單信號源比率電化學(xué)傳感器(圖2(c)),其信號響應(yīng)分子來自兩種不同途徑,其中一個來自傳感體系中的電活性物質(zhì),另一個來自目標(biāo)物分子; 雙信號源比率電化學(xué)傳感模式(圖2(d)),兩個信號分子均通過傳感體系體系引入.以上三種類型的比率電化學(xué)傳感器都可以實(shí)現(xiàn)比率信號輸出模式,為目標(biāo)物的靈敏識別檢測提供獨(dú)特的策略.
2.1 無信號源比率電化學(xué)傳感器
無信號源比率電化學(xué)傳感器通常由原位生成的電活性分子產(chǎn)生電化學(xué)響應(yīng)信號,而非預(yù)先添加的外源電活性分子.Rao等[105]報道了一種新型的免標(biāo)記、免修飾的裸電極比率電化學(xué)生物傳感方法,利用羥基氧化鈷(CoOOH)納米酶和商用對硝基苯磷酸鹽(PNPP)成功實(shí)現(xiàn)了堿性磷酸酶(ALP)的靈敏分析.如圖3所示,PNPP被ALP特異性水解生成對硝基苯酚(PNP)和磷酸鹽陰離子(PO3-4).由于PNP具有較高的電化學(xué)活性,它可以直接在裸玻碳電極(GCE)上表現(xiàn)出相應(yīng)的還原電流,為ALP分析檢測提供了“Turn-on”信號響應(yīng)讀數(shù).而生成的PO3-4對CoOOH的催化活性具有顯著抑制作用,通過間接設(shè)計引入CoOOH和相應(yīng)的催化底物TMB-H2O2,獲得另一響應(yīng)信號.CoOOH納米酶能有效催化TMB-H2O2體系生成TMB氧化物(oxTMB),可在GCE上產(chǎn)生良好的電化學(xué)響應(yīng)信號.由于PO3-4對CoOOH納米酶的類過氧化物酶活性有顯著的抑制作用,進(jìn)而通過抑制產(chǎn)生的oxTMB間接獲得ALP傳感的“Turn-off”電化學(xué)響應(yīng)信號.將上述直接和間接兩種原位生成的PNP和oxTMB電化學(xué)響應(yīng)信號進(jìn)行整合,實(shí)現(xiàn)比率電化學(xué)傳感分析ALP的目的.該方法可用于ALP活性的
定量診斷,具有背景響應(yīng)信號低、信噪比高、準(zhǔn)確度高的特點(diǎn).特別是其無需標(biāo)記和修飾的優(yōu)點(diǎn),為擴(kuò)展比率型電化學(xué)生物傳感提供了參考.
2.2 單信號源比率電化學(xué)傳感器
單信號源比率電化學(xué)傳感器通常具有兩個來自不同途徑的信號源,其中一個由外源電活性物質(zhì)提供,常見的有亞甲基藍(lán)(MB)、二茂鐵(Fc)、硫堇(Thi)等電活性分子和二茂鐵衍生物等電化學(xué)基底,另一個則是傳感體系中的內(nèi)源性電活性物質(zhì),可以是電活性目標(biāo)物,也可以是非電活性目標(biāo)物誘導(dǎo)下通過特異性反應(yīng)產(chǎn)生的電活性分子.
2.2.1 目標(biāo)物直接電化學(xué)信號轉(zhuǎn)換
目標(biāo)物直接電化學(xué)信號轉(zhuǎn)換策略主要利用目標(biāo)物和外源電活性分子在電極表面發(fā)生的直接電化學(xué)反應(yīng),從而獲得雙重氧化還原信號.例如,在電解質(zhì)體系中直接引入外源電活性參比探針對乙酰氨基酚(PA)、二茂鐵(Fc)、硫堇(Thi)等和目標(biāo)物銅離子(Cu2+)、阿霉素(Dox)、對槲皮素(Qu)等[35,53,106],實(shí)現(xiàn)目標(biāo)物的簡單快速比率分析檢測.這種策略不僅穩(wěn)定性和重現(xiàn)性好,且通用性強(qiáng).但這種響應(yīng)信號由于直接來源于電極表面發(fā)生的直接電化學(xué)氧化還原過程,其選擇性一般較差,靈敏度較低.針對這一缺點(diǎn),科研工作者將特異性識別作用引入到比率電化學(xué)傳感器的設(shè)計中,利用其特異性實(shí)現(xiàn)目標(biāo)物的選擇性分析檢測.例如,利用PCN-333(Al)MOFs納米材料(PCN為多孔配位網(wǎng)絡(luò))選擇性地將目標(biāo)物抗壞血酸(AA)聚集到其孔隙[33]、分子印記聚合膜(MIP)的三維結(jié)構(gòu)與模板吡蟲啉(IMI)良好的選擇性互補(bǔ)作用[86]、功能化的客體β-環(huán)糊精(β-CD)對主體IMI較好的選擇性富集性能等[107],最終實(shí)現(xiàn)目標(biāo)物的高選擇性比率分析檢測.
越來越多的研究表明,基于目標(biāo)物直接電化學(xué)信號轉(zhuǎn)換的比率電化學(xué)傳感器的重現(xiàn)性和可靠性較高,且具有設(shè)計簡單、檢測步驟少、外源電活性分子來源廣泛等優(yōu)勢.但是,由于其往往需要電活性分子與電極表面之間具有良好的接觸,以實(shí)現(xiàn)直接電化學(xué)反應(yīng)并產(chǎn)生相應(yīng)的分析信號,通常需要將電極界面以及整個傳感過程進(jìn)行特殊的設(shè)計.例如,Chen等[108]利用半互補(bǔ)適配體對和信號開關(guān)比率策略的協(xié)同作用,實(shí)現(xiàn)了貽貝中鎘(Cd2+)的靈敏檢測(圖4).單鏈DNA與適配體鏈將內(nèi)參比分子PTh-Au與目標(biāo)物Cd2+捕獲于AuNPs修飾電極表面,然后通過競爭作用得到減弱和增強(qiáng)的兩種電化學(xué)響應(yīng)信號.但設(shè)計中的難度和分析過程的復(fù)雜耗時,以及部分電活性目標(biāo)物在氧化還原過程中電子傳遞緩慢等問題,將是此類比率電化學(xué)傳感器今后發(fā)展中必須面臨的主要問題.
2.2.2 目標(biāo)物誘導(dǎo)電活性分子信號轉(zhuǎn)換
目標(biāo)物誘導(dǎo)電活性分子信號轉(zhuǎn)換是指電活性目標(biāo)物與反應(yīng)底物之間發(fā)生特異性反應(yīng),生成或釋放具有電化學(xué)活性的一種電活性分子,進(jìn)而結(jié)合外源電活性物質(zhì)分子得到兩種電化學(xué)響應(yīng)信號,借助各自氧化還原電位下的峰電流比值定量分析目標(biāo)物,從而利用兩電活性分子各自氧化還原電位下的響應(yīng)信號實(shí)現(xiàn)定量分析檢測.例如,Goggins等[109]設(shè)計了一種新型的堿性磷酸酶(ALP)的比率電化學(xué)傳感器(圖5(a)),實(shí)現(xiàn)ALP活性的高靈敏檢測.Kumaravel
等[110]利用結(jié)合甲醛氧化潛伏探針(FOLP)和雙羥基甲醛氧化潛伏探針(HFOLP),構(gòu)建了一種即時檢測甲醛的比率電化學(xué)傳感平臺(圖5(b)),對特異性識別甲醛展現(xiàn)了優(yōu)異的選擇性和靈敏度.
目標(biāo)誘導(dǎo)傳感模式盡管具有操作簡單、選擇性高等優(yōu)點(diǎn),但對傳感界面的設(shè)計要求較高,往往涉及復(fù)雜的材料制備和界面修飾過程,因而在實(shí)際商業(yè)化應(yīng)用方面仍然存在著諸多挑戰(zhàn).研究者嘗試將[Fe(CN)6]3-,[Ru(NH3)6]3+等商業(yè)化的電活性探針引入到此類設(shè)計當(dāng)中,不僅提高了檢測的靈敏度,同時也簡化了傳感界面的設(shè)計,為其實(shí)際應(yīng)用奠定了基礎(chǔ).例如,Gai等[70]將[Ru(NH3)6]3+(Ru(Ⅲ))巧妙地包封在帶正電的介孔二氧化硅納米顆粒(PMSN)的孔隙中,通過目標(biāo)物觸發(fā)Ru(Ⅲ)釋放和氧化還原循環(huán),構(gòu)建了一種無標(biāo)記、無酶的比率均相電化學(xué)microRNA生物傳感平臺(圖6),實(shí)現(xiàn)了對microRNA的高效檢測.由于封裝電活性探針的納米材料,有時候也可能在電極表面發(fā)生一定的電化學(xué)反應(yīng),因而存在較高的背景信號并影響傳感器的分析檢測性能.
2.3 雙信號源比率電化學(xué)傳感器
雙信號源比率電化學(xué)傳感器通常不含內(nèi)源性電活性物質(zhì),而是依靠外源性電活性物質(zhì)產(chǎn)生信號,通過比較兩個信號的強(qiáng)度變化來提高檢測的準(zhǔn)確性和可靠性,這種設(shè)計可有效減少非特異性吸附和背景信號的影響,在應(yīng)用中展現(xiàn)出高穩(wěn)定性和重現(xiàn)性.
2.3.1 共價標(biāo)記電活性分子信號轉(zhuǎn)換
共價標(biāo)記電活性分子信號轉(zhuǎn)換是指通過共價作用將電活性分子標(biāo)記于識別元件特定部位,通過目標(biāo)物誘導(dǎo)發(fā)生雜交反應(yīng)引起探針構(gòu)象和傳感界面空間位阻變化,實(shí)現(xiàn)傳感分析事件的信號轉(zhuǎn)換.基于標(biāo)記的DNA、適配體和抗體的比率電化學(xué)傳感器,由于具有高選擇性和高靈敏度而得到了廣泛的應(yīng)用,其中一些電化學(xué)探針Fc、MB和具有良好氧化還原活性的納米粒子常被用作電活性標(biāo)記分子[77,111].
眾所周知,核酸分子在分子識別方面具有非常高的選擇性,已被廣泛用于新型比率電化學(xué)傳感器,如具有單鏈構(gòu)象和雙螺旋構(gòu)象[112,113]的核酸結(jié)構(gòu),再如發(fā)夾型、g-四連體、DNA walker、十字型等豐富的二維結(jié)構(gòu)在轉(zhuǎn)錄調(diào)控機(jī)制中發(fā)揮著重要作用,也已被開發(fā)設(shè)計并應(yīng)用于各傳感分析平臺中[114-117].同時,目標(biāo)物誘導(dǎo)的DNA/適配體構(gòu)象變化也可用于比率電化學(xué)傳感器的設(shè)計.因?yàn)镈NA/適配體的構(gòu)象變化可以改變氧化還原電活性分子與電極表面之間的距離,進(jìn)而導(dǎo)致電活性分子在電極表面產(chǎn)生特征電流變化等響應(yīng)信號.Deng等[115]為了使電化學(xué)DNA傳感器更穩(wěn)定、可重復(fù)性更強(qiáng),將比率分析技術(shù)應(yīng)用于DNA傳感器領(lǐng)域.目標(biāo)物DNA(T-DNA)誘導(dǎo)MB探針和Fc參比探針標(biāo)記的發(fā)夾DNA(HP DNA)結(jié)構(gòu)變化,在構(gòu)象轉(zhuǎn)導(dǎo)過程中,MB與電極表面之間的距離發(fā)生明顯變,但其對Fc沒有影響.最終觀察到MB在-0.3 V的峰電流(IMB)隨著T-DNA濃度的增加而下降,而Fc在0.3 V處的峰電流(IFc)幾乎保持恒定,得到的比率電化學(xué)傳感器對T-DNA檢測限低至25.1 pmol·L-1(圖7(a))[118].
Du等[118]設(shè)計了一種用于生物標(biāo)志物粘蛋白1(MUC1)檢測的高效比率電化學(xué)傳感器,將Fc標(biāo)記的信號探針(Fc-sP)和MB標(biāo)記的內(nèi)參比探針(MB-rP)結(jié)合在一個發(fā)夾DNA上,開發(fā)了基于雙信號標(biāo)記的發(fā)夾結(jié)構(gòu)DNA(dhDNA)比率探針.該dhDNA比率探針將sP和rP進(jìn)行有效整合,保證了sP和rP在同一傳感界面上具有完全相同的修飾條件和相互依賴性.該比率探針具有高重現(xiàn)性、高穩(wěn)定性和較強(qiáng)的消除環(huán)境干擾的能力(圖7(b)).Ma等[119]基于鉛離子(Pb2+)高特異性依賴的DNAzyme和雙信號輸出模式,設(shè)計了一種簡單、新穎的一步觸發(fā)式Pb2+比率電化學(xué)生物傳感器.該生物傳感器由硫代亞甲基藍(lán)標(biāo)記的催化DNA探針(MB-P1)和互補(bǔ)二茂鐵標(biāo)記底物DNA探針(Fc-P2)自組裝而成,對Pb2+分析檢測具有高選擇性和重現(xiàn)性.此外,還可以通過選擇相應(yīng)的DNAzyme探針,將其擴(kuò)展到其他應(yīng)用場景.
上述共價標(biāo)記電活性分子信號轉(zhuǎn)換體系中,由于信號轉(zhuǎn)換機(jī)制與特定的構(gòu)象變化有關(guān),同時其分析檢測是一個快速的單步過程,因而在復(fù)雜的多組分樣品的快速檢測中具有一定的應(yīng)用優(yōu)勢.然而,通過雜交產(chǎn)生的響應(yīng)缺乏放大過程,因而比率電化學(xué)傳感器的檢測靈敏度仍然受限.
針對比率電化學(xué)傳感器靈敏度低的問題,研究者提出通過DNA雜交與擴(kuò)增策略實(shí)現(xiàn)分析信號的放大增敏,已報道的相關(guān)技術(shù)主要有核酸酶輔助放大、雜交鏈?zhǔn)椒磻?yīng)、催化發(fā)夾自組裝等[120-125].例如,Zhou等[126]設(shè)計了一種基于T7核酸外切酶(T7 Exo)輔助的均相目標(biāo)物循環(huán)擴(kuò)增偶聯(lián)發(fā)夾自組裝過程,可觸發(fā)具有顯著信號放大效應(yīng)的miRNA比率電化學(xué)生物傳感器(圖8(a));Yuan等[127]構(gòu)建了基于雙特異性核酸酶雙擴(kuò)增機(jī)制和雜交鏈?zhǔn)椒磻?yīng)的比率電化學(xué)傳感器,實(shí)現(xiàn)了microRNA的準(zhǔn)確和靈敏檢測(圖8(b));Zhao等[128]設(shè)計了基于靶標(biāo)觸發(fā)的DNA 與Exo Ⅲ輔助循環(huán)偶聯(lián)的雙擴(kuò)增策略,發(fā)展了一種外泌體超靈敏定量比率電化學(xué)傳感(圖8(c)).上述報道的信號放大策略通常反應(yīng)條件敏感,設(shè)計難度大,且往往需專業(yè)的操作人員,不宜廣泛應(yīng)用于臨床診斷和即時檢測領(lǐng)域.
近年來,通過對抗體實(shí)行共價標(biāo)記而構(gòu)建比率電化學(xué)免疫傳感器也有相繼報道[129-131].這些方法通常將電活性物質(zhì)直接標(biāo)記于識別元件抗體上構(gòu)成識別探針,其中抗體主要用于特異性捕獲和識別目標(biāo)物分子.目標(biāo)物與識別抗體的特異性結(jié)合會進(jìn)一步導(dǎo)致電極界面產(chǎn)生空間位阻效應(yīng),進(jìn)而實(shí)現(xiàn)比率電化學(xué)信號響應(yīng).例如,Miao等[87]以SiO2-Fc-COOH-Au-Ab1復(fù)合物為捕獲探針,以UiO-66-TB-Ab2為識別響應(yīng)探針,構(gòu)建了一種“三明治”夾心結(jié)構(gòu)的降鈣素原(PCT)比率電化學(xué)免疫傳感器(圖9(a));Chen等[132]利用空心PtCoNi和Co/N/C NSs的結(jié)構(gòu)特性,以Fc和Thi為電化學(xué)探針,實(shí)現(xiàn)了NT-proBNP的超靈敏比率免疫傳感(圖9(b)).該體系中的雙抗體對目標(biāo)物表現(xiàn)出特異性雙識別效應(yīng),在一定程度改善傳感器的分析檢測性能.這種策略可以根據(jù)目標(biāo)物改變不同的識別抗體,因而具有較強(qiáng)的拓展性,在即時檢測和生物分析中具有廣闊的應(yīng)用前景.
適配體一般在附著特定靶點(diǎn)時具有較高的選擇性,因而作為一種可靠的識別元件被廣泛用于生物分析技術(shù)中[133].與抗體相比,大多數(shù)適配體具有較強(qiáng)的靶向親和力和識別特異性,且可以多樣化進(jìn)行標(biāo)記.近年來,研究者也嘗試將適配體引入到比率電化學(xué)傳感器的構(gòu)建中,以期實(shí)現(xiàn)更高特異性和靈敏度的傳感應(yīng)用.例如,Chen等[134]基于Au@Pd-P(BBY)和AuPt NAs的雙信號放大策略,
構(gòu)建了一種用于神經(jīng)元特異性烯醇化酶(NSE)電化學(xué)檢測的適配體比率電化學(xué)傳感器.該適配體傳感器具有寬的線性范圍和低的檢出限,更為重要的是,與傳統(tǒng)電化學(xué)免疫傳感器相比,適配體比率電化學(xué)傳感器具有成本低、檢測快速等優(yōu)點(diǎn),在臨床診斷和食品安全等領(lǐng)域具有潛在的應(yīng)用價值.
2.3.2 電活性分子直接信號轉(zhuǎn)換
基于共價標(biāo)記電活性分子的信號轉(zhuǎn)換策略,在比率電化學(xué)傳感器的構(gòu)建過程中往往需要繁瑣復(fù)雜的標(biāo)記過程.針對這一局限,研究者提出了一種簡便、無標(biāo)簽的電活性分子直接信號轉(zhuǎn)換策略.這種方式一般無需對電活性分子做進(jìn)一步的處理,只需借助核酸分子、或識別主體對目標(biāo)物進(jìn)行分析檢測,因而具有一定的便捷性和實(shí)用性.常用的電活性分子主要有MB、Fc、電活性納米粒子MnO2-Ru(Ⅲ)等,這些分子一般對單鏈/雙鏈核酸分子或識別客體都具有較高的選擇性,可通過嵌入或插入作用結(jié)合于核酸分子的雙螺旋溝槽或堿堿基對中間.通常要求電活性分子與雙鏈核酸分子的結(jié)合能力要明顯強(qiáng)于其與單鏈核酸分子的結(jié)合能力,通過目標(biāo)物雜交前后響應(yīng)信號的差異實(shí)現(xiàn)分析檢測.例如,利用MB可嵌入雙鏈DNA的磷酸骨架中,且具有較高的結(jié)合親和力這一特性[135],Liu等[136]成功構(gòu)建了一種無標(biāo)記比率電化學(xué)DNA傳感器,通過DNA金屬化介導(dǎo)的雜交鏈?zhǔn)椒磻?yīng)(HCR)來監(jiān)測谷胱甘肽(GSH)(圖10(a)).Yang等[94]采用了電極界面自氧化還原信號和電活性分子同時作為比率信號,構(gòu)建了一種無標(biāo)記的比率電化學(xué)DNA傳感策略(圖10(b)).隨著研究的深入,研究者發(fā)現(xiàn)選擇電活性分子是此類比率傳感器構(gòu)建的關(guān)鍵,一般需要電活性分子對識別單元具有高選擇性,且具有較好的穩(wěn)定性和較強(qiáng)的電化學(xué)活性.從這個意義而言,常見的電化學(xué)探針如MB,F(xiàn)c,[Fe(CN)6]3-等并不是首選,這也將或是未來比率電化學(xué)傳感領(lǐng)域的一個重要發(fā)展方向.
電活性分子也可以通過特定的主-客體相互作用結(jié)合在宿主的空腔內(nèi),借助這一作用也可以設(shè)計相應(yīng)的比率電化學(xué)傳感器.例如,F(xiàn)c可以作為客體分子整合到宿主分子β-環(huán)糊精(β-CD)空腔內(nèi),An等[137]開發(fā)了一種基于硼酸識別糖蛋白和硅銀核殼納米粒子(SiO2@Ag)放大信號的比率電化學(xué)傳感器,用于高靈敏度檢測糖蛋白.Fu等[138]利用循環(huán)放大技術(shù),構(gòu)建了一種高靈敏檢測B族鏈球菌(GBS)的環(huán)介導(dǎo)等溫擴(kuò)增(LAMP)比率電化學(xué)傳感器.如圖11所示,將硫代β-環(huán)糊精(SH-β-CD)通過Au-S鍵固定在AuNPs@MoS2修飾電極表面,繼而通過特異性引物擴(kuò)增獲得豐富Fc修飾產(chǎn)物,而電化學(xué)分子Fc則通過與β-CD間的主客相互作用連接到其空腔內(nèi).此外,MB嵌入到LAMP的雙鏈堿基對間,產(chǎn)生明顯的電化學(xué)信號.該傳感器具有較高的靈敏度和良好的重現(xiàn)性,在臨床病原分子診斷領(lǐng)域具有廣闊的應(yīng)用前景.電活性分子直接與主體分子結(jié)合而被引入傳感體系,無需任何標(biāo)記過程,因而具有操作步驟少、分析速度快的優(yōu)點(diǎn).
2.3.3 酶分子和納米材料信號轉(zhuǎn)換
比率電化學(xué)傳感器一般具有較高的分析靈敏度,但是對于一些特定的低含量目標(biāo)物的分析檢測,尚需通過信號放大設(shè)計以期實(shí)現(xiàn).酶分子與納米材料的結(jié)合使用,為信號轉(zhuǎn)換提供了新的可能性.通過利用酶的催化作用,結(jié)合納米材料的放大效果,可以有效提高傳感器的檢測限.常用于比率電化學(xué)傳感器信號轉(zhuǎn)換的酶主要有氧化還原酶,如辣根過氧化物酶、葡萄糖氧化酶、納米酶等.其中納米酶具有更多的活性位點(diǎn)、優(yōu)越的電導(dǎo)率和可控的催化性能,將其構(gòu)筑到電極表面形成催化層,可進(jìn)一步提高電極界面的電子傳輸速率,從而實(shí)現(xiàn)電化學(xué)響應(yīng)信號的放大.Song等[139]基于GOD/AuNPs/Cu-BTC MOFs/3D-KSCs集成電極構(gòu)建了一種比率電化學(xué)生物傳感器.AuNPs用于固定GOD、改善Cu-MOFs的導(dǎo)電性并催化O2的還原.均勻排列的八面體Cu-BTC MOFs催化氧化葡萄糖為參比信號(圖12).該傳感器在葡萄糖目標(biāo)分子檢測中展現(xiàn)出了高選擇性和良好的重現(xiàn)性,為生物傳感領(lǐng)域低豐度目標(biāo)物檢測提供了一種新的方法.由于納米材料可以通過其功能位點(diǎn)與電活性信號分子進(jìn)行共軛,進(jìn)而可以實(shí)現(xiàn)有效的信號放大.但是,復(fù)雜生物環(huán)境下的非特異性吸附和生物污染會導(dǎo)致傳感器靈敏度降低、檢測誤差擴(kuò)大.因此,探索具有特異性識別性能的功能納米材料,將是利用酶分子和納米材料信號轉(zhuǎn)換構(gòu)建比率電化學(xué)傳感器的一個重要發(fā)展方向.
2.3.4 “聯(lián)用式”信號轉(zhuǎn)換
現(xiàn)有的比率信號轉(zhuǎn)換方法大多基于單一模式轉(zhuǎn)換策略,在構(gòu)建比率電化學(xué)傳感器的過程中仍然面臨著一些局限.將不同的信號轉(zhuǎn)換方法進(jìn)行聯(lián)用設(shè)計,有望提高分析傳感性能.最近的研究表明,基于“聯(lián)用式”信號轉(zhuǎn)換模式的設(shè)計策略已成為比率電化學(xué)傳感器研究的熱點(diǎn).例如,共價標(biāo)記-電活性分子直接信號轉(zhuǎn)換、共價標(biāo)記-納米材料信號轉(zhuǎn)換等.Tian等[80]利用MB-hDNA和CoFe2O4納米酶為信號放大元件,以VS2/AuNPs納米復(fù)合材料為傳感平臺,開發(fā)了一種超靈敏卡那霉素(Kana)比率電化學(xué)傳感器(圖13(a)).該傳感器大大降低了分析成本和操作的復(fù)雜性,在實(shí)際樣檢測中具有良好的應(yīng)用潛力.Yang等[140]設(shè)計了一種基于比率策略偶聯(lián)雜交鏈反應(yīng)(HCR)輔助無酶擴(kuò)增的8-氧鳥嘌呤DNA糖基化酶1(hOGG1)超靈敏電化學(xué)傳感器(圖13(b)).hOGG1可以特異性識別電極表面修飾的DNA探針上的hOGG1位點(diǎn),釋放第一個電化學(xué)報告分子Fc,并觸發(fā)HCR,其產(chǎn)物可以吸附大量第二電活性報告分子[Ru(NH3)6]3+,導(dǎo)致Fc和[Ru(NH3)6]3+的電化學(xué)信號發(fā)生明顯的減弱和增強(qiáng),最終實(shí)現(xiàn)hOGG1的超靈敏檢測.該策略使用酶促反應(yīng)進(jìn)行擴(kuò)增,操作簡單,成本低廉,在生物分析、早期臨床診斷和生物醫(yī)學(xué)研究等方面具有廣闊的應(yīng)用前景.
3 比率電化學(xué)傳感器的分析應(yīng)用
隨著經(jīng)濟(jì)全球化的發(fā)展,工業(yè)、農(nóng)業(yè)、醫(yī)療等規(guī)模越來越大,對可靠的分析和檢測技術(shù)的需求日益增長.人們對不同基質(zhì)中痕量分析物的廣泛關(guān)注,致使新型分析檢測技術(shù)得到迅猛發(fā)展.其中,比率電化學(xué)分析技術(shù)因其操作簡單、準(zhǔn)確性和靈敏度高、成本低廉和用戶友好等優(yōu)勢,已成為檢測靶標(biāo)分子的理想方法.
3.1 比率電化學(xué)傳感器在醫(yī)療診斷中的分析應(yīng)用
比率電化學(xué)傳感器因具有靈敏度高、專一性強(qiáng)、響應(yīng)速度快等特點(diǎn)為醫(yī)學(xué)研究、臨床診斷及藥物分析等提供了一種簡單準(zhǔn)確的檢測方法.Zhang等[141]首次報道了一種基于Mxene和CuNPs材料整合的用于藥片和人血清樣品中吡羅昔康檢測的新型比率電化學(xué)傳感平臺.該傳感平臺不僅利用MXene對MB的強(qiáng)吸附作用獲得穩(wěn)定的參比信號,而且利用Mxene大的比表面積和快速電子傳遞能力和CuNPs良好的電催化能力之間的協(xié)同作用,顯著提高了傳感器的傳感性能.所提出的比率電化學(xué)傳感器具有制備簡單、重現(xiàn)性好、穩(wěn)健性強(qiáng)、適用性廣等特點(diǎn),因此,可以成為多個領(lǐng)域中有利的分析工具.
DNA納米結(jié)構(gòu)和納米器件的柔性及可控組裝特征,使得DNA納米技術(shù)在分子計算、納米醫(yī)學(xué)和生物傳感等領(lǐng)域得到了廣泛的應(yīng)用.其中,電化學(xué)DNA生物傳感器具有易制備、信號簡單、易于小型化和集成化等優(yōu)勢,在便攜式生物分析物檢測裝置設(shè)計開發(fā)中極具優(yōu)勢[142,143].Ren等[82]基于免疫反應(yīng)觸發(fā)的DNA組裝,報道了一種靈敏的比率電化學(xué)傳感器,用于一步法快速靈敏檢測蛋白質(zhì)生物標(biāo)志物前列腺特異性抗原(PSA).如圖14所示,將Fc標(biāo)記的發(fā)夾DNA(HP DNA)固定在金電極上構(gòu)建了傳感界面.目標(biāo)物PSA可觸發(fā)MB標(biāo)記的DNA1-抗體1(Ab1)探針和DNA2-Ab2探針和蛋白之間的夾心免疫反應(yīng),進(jìn)而引起HP DNA的構(gòu)象展開,在傳感界面上形成三臂DNA結(jié)構(gòu).DNA組裝導(dǎo)致Fc遠(yuǎn)離電極,MB接近電極,從而產(chǎn)生可測定的比率電化學(xué)信號.此外,該比率電化學(xué)傳感器還可以通過改變親和探針,很容易地拓展到其他蛋白質(zhì)的分析檢測中,在現(xiàn)場檢測和生物分析中有著廣泛的應(yīng)用潛力.
腫瘤標(biāo)志物監(jiān)測和動態(tài)評估對于疾病早期診斷和腫瘤患者的健康管理具有十分重要的意義,然而繁瑣的樣品提取和富集過程對其準(zhǔn)確診斷仍然是一個巨大障礙.腫瘤外泌體作為一種新型的癌癥生物標(biāo)志物,已成為一種有希望的非破壞性早期癌癥檢測指標(biāo).Yang等[144]基于DNA四面體超支化雜交鏈反應(yīng)(HCR)和[Ru(NH3)6]3+(Ru(Ⅲ)),[Fe(CN)6]3-(Fe(Ⅲ))信號報告探針,開發(fā)了一種免固定化的比率電化學(xué)傳感器,用于復(fù)雜生物樣本中精確捕獲和直接定量腫瘤外泌體.如圖15所示,當(dāng)腫瘤外泌體被雙適配體識別系統(tǒng)捕獲后,膽固醇修飾的DNA探針(P3)將固定在外泌體表面,從而
激活DNA四面體超支化雜交鏈反應(yīng)(HCR),經(jīng)磁
分離得到三明治復(fù)合物.該復(fù)合物可以通過靜電作用結(jié)合大量Ru(Ⅲ),致使再次磁分離后上清液中殘留少量未結(jié)合的Ru(Ⅲ).Ru(Ⅲ)被快速電還原為Ru(Ⅱ), Ru(Ⅱ)與Fe(Ⅲ)之間的氧化還原反應(yīng)被阻止,導(dǎo)致IFe(Ⅲ)/IRu(Ⅲ)的電化學(xué)信號明顯提高,從而實(shí)現(xiàn)了腫瘤外泌體的高靈敏度、高選擇性檢測.這種策略可以有效避免外部因素和繁瑣的探針固定過程所造成的測量誤差,進(jìn)一步為癌癥的早期無損診斷和癌癥治療效果的監(jiān)測提供新方法,為臨床樣本分析提供了良好的可行性.
3.2 比率電化學(xué)傳感器在環(huán)境污染物分析中的應(yīng)用
全球面臨的環(huán)境污染問題(如重金屬離子富集、真菌毒素污染、危險化學(xué)品泄露等)進(jìn)一步推動了污染物分析技術(shù)的發(fā)展.隨著新材料在電化學(xué)分析方法中的不斷應(yīng)用,新型比率電化學(xué)傳感器因其穩(wěn)定、快速、可實(shí)時監(jiān)測等優(yōu)勢,在痕量環(huán)境污染物的分析檢測中展現(xiàn)出十分重要的作用.
Xiong等[145]設(shè)計了一種基于T-Hg-T結(jié)構(gòu)的比率型電化學(xué)Hg2+傳感器,在目標(biāo)物Hg2+存在的情況下,形成T-Hg-T結(jié)構(gòu),促使標(biāo)記有MB的發(fā)夾探針與Fc標(biāo)記的T-rich探針雜交(圖16(a)).由于發(fā)夾探針的構(gòu)象變化及T-rich探針的成功雜交,MB與電極表面的距離增加,而Fc被引入到電極表面,從而導(dǎo)致MB的信號下降,F(xiàn)c的信號增強(qiáng).通過測量MB與Fc的信號比值,實(shí)現(xiàn)了對Hg2+的比率型電化學(xué)檢測.所開發(fā)的基于DNA的電化學(xué)生物傳感器具有良好的選擇性和重現(xiàn)性,并且通過添加半胱氨酸和Mg2+可以很容易地再生,在實(shí)際環(huán)境樣品中對Hg2+進(jìn)行靈敏監(jiān)測具有廣闊的應(yīng)用前景.己烯雌酚(DES)是一種廣
泛應(yīng)用于畜牧業(yè)的人工合成非甾體雌激素,已被確定為人類致癌物,在環(huán)境和食品中均有殘留.Xia等[146]認(rèn)為傳統(tǒng)的基于分子印跡聚合物(MIP)的電化學(xué)傳感器通常容易受到個人操作、電極表面和溶液條件變化的影響,所以他們引入Cu2O納米顆粒(Cu2O NPs)作為內(nèi)參探針,采用比率策略實(shí)現(xiàn)了DES的可靠檢測(圖16(b)).隨著DES的結(jié)合,DES的電流增大,而Cu2O NPs的電流減小,這可能是由于占據(jù)MIPs空腔導(dǎo)致電子轉(zhuǎn)移部分受阻.在這項(xiàng)研究中,納米材料表現(xiàn)出的功能為:(i)改善MIPs的力學(xué)性能;(ii)提高電極的性能;(iii)作為參考信號.
如上所述,比率電化學(xué)傳感策略可以有效地減少分析信號的波動,進(jìn)而提高傳感器的穩(wěn)定性.但對于一些復(fù)雜環(huán)境樣本中的污染物檢測,電極的污垢會降低分析信號強(qiáng)度,通過功能納米材料修飾電極的使用,有望解決這一問題.
3.3 比率電化學(xué)傳感器在食品安全中的分析應(yīng)用
近年來,保障人們舌尖上的安全已經(jīng)成為全球關(guān)注的熱點(diǎn)問題.比率電化學(xué)傳感器以其高效、快速、靈敏、可靠以及可在線分析等優(yōu)點(diǎn),在食品成分、食品添加劑、有毒有害成分等的分析檢測中得到了廣泛的應(yīng)用.
準(zhǔn)確測量特定營養(yǎng)素含量對于確保食品的質(zhì)量安全,了解食品的營養(yǎng)價值和健康益處等具有重要的意義.Yin等[147]設(shè)計了一種新型比率電化學(xué)傳感器,將聚亞甲基藍(lán)(PMB)電聚合到花狀鎳基金屬有機(jī)框架(Ni-TPA MOFs)上,用于精確檢測咖啡酸(CAE).該傳感器具有較高的靈敏度和選擇性,可以有效地克服食品樣品的潛在干擾.檢測食品添加劑對確保食品安全、保護(hù)消費(fèi)者權(quán)益、增強(qiáng)公眾信任、符合監(jiān)管標(biāo)準(zhǔn)和促進(jìn)食品工業(yè)發(fā)展至關(guān)重要.Wang等[148]基于亞硝酸鹽與3,3′,5,5′-四甲基聯(lián)苯胺(TMB)的特異重氮化反應(yīng),開發(fā)了一種檢測亞硝酸鹽的比率電化學(xué)傳感器;Li等[149]使用三維導(dǎo)電金屬有機(jī)框架(CMOFs)開發(fā)了一種比率型電化學(xué)傳感器,用于檢測魚樣本中的孔雀石綠(MG);Zhang等[150]開發(fā)了一種基于Co NC/CNT和MB自組裝的比率電化學(xué)傳感器,用于有效檢測叔丁基對苯二酚(TBHQ).藥物和農(nóng)藥殘留是由于農(nóng)業(yè)活動和藥物應(yīng)用而留在食品中的化學(xué)物質(zhì),這些物質(zhì)可能對人體健康產(chǎn)生深遠(yuǎn)的影響,包括促進(jìn)抗生素耐藥性、破壞激素功能和其它毒理學(xué)影響.Henry等[143]開發(fā)了一種無酶比率電化學(xué)感應(yīng)傳感器,用于檢測食品中的卡那霉素(KAN).基于熵驅(qū)動的鏈位移反應(yīng),該傳感器具有高特異性、可重復(fù)性和顯著的靈敏度.Deng等[103]開發(fā)了一種分子印跡比率電化學(xué)傳感器,采用分子印跡聚合物對廣譜抗生素甲氧芐啶(TMP)進(jìn)行特異性識別和定量,以Fc為基準(zhǔn)進(jìn)行比率測量,成功用于靈敏和選擇性地檢測TMP.Zhu等[151]發(fā)展了一種雙比率電化學(xué)配體傳感器,將一種創(chuàng)新的發(fā)夾式四面體DNA納米結(jié)構(gòu)(HP-TDN)與金屬離子和納米復(fù)合材料集成在一起,實(shí)現(xiàn)了分析信號的放大,成功用于同時檢測馬拉硫磷(MAL)和丙烯磷(PRO)兩種有機(jī)磷農(nóng)藥.監(jiān)測生物毒素可引起各種健康問題,包括急性和慢性中毒、神經(jīng)損傷、免疫抑制和癌癥等,對其進(jìn)行實(shí)時在線檢測,對食品安全和公共衛(wèi)生至關(guān)重要.Guan等[152]報道了基于鈷金屬有機(jī)框架(Co-MOFs)的新型雙信號比率電化學(xué)傳感器,用于檢測食品中的赭曲霉毒素A(OTA).該生物傳感器采用Co-MOFs作為信號探針,MB作為內(nèi)參比探針,具有較高的靈敏度和重復(fù)性.Shu等[153]開發(fā)了一種基于鐵基金屬有機(jī)框架(Fe-MOF)和金納米顆粒(AuNP)的比率電化學(xué)免疫傳感器,用于檢測谷物產(chǎn)品中的脫氧雪腐鐮刀菌醇(DON).該傳感器以Fe-MOF/AuNP為信號探針,結(jié)合免疫球蛋白G(IgG)標(biāo)記,以[Fe(CN)6]3-/4-為內(nèi)參探針,形成競爭性的DON捕獲檢測系統(tǒng).Zeng等[154]開發(fā)了一種高靈敏度的基于適配體的電化學(xué)傳感器,用于檢測海洋生物毒素薩克斯毒素(STX).該傳感器利用K3Fe(CN)6調(diào)控的銀納米顆粒(Ag NPs)作為雙電化學(xué)信號源.Zhang等[102]利用功能化金納米顆粒(AuNPs)和雜交鏈反應(yīng)(HCR)的雙重放大機(jī)制,構(gòu)建了一種用于檢測鏈霉素(STR)的高靈敏度比率電化學(xué)傳感器.
4 結(jié)論與展望
比率電化學(xué)傳感策略作為一種先進(jìn)的電分析技術(shù),通過內(nèi)參校正方式有效地克服了傳統(tǒng)電化學(xué)傳感器固有的背景干擾問題,從而提高了分析傳感的測量精度和可重復(fù)性.本文系統(tǒng)綜述了比率電化學(xué)傳感器的構(gòu)建原理及分類、信號轉(zhuǎn)換方法和最新的應(yīng)用進(jìn)展,旨在為新型高效的比率電化學(xué)傳感器的設(shè)計和應(yīng)用提供一個清晰的參考.比率電化學(xué)傳感器在醫(yī)療診斷、環(huán)境檢測及食品安全等領(lǐng)域具有廣闊的應(yīng)用前景,但同時也面臨著一些問題.
1)用于構(gòu)建比率電化學(xué)傳感器的電活性分子的種類有限,電活性需要進(jìn)一步提升.因此,需開發(fā)電活性納米材料(如Cu2O NPs和Ag NPs等)代替?zhèn)鹘y(tǒng)的電活性分子.利用納米材料所具有的較大的比表面積和強(qiáng)的電活性,實(shí)現(xiàn)對分析物的靈敏準(zhǔn)確檢測.
2)目前所構(gòu)建的比率電化學(xué)傳感器主要集中于單一目標(biāo)物的檢測,缺乏對多元目標(biāo)物直接分析能力.因此,設(shè)計多用途的比率電化學(xué)傳感器,探索比率電化學(xué)傳感平臺的多功能特征,不斷豐富現(xiàn)有平臺和方法,積極拓展比率電化學(xué)傳感的實(shí)際應(yīng)用范圍.
3)大多數(shù)比率電化學(xué)傳感器存在標(biāo)記繁瑣耗時、修飾電極結(jié)構(gòu)復(fù)雜,甚至極易發(fā)生電極污染等問題,開發(fā)普適性較強(qiáng)的無標(biāo)記、無修飾的均相傳感策略將成為比率電化學(xué)傳感器將來發(fā)展的一個重要方向.
4)隨著納米和微電子技術(shù)的快速發(fā)展,電化學(xué)傳感方法在制備低成本設(shè)備(如居家自檢)等領(lǐng)域很有前景.因此,將比率電化學(xué)傳感技術(shù)與便攜式設(shè)備(紙、絲網(wǎng)印刷電極、儀表等)相結(jié)合,避免繁瑣的采樣,實(shí)現(xiàn)對分析物的實(shí)時、在線監(jiān)測,有望提升即時檢測產(chǎn)品的實(shí)用性.
總之,基于納米技術(shù)和電化學(xué)的融合,比率電化學(xué)傳感器展現(xiàn)出極高的應(yīng)用潛力,開發(fā)穩(wěn)定性好、成本低、易獲得、功能多樣的比率電化學(xué)傳感器仍有很大的創(chuàng)新空間.
參考文獻(xiàn):
[1] DU H,YANG P,XIA L Y,et al.Quantitative bioanalysis by inductively coupled plasma mass spectrometry for clinical diagnosis[J].Trends Anal Chem,2024,172:117552.
[2] CAMPMAJO G,RODRIGUEZ-JAVIER L R,SAURINA J,et al.Assessment of paprika geographical origin fraud by high-performance liquid chromatography with fluorescence detection(HPLC-FLD)fingerprinting[J].Food Chem,2021,352:129397.
[3] PENG Y,SUN X,ZHANG F F,et al.A nitrogen-specific detector for high performance liquid chromatography[J].Talanta,2024,280:126697.
[4] SOYLAK M,ELZAIN H,AHMED H,et al.Determination of propineb in vegetable samples after a coprecipitation strategy for its separation-preconcentration prior to its indirect determination by FAAS[J].Food Chem,2022,388:133002.
[5] MIRZAEI K Z,ROUSHANI M,JAFAR H S.Simultaneous electrochemical sensing of heavy metal ions(Zn2+,Cd2+,Pb2+,and Hg2+) in food samples using a covalent organic framework/carbon black modified glassy carbon electrode[J].Food Chem,2024,442:138500.
[6] NDOKOYE P,LI X Y,ZHAO Q D,et al.Gold nanostars:Benzyldimethylammonium chloride-assisted synthesis,plasmon tuning,SERS and catalytic activity[J].J Colloid Interface Sci,2016,462:341.
[7] GAO W X,F(xiàn)AN W L,WANG D M,et al.Assessing fresh water acute toxicity with surface-enhanced Raman scattering(SERS)[J].Talanta,2024,267:125163.
[8] LUO L,HE Z X,JIA B Z,et al.Gold nanocluster-based ratiometric fluorescence immunoassay for broad-spectrum screening of five eugenols[J].Anal Chim Acta,2024,1310:342723.
[9] KHEZERLOU A,TAVASSOLI M,ALIZADEH SANI M,et al.Rapid and sensitive detection of tetracycline residue in food samples using Cr(Ⅲ)-MOF fluorescent sensor[J].Food Chem,2023,20:100883.
[10] FU W,F(xiàn)U X Q,LI Z M,et al.Advances in smartphone assisted sensors for on-site detection of food safety based on fluorescence on-off-on mode:A review[J].Chem Eng J,2024,489:151225.
[11] WU Y F,WANG Y L,MO T L,et al.Surface-enhanced Raman scattering-based strategies for tumor markers detection:A review[J].Talanta,2024,280:126717.
[12] 米雪.電化學(xué)傳感器在食品添加劑檢測中的應(yīng)用[J].食品安全導(dǎo)刊,2024(21):148.
[13] DING R Y,CHEONG Y H,AHAMED A,et al.Heavy metals detection with paper-based electrochemical sensors[J].Anal Chem,2021,93(4):1880.
[14] 劉貴銘,呂奔陽,丁圣修,等.基于納米材料的電化學(xué)傳感器檢測食品包裝材料中雙酚類物質(zhì)的研究進(jìn)展[J].牡丹江醫(yī)學(xué)院學(xué)報,2024,45(4):154.
[15] 趙春芹.新型比率電化學(xué)傳感器的構(gòu)建及其生化分析應(yīng)用研究[D].青島:青島大學(xué),2017.
[16] YANG C,ZHUANG Z,ZOU Y F,et al.A novel ratiometric electrochemical sensor based on AuNPs decorated MIL-101(Fe) for simultaneously monitoring typical EDCs in milk[J].Sens Actuat B,2024,417:136224.
[17] ZHANG W Y,WEN J,WANG J M,et al.Recent development and application of ratiometric electrochemical biosensor[J].J Electroanal Chem,2022,921:116653.
[18] 杜敏,鄭雅妮,戴樂天,等.比率型電化學(xué)傳感器構(gòu)建策略的研究進(jìn)展[J].藥學(xué)研究,2021,40(8):528.
[19] SONG J,ABBAS G,ALI A,et al.Electrochemical ratiometry:A new route towards bioaffinity-based in vitro diagnostics[J].J Electro Anal Chem,2023,944:117667.
[20] 葉挺松,鄧翠琪,莫名月.信號放大策略在比率型電化學(xué)生物傳感器中的應(yīng)用進(jìn)展[J].傳感器與微系統(tǒng),2023,42(9):1.
[21] WEI J,LIU C,WU T,et al.A review of current status of ratiometric molecularly imprinted electrochemical sensors:From design to applications[J].Anal Chim Acta,2022,1230:340273.
[22] 于建波.基于裸電極構(gòu)建比率電化學(xué)生物傳感器與藥物分子檢測研究[D].青島:青島大學(xué),2017.
[23] JIN H,GUI R J,YU J B,et al.Fabrication strategies,sensing modes and analytical applications of ratiometric electrochemical biosensors[J].Biosens Bioelectron,2017,91:523.
[24] 周羽婷.比率型電化學(xué)生物傳感器的構(gòu)建及應(yīng)用研究[D].上海:華東師范大學(xué),2020.
[25] YANG T,YU R Z,YAN Y H,et al.A review of ratiometric electrochemical sensors:From design schemes to future prospects[J].Sens Actuat B,2018,274:501.
[26] CHAI X L,ZHANG L M,TIAN Y.Ratiometric electrochemical sensor for selective monitoring of cadmium ions using biomolecular recognition[J].Anal Chem,2014,86(21):10668.
[27] CHENG H J,WANG X Y,WEI H.Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains[J].Anal Chem,2015,87(17):8889.
[28] DONG H,ZHOU Y L,HAO Y Q,et al.“Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor[J].Biosens Bioelectron,2020,165:112402.
[29] JIA F,LIU D,DONG N,et al.Interaction between the functionalized probes:The depressed efficiency of dual-amplification strategy on ratiometric electrochemical aptasensor for aflatoxin B1[J].Biosens Bioelectron,2021,182:113169.
[30] LIU Y W,TANG Y,CAO J P,et al.A ratiometric electrochemical sensing platform based on multifunctional molecularly imprinted polymer with catalytic activity for the detection of psychoactive substances[J].Biosens Bioelectron,2023,220:114929.
[31] DONG H,ZHAO L,ZHU X,et al.Development of a novel ratiometric electrochemical sensor for monitoring β-galactosidase in Parkinson’s disease model mice[J].Biosens Bioelectron,2022,210:114301.
[32] ZHAO C Q,JIN H,GUI R J,et al.Facile fabrication of dual-ratiometric electrochemical sensors based on a bare electrode for dual-signal sensing of analytes in electrolyte solution[J].Sens Actuat B,2017,242:71.
[33] WANG L,GONG C C,SHEN Y,et al.A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid[J].Sens Actuat B,2017,242:625.
[34] GAO X L,SUN Z C,WANG X Y,et al.Construction of a ratiometric electrochemical aptasensor based on graphdiyne-methylene blue and Fc-labeled hairpin for cyclic signal amplification detection of kanamycin[J].Sens Actuat B,2022,373:132706.
[35] YU J B,JIN H,GUI R J,et al.A general strategy to facilely design ratiometric electrochemical sensors in electrolyte solution by directly using a bare electrode for dual-signal sensing of analytes[J].Talanta,2017,162:435.
[36] DONG H,ZHOU Y L,ZHAO L,et al.Dual-response ratiometric electrochemical microsensor for effective simultaneous monitoring of hypochlorous acid and ascorbic acid in human body fluids[J].Anal Chem,2020,92(22):15079.
[37] ZHANG L M,LIU F L,SUN X M,et al.Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of Alzheimer’s disease[J].Anal Chem,2017,89(3):1831.
[38] ZHENG W W,YAO J,ZHAO Y.RuCu Cage/Alloy nanoparticles with controllable electroactivity for specific electroanalysis applications[J].Anal Chem,2021,93(38):13080.
[39] KONG L Q,LI H,ZHANG X L,et al.A novel ratiometric electrochemical biosensor using only one signal tag for highly reliable and ultrasensitive detection of miRNA-21[J].Anal Chem,2022,94(12):5167.
[40] HU Q,WAN J W,WANG H C,et al.Boronate-affinity cross-linking-based ratiometric electrochemical detection of glycoconjugates[J].Anal Chem,2022,94(26):9481.
[41] WAN J W,LIANG Y Y,HU Q,et al.Amplification-free ratiometric electrochemical aptasensor for point-of-care detection of therapeutic monoclonal antibodies[J].Anal Chem,2023,95(37):14094.
[42] DING M L,ZHANG S L,WANG J G,et al.Ultrasensitive ratiometric electrochemiluminescence sensor with an efficient antifouling and antibacterial interface of PSBMA@SiO2-MXene for oxytetracycline trace detection in the marine environment[J].Anal Chem,2023,95(44):16327.
[43] ZHOU X,SUN Z B,SU X Y,et al.Ratiometric detection of ochratoxin a using a regenerable COF-Au-MB-Apt signal probe on a thermal-regulated sensor module[J].Anal Chem,2023,95(3):1916.
[44] MAHMOUD A M,MAHNASHI M H,EL-WEKIL M M.An innovative dual-signal electrochemical ratiometric determination of creatinine based on silver nanoparticles with intrinsic self-calibration property for bimetallic Prussian blue analogues[J].Anal Bio Anal Chem,2023,415(25):6247.
[45] XIE F T,ZHAO X L,CHI K N,et al.Fe-MOFs as signal probes coupling with DNA tetrahedral nanostructures for construction of ratiometric electrochemical aptasensor[J].Anal Chim Acta,2020,1135:123.
[46] RONG S A,ZOU L,MENG L Q,et al.Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin[J].Anal Chim Acta,2022,1196:339545.
[47] CHEN M,HAN R,LI Y,et al.Nonfouling and ratiometric electrochemical detection of prostate specific antigen in whole serum[J].Anal Chim Acta,2022,1224:340191.
[48] ZOU J,YU Q,GAO Y S,et al.Bismuth nanoclusters/porous carbon composite:A facile ratiometric electrochemical sensing platform for Pb2+ detection with high sensitivity and selectivity[J].ACS Omega,2021,7(1):1132.
[49] YANG Z Y,GUO H,YU Z G,et al.Ratiometric electrochemical biosensor based on Cu(Ⅱ) modified covalent organic framework for the ultra-sensitive and specific detection of glutathione[J].Chem Eng J,2024,492:152271.
[50] ZHONG W,GAO F,ZOU J,et al.MXene@Ag-based ratiometric electrochemical sensing strategy for effective detection of carbendazim in vegetable samples[J].Food Chem,2021,360:130006.
[51] HU X P,LIU Y W,XIA Y D,et al.A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon[J].Food Chem,2021,363:130385.
[52] CHEN Y F,WATERHOUSE G I N,SUN H,et al.Novel ratiometric electrochemical sensing platform with dual-functional poly-dopamine and NiS@HCS signal amplification for sunset yellow detection in foods[J].Food Chem,2022,390:133193.
[53] YU J B,JIN H,GUI R J,et al.A facile strategy for ratiometric electrochemical sensing of quercetin in electrolyte solution directly using bare glassy carbon electrode[J].J Electroanal Chem,2017,795:97.
[54] WANG L Y,WANG Y,ZHUANG Q F.Simple self-referenced ratiometric electrochemical sensor for dopamine detection using electrochemically pretreated glassy carbon electrode modified by acid-treated multiwalled carbon nanotube[J].J Electroanal Chem,2019,851:113446.
[55] LUO S Y,WANG Y,KAN X W.Cu-THQ metal-organic frameworks:A kind of new inner reference for the reliable detection of dopamine base on ratiometric electrochemical sensing[J].Microchem J,2022,172:106903.
[56] CHEN T,LI Y Y,MENG S Y,et al.Temperature and pH tolerance ratiometric aptasensor:Efficiently self-calibrating electrochemical detection of aflatoxin B1[J].Talanta,2022,242:123280.
[57] LIU Y W,DING Q,HU K,et al.Cupric ion coordination-mediated molecularly imprinted electrochemical sensor for the recognition and ratiometric detection of lidocaine[J].Talanta,2024,280:126761.
[58] WU L,ZHANG X H,LIU W L,et al.Sensitive electrochemical aptasensor by coupling“signal-on”and“signal-off”strategies[J].Anal Chem,2013,85(17):8397.
[59] SHEN W J,ZHUO Y,CHAI Y Q,et al.Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection[J].Anal Chem,2015,87(22):11345.
[60] XIONG E H,ZHANG X H,LIU Y Q,et al.Ultrasensitive electrochemical detection of nucleic acids based on the dual-signaling electrochemical ratiometric method and exonuclease Ⅲ-assisted target recycling amplification strategy[J].Anal Chem,2015,87(14):7291.
[61] YI Y H,ZHANG D P,MA Y Z,et al.Dual-signal electrochemical enantiospecific recognition system via competitive supramolecular host-guest interactions:The case of phenylalanine[J].Anal Chem,2019,91(4):2908.
[62] YANG L,CHEN D,WANG X D,et al.Ratiometric electrochemical sensor for accurate detection of salicylic acid in leaves of living plants[J].RSC Adv,2020,10:38841.
[63] DONG J B,WEN L,YANG H S,et al.Catalytic hairpin assembly-driven ratiometric dual-signal electrochemical biosensor for ultrasensitive detection of MicroRNA based on the ratios of Fe-MOFs and MB-GA-UiO-66-NH2[J].Anal Chem,2022,94(15):5846.
[64] CHEN Y N,WANG S L,REN J J,et al.Electrocatalysis of copper sulfide nanoparticle-engineered covalent organic frameworks for ratiometric electrochemical detection of amyloid-β oligomer[J].Anal Chem,2022,94(32):11201.
[65] ZHANG G J,HAN Y J,LIU Z G,et al.Triple amplification ratiometric electrochemical aptasensor for CA125 based on H-Gr/SH-β-CD@PdPtNFs[J].Anal Chem,2023,95(2):1294.
[66] ZHANG Y Z,LI N,XU Y,et al.Microswimmer-based ultrasensitive dual-signal ratiometric electrochemical homogeneous aptasensor with functionalized Co-UiO-66 for the single-step detection of HER2 in whole blood[J].Anal Chem,2023,95(16):6586.
[67] LIU Z J,YANG L Y,LU T C,et al.Precise differentiation of wobble-type allele via ratiometric design of a ligase Chain reaction-based electrochemical biosensor for CYP2C19*2 genotyping of clinical samples[J].Anal Chem,2023,95(39):14592.
[68] XIE S Y,ZHU C,YANG L J,et al.Programmable proteolysis-activated transcription for highly sensitive ratiometric electrochemical detection of viral protease[J].Anal Chem,2023,95(28):10728.
[69] DONG J B,LI X Y,HOU C J,et al.A novel CRISPR/Cas12a-mediated ratiometric dual-signal electrochemical biosensor for ultrasensitive and reliable detection of circulating tumor deoxyribonucleic acid[J].Anal Chem,2024,96(18):6930.
[70] GAI P P,GU C C,LI H Y,et al.Ultrasensitive ratiometric homogeneous electrochemical microRNA biosensing via target-triggered Ru(Ⅲ) release and redox recycling[J].Anal Chem,2017,89(22):12293.
[71] GAO F L,DU L L,ZHANG Y,et al.Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor[J].Anal Chim Acta,2015,883:67.
[72] JIA J J,CHEN H G,F(xiàn)ENG J,et al.A regenerative ratiometric electrochemical biosensor for selective detecting Hg2+ based on Y-shaped/hairpin DNA transformation[J].Anal Chim Acta,2016,908:95.
[73] JIN H,ZHAO C Q,GUI R J,et al.Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine[J].Anal Chim Acta,2018,1025:154.
[74] DOU B T,LI J,JIANG B Y,et al.Electrochemical screening of single nucleotide polymorphisms with significantly enhanced discrimination factor by an amplified ratiometric sensor[J].Anal Chim Acta,2018,1038:166.
[75] HU X P,TANG Y,XIA Y D,et al.Antifouling ionic liquid doped molecularly imprinted polymer-based ratiometric electrochemical sensor for highly stable and selective detection of zearalenone[J].Anal Chim Acta,2022,1210:339884.
[76] LIU Y W,XIA Y D,TANG Y,et al.A ratiometric electrochemical sensor based on Cu-coordinated molecularly imprinted polymer and porous carbon supported Ag nanoparticles for highly sensitive and selective detection of perphenazine[J].Anal Chim Acta,2022,1227:340301.
[77] SUN Y J,DONG Q,YANG H,et al.CuS quantum dots activated DNAzyme for ratiometric electrochemical detection of telomerase activity[J].Anal Chim Acta,2023,1248:340884.
[78] MAHMOUD A M,MAHNASHI M H,EL-WEKIL M M.Ratiometric sensing interface for glutathione determination based on electro-polymerized copper-coordinated molecularly imprinted layer supported on silver/porous carbon hybrid[J].Anal Chim Acta,2023,1272:341498.
[79] QI Y F,CHEN Y,LI Q,et al.A novel ratiometric electrochemical sensing platform combined with molecularly imprinted polymer and Fe-MOF-NH2/CNTs-NH2/MXene composite for efficient detection of ofloxacin[J].Anal Chim Acta,2024,1316:342876.
[80] TIAN L,ZHANG Y,WANG L B,et al.Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensitive kanamycin detection[J].ACS Appl Mater Interfaces,2020,12(47):52713.
[81] QU L,YANG L,LI Y Y,et al.Dual-signaling electrochemical ratiometric method for competitive immunoassay of CYFRA21-1 based on urchin-like Fe3O4@PDA-Ag and Ni3Si2O5(OH)4-Au absorbed methylene blue nanotubes[J].ACS Appl Mater Interfaces,2021,13(4):5795.
[82] REN K W,WU J,YAN F,et al.Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker[J].Biosens Bioelectron,2015,66:345.
[83] WANG L L,MA R G,JIANG L S,et al.A novel“signal-on/off”sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and bio-bar-coded nanoprobe amplification strategy[J].Biosens Bioelectron,2017,92:390.
[84] YANG J,HU Y,LI Y C.Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection[J].Biosens Bioelectron,2019,135:224.
[85] ZHU C X,LIU D,LI Y Y,et al.Ratiometric electrochemical aptasensor for ultrasensitive detection of Ochratoxin A based on a dual signal amplification strategy:Engineering the binding of methylene blue to DNA[J].Biosens Bioelectron,2020,150:111814.
[86] ZHANG W,LIU C,HAN K G,et al.A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid[J].Biosens Bioelectron,2020,154:112091.
[87] MIAO J C,DU K,LI X,et al.Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO2-Fc-COOH-Au and UiO-66-TB complexes[J].Biosens Bioelectron,2021,171:112713.
[88] DONG H,ZHAO L,ZHU X,et al.Development of a novel ratiometric electrochemical sensor for monitoring beta-galactosidase in Parkinson’s disease model mice[J].Biosens Bioelectron,2022,210:114301.
[89] GENG L G,HU S Q,LIU F P,et al.MOF-derived magnetic trimetallic oxide-carbon nanocomposites for modification-free and dual molecular events-dependent ratiometric electrochemical analysis of intracellular glutathione[J].Sens Actuat B,2023,390:134010.
[90] SU X Y,WANG H,WANG C Q,et al.Programmable dual-electric-field immunosensor using MXene-Au-based competitive signal probe for natural parathion-methyl detection[J].Biosens Bioelectron,2022,214:114546.
[91] XU Y,ZHANG Y,LI N,et al.An ultrasensitive ratiometric electrochemical aptasensor based on metal-organic frameworks and nanoflower-like Bi2CuO4 for human epidermal growth factor receptor 2 detection[J].Bioelectrochemistry,2023,154:108542.
[92] LIU D,JIA F,WEI Y,et al.Programmable analytical feature of ratiometric electrochemical biosensor by alternating the binding site of ferrocene to DNA duplex for the detection of aflatoxin B1[J].Chin J Chem,2022,40(18):2232.
[93] GONG C C,SHEN Y,SONG Y H,et al.On-off ratiometric electrochemical biosensor for accurate detection of glucose[J].Electrochim Acta,2017,235:488.
[94] YANG T,YU R Z,LIU S M,et al.A ratiometric electrochemical deoxyribonucleic acid sensing strategy based on self-signal of highly stable reduced graphene oxide-flavin mononucleotide aqueous dispersion modified nanointerface[J].Sens Actuat B,2018,267:519.
[95] CUI H N,AN K Q,WANG C Q,et al.A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1[J].Sens Actuat B,2022,355:131238.
[96] HU X P,XIA Y D,LIU Y W,et al.An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A:Use of magnetic field improved molecularly imprinted polymer[J].Sens Actuat B,2022,359:131582.
[97] TAN Y Y,TAN H S,LIU M,et al.Electrochemical ratiometric dual-signal immunoassay for accurate detection of carcinoembryonic antigen in clinical serum based on rGO-Pd@Au-Thi and Chi-Fc-Au[J].Sens Actuat B,2023,380:133340.
[98] PAN H J,ZHOU Q Y,GONG Y C,et al.A universal distance-independent ratiometric electrochemical biosensing strategy based on competitive host-guest interactions for matrix metalloproteinase-2 detection[J].Sens Actuat B,2023,378:133144.
[99] QI F F,WU M D,LIU S M,et al.Ratiometric electrochemical immunosensor for the detection of CA199 based on the ratios of NiCo@Fc-MWCNTs-LDH and 3D-rGOF@Ag/Au complexes[J].Talanta,2024,272:125606.
[100] KHODADOUST A,NASIRIZADEH N,TAHERI R A,et al.A ratiometric electrochemical DNA-biosensor for detection of miR-141[J].Microchim Acta,2022,189(6):213.
[101] LI Y G,F(xiàn)ENG Y F,CHEN S Y,et al.Signal on-off ratiometric electrochemical sensor coupled with a molecularly imprinted polymer for the detection of carbendazim[J].Microchim Acta,2022,189(7):250.
[102] ZHANG Z B,JIA X R,XU X Q.An electrochemical aptasensor for detection of streptomycin based on signal amplification assisted by functionalized gold nanoparticles and hybridization chain reaction[J].Microchim Acta,2023,190(4):152.
[103] DENG X R,YI Z B,XIONG Y Q,et al.Molecularly imprinted ratiometric electrochemical sensor based on 3D-1D MoS2@CNTs hetero-nanoflower for selective detection of trimethoprim[J].Microchem J,2024,201:110522.
[104] LI T N,ZHANG X Q,LIU Y W,et al.Development of ratiometric molecularly imprinted electrochemical sensor based on biomass aerogel derived from UiO-66-NH2 and CNTs doped lotus root powder for the effective detection of imidacloprid[J].Microchem J,2024,204:111094.
[105] RAO H H,LI J Y,LUO M Y,et al.A label-free and modification-free ratiometric electrochemical strategy for enhanced natural enzyme detection using a bare electrode and nanozymes system[J].Anal Bioanal Chem,2022,414(9):2991.
[106] WANG Z H,GONG L K,ZENG H,et al.A novel ratiometric electrochemical cupric ion sensing strategy based on unmodified electrode[J].Anal Chim Acta,2021,1146:11.
[107] LI X Y,KAN X W.A ratiometric strategy-based electrochemical sensing interface for the sensitive and reliable detection of imidacloprid[J].Analyst,2018,143(9):2150.
[108] CHEN Z Y,LIU C,SU X Y,et al.Signal on-off ratiometric electrochemical sensor based on semi-complementary aptamer couple for sensitive cadmium detection in mussel[J].Sens Actuat B,2021,346:130506.
[109] GOGGINS S,NAZ C,MARSH B J,et al.Ratiometric electrochemical detection of alkaline phosphatase[J].Chem Commun,2015,51(3):561.
[110] KUMARAVEL S,WU S H,CHEN G Z,et al.Development of ratiometric electrochemical molecular switches to assay endogenous formaldehyde in live cells,whole blood and creatinine in saliva[J].Biosens Bioelectron,2021,171:112720.
[111] ZHANG X B,LI Z R,SHI Y S,et al.Electrochemical/photoelectrochemical dual-mode aptasensor for sensitive aflatoxin B1 assay based on distance-modulation strategy using Au NPs/PC(ZIF-8)-ZnO as sensing substrate[J].Food Chem,2024,441:138382.
[112] XIONG E H,LI Z Z,ZHANG X H,et al.Triple-helix molecular switch electrochemical ratiometric biosensor for ultrasensitive detection of nucleic acids[J].Anal Chem,2017,89(17):8830.
[113] ZHANG J,WANG L L,HOU M F,et al.A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction[J].Biosens Bioelectron,2018,102:33.
[114] FU C L,LIU C,LI Y,et al.Homogeneous electrochemical biosensor for melamine based on DNA triplex structure and exonuclease Ⅲ-assisted recycling amplification[J].Anal Chem,2016,88(20):10176.
[115] DENG C Y,PI X M,QIAN P,et al.High-performance ratiometric electrochemical method based on the combination of signal probe and inner reference probe in one hairpin-structured DNA[J].Anal Chem,2017,89(1):966.
[116] ZHANG H,ZHANG Z G,HAN L Y,et al.A ratiometric electrochemical aflatoxin B1 aptasensor based on DNA tetrahedral scaffold-corbelled 3D DNAzyme walker and AuNP/MOF/g-C3N4 hybrid electrode[J].Microchem J,2024,199:110052.
[117] DING Z,YANG S,WANG J,et al.Rolling circle amplification/G-quadruplex-based dual-signal ratiometric electrochemical aptasensor for ultrasensitive detection of pathogenic bacteria[J].Chem Electro Chem,2023,10(17):202300257.
[118] DU Y,LIM B J,LI B L,et al.Reagentless,ratiometric electrochemical DNA sensors with improved robustness and reproducibility[J].Anal Chem,2014,86(15):8010.
[119] MA R N,WANG L L,ZHANG M,et al.A novel one-step triggered “signal-on/off” electrochemical sensing platform for lead based on the dual-signal ratiometric output and electrode-bound DNAzyme assembly[J].Sens Actuat B,2018,257:678.
[120] YANG X D,ZHAO C L,ZHANG C L,et al.Bi-directionally amplified ratiometric electrochemical aptasensor for the ultrasensitive detection of alpha-fetoprotein[J].Sens Actuat B,2020,323:128666.
[121] LIU S P,JIANG X X,WAN F,et al.A novel detection of microRNA based on homogeneous electrochemical sensor with enzyme-assisted signal amplification[J].Talanta,2023,256:124263.
[122] LIU C,WU T,ZENG W,et al.Dual-signal electrochemical aptasensor involving hybridization chain reaction amplification for aflatoxin B1 detection[J].Sens Actuat B,2022,371:132494.
[123] MA Y,LI M Y,ZHANG Y Z.Ratiometric electrochemical biosensor based on hybridization chain reaction signal amplification for sensitive microRNA-155 detection[J].Anal Methods,2024,16(29):5032.
[124] ZHANG J L,YANG H L,LIU W J,et al.Rapid 16S rDNA electrochemical sensor for detection of bacteria based on the integration of target-triggered hairpin self-assembly and tripedal DNA walker amplification[J].Anal Chim Acta,2022,1190:339266.
[125] MA J N,ZHANG Y Z,LU X,et al.A label-free ratiometric homogeneous electrochemical aptasensor based on dual catalytic hairpin self-assembly for rapid and sensitive detection of ochratoxin A in food[J].Food Chem,2024,453:139651.
[126] ZHOU Q Y,MA R N,HU C L,et al.A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease-assisted homogenous target recycling coupling hairpin assembly-triggered double-signal output for the multiple amplified detection of miRNA[J].Analyst,2021,146(8):2705.
[127] YUAN Y H,CHI B Z,WEN S H,et al.Ratiometric electrochemical assay for sensitive detecting microRNA based on dual-amplification mechanism of duplex-specific nuclease and hybridization chain reaction[J].Biosens Bioelectron,2018,102:211.
[128] ZHAO L,SUN R J,HE P,et al.Ultrasensitive detection of exosomes by target-triggered three-dimensional DNA walking machine and exonuclease Ⅲ-assisted electrochemical ratiometric biosensing[J].Anal Chem,2019,91(22):14773.
[129] WU F F,GAO H G,QIU R,et al.A novel ratiometric electrochemical immunosensor for the detection of cancer antigen 125 based on three-dimensional carbon nanomaterial and MOFs[J].Microchem J,2024,200:110372.
[130] WANG X Y,YUAN W,KUANG Y J,et al.Ratiometric electrochemical immunosensor for simultaneous detection of C-myc and Bcl-2 based on multi-role alloy composites[J].Microchim Acta,2024,191(2):85.
[131] ZHANG X,LI H Y,LI W,et al.High-performance assaying phosphatidylinositol proteoglycan 3 based on a dual-mode biosensor coupling near-infrared photoelectrochemical with ratiometric electrochemical sensing[J].Sens Actuat B,2023,318:133419.
[132] CHEN Y,WANG X Y,WANG A J,et al.Ultrasensitive ratiometric electrochemical immunoassay of N-terminal pro-B-type natriuretic peptide based on three-dimensional PtCoNi hollow multi-branches/ferrocene-grafted-ionic liquid and Co N C nanosheets[J].Sens Actuat B,2021,326:128794.
[133] LIU R B,ZHANG F Y,SANG Y X,et al.Screening,identification,and application of nucleic acid aptamers applied in food safety biosensing[J].Trends Food Sci Tech,2022,123:355.
[134] CHEN Y,GE X Y,CEN S Y,et al.Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly(bismarck brown Y) and dendritic AuPt nanoassemblies[J].Sens Actuat B,2020,311:127931.
[135] ZHU C X,LIU D,LI Y Y,et al.Label-free ratiometric homogeneous electrochemical aptasensor based on hybridization chain reaction for facile and rapid detection of aflatoxin B1 in cereal crops[J].Food Chem,2022,373:131443.
[136] LIU X P,YAN Z Q,SUN Y H,et al.A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis[J].Chem Commun,2017,53(46):6215.
[137] AN Y,LI R,ZHANG F,et al.A ratiometric electrochemical sensor for the determination of exosomal glycoproteins[J].Talanta,2021,235:122790.
[138] FU Y X,ZHOU X Y,DUAN X L,et al.A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of group B streptococci with improved stability and accuracy[J].Sens Actuat B,2020,321:128502.
[139] SONG Y H,XU M L,GONG C C,et al.Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode[J].Sens Actuat B,2018,257:792.
[140] YANG D W,MEI Q,TANG Y G,et al.A ratiometric electrochemical assay for human 8-oxoguanine DNA glycosylase amplified by hybridization chain reaction[J].Electro Chem Commun,2019,103:37.
[141] ZHANG R Y,LIU J,LI Y C.MXene with great adsorption ability toward organic dye:an excellent material for constructing a ratiometric electrochemical sensing platform[J].ACS Sens,2019,4(8):2058.
[142] HU Q Q,LI H,WANG L H,et al.DNA nanotechnology-enabled drug delivery systems[J].Chem Rev,2019,119(10):6459.
[143] HENRY S J W,STEPHANOPOULOS N.Functionalizing DNA nanostructures for therapeutic applications[J].WIREs Nanomed Nanobiotechnol,2021,13(6):1729.
[144] YANG L M,YIN X H,AN B,et al.Precise capture and direct quantification of tumor exosomes via a highly efficient dual-aptamer recognition-assisted ratiometric immobilization-free electrochemical strategy[J].Anal Chem,2021,93(3):1709.
[145] XIONG E H,WU L,ZHOU J W,et al.A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure[J].Anal Chim Acta,2015,853:242.
[146] XIA Y D,HU X P,LIU Y W,et al.Molecularly imprinted ratiometric electrochemical sensor based on carbon nanotubes/cuprous oxide nanoparticles/titanium carbide MXene composite for diethylstilbestrol detection[J].Mikrochim Acta,2022,189(4):137.
[147] YIN C,ZHUANG Q F,XIAO Q,et al.Electropolymerization of poly(methylene blue) on flower-like nickel-based MOFs used for ratiometric electrochemical sensing of total polyphenolic content in chrysanthemum tea[J].Anal Methods,2021,13(9):1154.
[148] WANG M Z,ZHAO M H,LIU P,et al.Coupling diazotization with oxidase-mimetic catalysis to realize dual-mode double-ratiometric colorimetric and electrochemical sensing of nitrite[J].Sens Actuat B,2022,355.
[149] LI J R,HUANG Y Q,ZHOU Y L,et al.Controllable construction of two-dimensional conductive M3(HHTP)2 nanorods for electrochemical sensing of malachite green in fish[J].ACS Appl Nano Mater,2023,6:22916.
[150] ZHANG Y X,LIU X,TIAN Y J,et al.A ratiometric electrochemical sensing strategy based on the self-assembly of Co NC/CNT and methylene blue for effective detection of the food additive tert-butylhydroquinone[J].Talanta,2024,266:125024.
[151] ZHU C X,LIU X H,LI Y Y,et al.Dual-ratiometric electrochemical aptasensor based on carbon nanohorns/anthraquinone-2-carboxylic acid/Au nanoparticles for simultaneous detection of malathion and omethoate[J].Talanta,2023,253:123966.
[152] GUAN Y,SI P B,YANG T,et al.A novel method for detection of ochratoxin A in foods-Co-MOFs based dual signal ratiometric electrochemical aptamer sensor coupled with DNA walker[J].Food Chem,2023,403:134316.
[153] SHU Z X,HU H L,YUAN Z H,et al.Fe-MOF/AuNP-based ratiometric electrochemical immunosensor for the detection of deoxynivalenol in grain products[J].Microchim Acta,2024,191(4):210.
[154] ZENG W,TANG X M,WU T,et al.Development of a highly sensitive aptamer-based electrochemical sensor for detecting saxitoxin based on K3Fe(CN)6 regulated silver nanoparticles[J].Anal Chim Acta,2024,342134:1287.
(責(zé)任編輯 武維寧)
收稿日期:2024-10-25
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(22064014,82202324);蘭州市科技發(fā)展計劃項(xiàng)目(2021-1-146);甘肅省科技計劃項(xiàng)目(21YF5FA071,21JR7RA538);高校產(chǎn)業(yè)支撐計劃項(xiàng)目(2023CYZC-69,2024CYZC-05);2023甘肅省重點(diǎn)人才項(xiàng)目(2023RCXM26)
作者簡介:李建穎(1996—),女,甘肅白銀人,博士研究生.主要研究方向?yàn)榄h(huán)境污染物的即時電化學(xué)分析.
E-mail:2083383190@qq.com
*通信聯(lián)系人,男,教授,博士研究生導(dǎo)師.主要研究方向?yàn)殡娀瘜W(xué)分析和基于納米材料的比色分析.
E-mail:xzh@nwnu.edu.cn