[摘要] 目的
探討脂多糖(LPS)側(cè)腦室注射對(duì)小鼠海馬依賴性空間記憶的影響。
方法 ①將14只3月齡野生型小鼠隨機(jī)分為對(duì)照組(6只)和LPS組(8只),分別側(cè)腦室注射3 μL的生理鹽水和1 g/L的LPS,隨后通過(guò)水迷宮實(shí)驗(yàn)檢測(cè)小鼠的空間記憶能力。②選10只3月齡野生型小鼠進(jìn)行水迷宮訓(xùn)練,在第7天空間記憶形成后隨機(jī)分為對(duì)照組和LPS組(每組5只),分別側(cè)腦室注射3 μL生理鹽水和1 g/L 的LPS,并在第9天進(jìn)行了訓(xùn)練和測(cè)試。③用1 mg/L的LPS刺激小鼠BV2小膠質(zhì)細(xì)胞,檢測(cè)促炎癥因子腫瘤壞死因子-α(TNF-α)和白細(xì)胞介素6(IL-6)的表達(dá)。
結(jié)果 水迷宮實(shí)驗(yàn)顯示,在空間記憶獲取訓(xùn)練階段,LPS組與對(duì)照組小鼠找到目標(biāo)平臺(tái)的時(shí)間差異無(wú)顯著性,訓(xùn)練時(shí)間和藥物品種無(wú)顯著交互效應(yīng)(F交互=0.712,P=0.616 8);在空間記憶形成測(cè)試階段,LPS組在目標(biāo)象限的探索時(shí)間占比與其他象限的差異無(wú)顯著性(Pgt;0.05);而在記憶形成后側(cè)腦室注射LPS則導(dǎo)致小鼠空間記憶的提取障礙(Plt;0.05)。LPS組BV2細(xì)胞不同處理時(shí)間TNF-α和IL-6的mRNA表達(dá)均明顯上調(diào)(Plt;0.05)。
結(jié)論 海馬炎癥可導(dǎo)致小鼠空間記憶的獲取和提取障礙,其機(jī)制可能與小膠質(zhì)細(xì)胞激活有關(guān)。
[關(guān)鍵詞] 空間記憶;神經(jīng)炎癥性疾病;脂多糖類;小神經(jīng)膠質(zhì)細(xì)胞;海馬;小鼠,近交C57BL
[中圖分類號(hào)] R338.64;R344
[文獻(xiàn)標(biāo)志碼] A
[文章編號(hào)] 2096-5532(2024)05-0633-06
doi:10.11712/jms.2096-5532.2024.60.157
[網(wǎng)絡(luò)出版] https://link.cnki.net/urlid/37.1517.R.20241105.1011.002;2024-11-05 13:54:52
Effect of intracerebroventricular injection of lipopolysaccharide on hippocampal-dependent spatial memory in mice
LIU Xiaomin, LIU Junru, YU Ming, CHANG Xuechun, ZHOU Yu, WANG Qiang
(Department of Rehabilitation, The Affiliated Hospital of Qingdao University, Qingdao 266100, China)
[Abstract]Objective To investigate the effect of intracerebroventricular injection of lipopolysaccharide (LPS) on hippocampal-dependent spatial memory in mice.
Methods A total of 14 wild-type mice, aged 3 months, were randomly divided into control group with 6 mice and LPS group with 8 mice, and the mice in the control group were given intracerebroventricular injection of 3 μL normal saline, while those in the LPS group were given intracerebroventricular injection of 1 g/L LPS. The water maze test was used to observe the spatial memory ability of mice. A total of 10 wild-type mice, aged 3 months, were selected for water maze training and were randomly divided into control group and LPS group after spatial memory formation on day 7, with 5 mice in each group. The mice in the control group were given intracerebroventricular injection of 3 μL normal saline, while those in the LPS group were given were given intracerebroventricular injection of 1 g/L LPS, and training and testing were performed on day 9. Mouse BV2 microglial cells were stimulated with 1 mg/L LPS to measure the changes in the inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6).
Results The water maze test showed that during the training phase for spatial memory acquisition, there was no significant difference in the time spent to find the target platform between the LPS group and the control group, with no significant interaction effect between training time and drug type (Finteraction=0.712,P=0.616 8); during the test phase for spatial memory formation, the LPS group showed no significant difference in the proportion of exploration time between the target quadrant and the other quadrants (Pgt;0.05); however, after memory formation, intracerebroventricular injection of LPS resulted in impaired retrieval of spatial memory in mice (Plt;0.05). BV2 cells in the LPS group showed significant increases in the mRNA expression levels of TNF-α and IL-6 at different treatment times (Plt;0.05).
Conclusion Hippocampal inflammation induced by LPS can lead to deficits in both acquisition and retrieval of spatial memory in mice, which may be associa-
ted with the activation of microglial cells.
[Key words] spatial memory; neuroinflammatory diseases; lipopolysaccharides; microglia; hippocampus; mice, inbred C57BL
多種神經(jīng)退行性疾病伴發(fā)的代謝紊亂和慢性中樞神經(jīng)炎癥,可能會(huì)加重神經(jīng)元病變和認(rèn)知功能障礙[1]。海馬炎癥可以導(dǎo)致海馬依賴的學(xué)習(xí)和記憶能
力下降。研究發(fā)現(xiàn),脂多糖(LPS)可直接導(dǎo)致海馬神經(jīng)炎癥和神經(jīng)元損傷[2]。LPS可以激活神經(jīng)系統(tǒng)中的非特異性免疫反應(yīng),包括激活小膠質(zhì)細(xì)胞和炎性細(xì)胞因子釋放[3]。多項(xiàng)研究表明,通過(guò)側(cè)腦室注射LPS可誘導(dǎo)小鼠海馬神經(jīng)炎癥,導(dǎo)致小鼠空間學(xué)習(xí)和記憶能力減退,進(jìn)而出現(xiàn)與衰老相關(guān)的進(jìn)行性認(rèn)知功能障礙[4-5]。但也有觀點(diǎn)認(rèn)為,LPS神經(jīng)炎癥對(duì)不同記憶障礙類型的影響可能有差異,需要進(jìn)行更多的研究[6]。因此,本研究用小鼠側(cè)腦室注射LPS誘發(fā)海馬神經(jīng)炎癥反應(yīng),探討海馬區(qū)域炎癥狀態(tài)對(duì)小鼠獲取和提取空間記憶的影響及其初步機(jī)制?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 動(dòng)物及其飼養(yǎng) 選擇健康SPF級(jí)3月齡C57BL/6小鼠,雄性,體質(zhì)量(25±3)g,購(gòu)自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司。將小鼠飼養(yǎng)于可自由飲水取食、室溫(20±2)℃、濕度(50±5)%、晝夜循環(huán)光照(12 h/12 h)的清潔環(huán)境中。實(shí)驗(yàn)前將小鼠置于實(shí)驗(yàn)室中進(jìn)行環(huán)境適應(yīng)。動(dòng)物使用和管理經(jīng)青島大學(xué)動(dòng)物倫理委員會(huì)批準(zhǔn)。
1.1.2 主要試劑及來(lái)源 LPS購(gòu)自美國(guó)Sigma公司,生理鹽水購(gòu)自山東齊都藥業(yè)有限公司,異氟烷購(gòu)自深圳市瑞沃德生命科技股份有限公司,BV2細(xì)胞系購(gòu)自中國(guó)科學(xué)院昆明細(xì)胞庫(kù)保藏中心,體積分?jǐn)?shù)0.10胎牛血清和100 MU/L青霉素-10 g/L鏈霉素混合液購(gòu)自美國(guó)Thermo Fisher Scientific公司。賽默飛PureLink RNA迷你試劑盒購(gòu)自美國(guó)賽默飛世爾科技有限公司,Sbyr Green熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(PCR)試劑盒和RNA逆轉(zhuǎn)錄試劑盒均購(gòu)自湖南艾科瑞生物工程有限公司。
1.2 實(shí)驗(yàn)方法
1.2.1 行為學(xué)實(shí)驗(yàn)流程 ①14只小鼠側(cè)腦室埋管1周后,隨機(jī)分為L(zhǎng)PS組(8只)和對(duì)照組(6只),分別側(cè)腦室注射3 μL的LPS(1 g/L)和生理鹽水2 d后進(jìn)行曠場(chǎng)實(shí)驗(yàn);然后同法注射LPS和生理鹽水2 d后行水迷宮訓(xùn)練和測(cè)試。②10只小鼠側(cè)腦室埋管1周后開始水迷宮訓(xùn)練,在第7天空間記憶形成后隨機(jī)分為L(zhǎng)PS組(5只)和對(duì)照組(5只),分別側(cè)腦室注射3 μL的LPS(1 g/L)和生理鹽水,2 d后再進(jìn)行水迷宮測(cè)試。
1.2.2 側(cè)腦室微量注射 小鼠以體積分?jǐn)?shù)0.04異
氟烷麻醉后置于腦立體定位儀上,頭部消毒后進(jìn)行
側(cè)腦室埋管。按照行為學(xué)實(shí)驗(yàn)流程設(shè)計(jì)的時(shí)間進(jìn)行側(cè)腦室藥物注射。將微量注射器與聚乙烯管和內(nèi)導(dǎo)管相連接。兩組先分別吸入1 g/L的LPS溶液和生理鹽水各8 μL,其余部分注入生理鹽水,然后將微量注射器固定在微推進(jìn)器上。將內(nèi)導(dǎo)管迅速插入外導(dǎo)管并保持穩(wěn)定,以 1 μL/min 的恒定流量緩慢地將1 g/L的LPS溶液和生理鹽水各3 μL注入小鼠側(cè)腦室,留針10 min。休息1 d后進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.3 曠場(chǎng)實(shí)驗(yàn) 小鼠按照文獻(xiàn)方法[7]進(jìn)行曠場(chǎng)實(shí)驗(yàn),分析軟件自動(dòng)給出小鼠進(jìn)入箱中央?yún)^(qū)域的時(shí)間構(gòu)成比,以及活動(dòng)速度、頻率等指標(biāo)。
1.2.4 水迷宮實(shí)驗(yàn) 水迷宮由圓形水池、隱藏平臺(tái)和視頻跟蹤系統(tǒng)組成,用于評(píng)估小鼠空間學(xué)習(xí)記憶能力。訓(xùn)練階段將平臺(tái)藏于水下,讓小鼠重復(fù)尋找以記住其位置。記錄小鼠從入水到找到平臺(tái)的時(shí)間,表示學(xué)習(xí)能力。測(cè)試階段移除平臺(tái),分析小鼠在原平臺(tái)象限探索的時(shí)間構(gòu)成比。
1.2.5 細(xì)胞培養(yǎng) 取6孔細(xì)胞培養(yǎng)板,每孔加入含有體積分?jǐn)?shù)0.10胎牛血清和青霉素-鏈霉素混合液(100×)的DMEM培養(yǎng)液2 mL,
然后加入密度1×
106/L的BV2細(xì)胞2 mL,最后加入1 mg/L 的LPS溶液2 mL,置37 ℃、含體積分?jǐn)?shù)0.05 CO2的細(xì)胞培養(yǎng)箱中培養(yǎng)。
1.2.6 細(xì)胞炎癥因子的實(shí)時(shí)熒光定量PCR檢測(cè)
分別于0.5、1.0、2.0、4.0和6.0 h收取培養(yǎng)的BV2細(xì)胞,使用賽默飛PureLink RNA 迷你試劑盒并按照其操作步驟提取細(xì)胞mRNA,用Nanodrop微量分光光度計(jì)測(cè)RNA的純度。按照逆轉(zhuǎn)錄試劑盒步驟將RNA逆轉(zhuǎn)錄為cDNA,用其作為模板進(jìn)行實(shí)時(shí)熒光定量PCR反應(yīng)。以Gapdh基因作為內(nèi)參照,PCR反應(yīng)引物及其序列見表1。Eppendorf熒光定量分析系統(tǒng)可自動(dòng)生成CT值,可計(jì)算出目的因子IL-6和TNF-α的相對(duì)表達(dá)量。
1.3 統(tǒng)計(jì)學(xué)處理
采用Graph Pad Prism 8.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。符合正態(tài)分布的計(jì)量資料數(shù)據(jù)以±s表示,
兩組均數(shù)比較使用雙尾t檢驗(yàn);對(duì)于單一自變量導(dǎo)致的多組均數(shù)比較,先采用單因素方差分析(One-way ANOVA),再采用Turkey’s多重檢驗(yàn)進(jìn)行兩兩比較;多因素均數(shù)比較首先使用雙因素或多因素方差分析(Two-way/Multiple ANOVA), 再采用Turkey’s多重檢驗(yàn)進(jìn)行兩兩比較。檢驗(yàn)水準(zhǔn)α=0.05,以Plt;0.05表示差異有顯著性。
2 結(jié) "果
2.1 海馬炎癥對(duì)小鼠焦慮與自發(fā)活動(dòng)影響
LPS組和對(duì)照組小鼠曠場(chǎng)實(shí)驗(yàn)的總運(yùn)動(dòng)距離、在中心的探索時(shí)間比較,差異均無(wú)顯著意義(Pgt;0.05)。見圖1A~C。提示LPS側(cè)腦室注射誘導(dǎo)海馬炎癥對(duì)小鼠自發(fā)活動(dòng)及焦慮狀態(tài)無(wú)明顯影響。
2.2 海馬炎癥對(duì)小鼠空間記憶形成的影響
水迷宮軌跡檢測(cè)顯示,LPS組小鼠在4個(gè)象限的探索軌跡比較無(wú)差別,對(duì)照組的探索軌跡則集中在目標(biāo)象限。見圖2A。水迷宮時(shí)間測(cè)試結(jié)果表明,在空間記憶獲取訓(xùn)練階段, LPS組與對(duì)照組小鼠找到平臺(tái)的時(shí)間差異無(wú)顯著性。見圖 2B。雙因素方差分析顯示,訓(xùn)練時(shí)間和藥物品種無(wú)顯著交互效應(yīng)(F交互=0.712,P=0.616 8);訓(xùn)練時(shí)間的主效應(yīng)顯著(F時(shí)間=10.890,Plt;0.000 1);藥物品種的主效應(yīng)不顯著(F藥物=0.260,P=0.619 1)。Turkey’s多重比較顯示,訓(xùn)練中兩組小鼠找到平臺(tái)的時(shí)間比較,差異均無(wú)統(tǒng)計(jì)學(xué)意義(Pgt;0.05)。提示在海馬炎癥的條件下,兩種藥物處理對(duì)小鼠的空間學(xué)習(xí)能力無(wú)明顯影響,即海馬炎癥并未對(duì)小鼠的空間學(xué)習(xí)能力造成顯著影響。水迷宮檢測(cè)結(jié)果表明,對(duì)照組小鼠在目標(biāo)象限的探索時(shí)間構(gòu)成比顯著高于在其他象限,而LPS組在目標(biāo)象限的探索時(shí)間構(gòu)成比與其他象限的差異無(wú)顯著意義。見圖2C。雙因素方差分析顯示,藥物品種與不同象限無(wú)顯著的交互效應(yīng)(F交互=2.441,P=0.075 6),藥物品種的主效應(yīng)不顯著(F藥物=9.604e-012,Pgt;0.999 9);不同象限的主效應(yīng)顯著(F象限=12.300,Plt;0.000 1)。Turkey’s多重比較顯示,不用LPS處理時(shí),目標(biāo)象限的探索時(shí)間與其左側(cè)、右側(cè)和對(duì)側(cè)象限比較,差別均有統(tǒng)計(jì)學(xué)意義(P=0.018 4、0.0022、0.0010)。用LPS處理時(shí),目標(biāo)象限的探索時(shí)間與其左側(cè)、右側(cè)和對(duì)側(cè)象限比較,差別均無(wú)統(tǒng)計(jì)學(xué)意義(P均gt;0.05)。提示LPS側(cè)腦室注射小鼠未能形成穩(wěn)定的空間記憶,即海馬依賴的空間記憶形成發(fā)生障礙。
2.3 海馬炎癥對(duì)小鼠提取空間記憶能力影響
水迷宮訓(xùn)練和測(cè)試結(jié)果表明,10 只野生型小鼠第7 天在水迷宮訓(xùn)練中找到目標(biāo)平臺(tái)的潛伏期明顯縮短,在目標(biāo)象限探索時(shí)間構(gòu)成比明顯高于其他3個(gè)象限,差異均有統(tǒng)計(jì)學(xué)意義(F=18.840、37.390,
Plt;0.001)。Turkey’s多重比較顯示,目標(biāo)象限的探索時(shí)間與其左側(cè)、右側(cè)和對(duì)側(cè)象限比較,差別均有統(tǒng)計(jì)學(xué)意義(P均lt;0.000 1)。見圖3A、B。提示野生型小鼠在空間記憶獲取過(guò)程中未受到明顯影響,它們具備正常的空間學(xué)習(xí)能力,并成功建立了空間記憶。在第9天測(cè)試中,對(duì)照組小鼠在目標(biāo)象限探索時(shí)間構(gòu)成比明顯高于其他象限,而LPS組各象限的探索時(shí)間比較差異無(wú)顯著性。見圖3C。雙因素方差分析顯示,藥物品種和不同象限有顯著交互效應(yīng)(F交互=6.170,P=0.002 0),藥物品種主效應(yīng)不顯著(F藥物=1.128e-009,Pgt;0.999 9),不同象限主效應(yīng)顯著(F象限=14.950,Plt;0.000 1)。Turkey’s多重比較顯示,不用LPS處理時(shí),目標(biāo)象限的探索時(shí)間與其左側(cè)、右側(cè)和對(duì)側(cè)象限比較,差別均有統(tǒng)計(jì)學(xué)意義(P均lt;0.001);用LPS處理時(shí),目標(biāo)象限的探索時(shí)間與其左側(cè)、右側(cè)和對(duì)側(cè)象限比較,差別均無(wú)統(tǒng)計(jì)學(xué)意義(P均gt;0.05)。提示在記憶形成后側(cè)腦室注射LPS則導(dǎo)致小鼠空間記憶的提取障礙。
2.4 LPS對(duì)BV2細(xì)胞TNF-α和IL-6表達(dá)影響
實(shí)時(shí)定量PCR檢測(cè)結(jié)果表明,與對(duì)照組相比,LPS組BV2細(xì)胞不同處理時(shí)間TNF-α和IL-6的mRNA表達(dá)均明顯上調(diào)。見圖4A、B。TNF-α表達(dá)的雙因素方差分析顯示,不同處理時(shí)間與藥物品種交互效應(yīng)差異顯著(F交互=14.920,Plt;0.000 1),不同處理時(shí)間主效應(yīng)差異顯著(F時(shí)間=25.010,Plt;0.000 1),藥物品種主效應(yīng)差異顯著(F藥物=10.230,P=0.032 9)。Turkey’s多重比較顯示,與對(duì)照組相比較,LPS組在0.5和1.0 h的TNF-α表達(dá)上調(diào)最為顯著 (P=0.000 5、0.004 6);在更長(zhǎng)的時(shí)間點(diǎn)(2.0、4.0、6.0 h)TNF-α表達(dá)雖有所升高但差異不顯著(P均gt;0.05)。IL-6表達(dá)的雙因素方差分析顯示,不同處理時(shí)間與藥物品種的交互效應(yīng)顯著(F交互=3.406,P=0.033 9),不同處理時(shí)間主效應(yīng)顯著(F時(shí)間=3.143,P=0.016 9),藥物品種主效應(yīng)不顯著(F藥物=4.870,P=0.092 0)。Turkey’s多重比較顯示,與對(duì)照組比較,LPS組在1.0 h的IL-6表達(dá)上調(diào)最為顯著(P=0.024 0),而在其他時(shí)間點(diǎn)(0.5、2.0、 4.0、6.0 h)表達(dá)雖有所升高但差異不顯著(P均gt;0.05)。提示LPS刺激可以激活BV2細(xì)胞。
3 討 "論
大量研究證據(jù)表明,記憶能力與海馬區(qū)神經(jīng)炎癥水平密切關(guān)聯(lián)[8]。海馬是大腦中負(fù)責(zé)形成、鞏固和提取記憶的關(guān)鍵區(qū)域。海馬中的神經(jīng)元、突觸以及神經(jīng)環(huán)路在記憶編碼和檢索過(guò)程中起著至關(guān)重要的作用[9-10]。神經(jīng)炎癥會(huì)產(chǎn)生大量細(xì)胞因子如IL-
1β、TNF-α等,這些細(xì)胞因子可誘發(fā)神經(jīng)元凋亡、突觸丟失以及神經(jīng)回路紊亂等[11-12]。多項(xiàng)行為學(xué)研究發(fā)現(xiàn),海馬區(qū)域神經(jīng)炎癥小鼠在空間學(xué)習(xí)記憶、工作記憶、情景恐懼等任務(wù)中表現(xiàn)出明顯的記憶缺陷。這些缺陷的程度往往與海馬區(qū)域炎癥反應(yīng)的強(qiáng)度呈正相關(guān)[10,13]。本研究采用腦室內(nèi)注射LPS的方法,成功建立了海馬區(qū)域發(fā)生神經(jīng)炎癥反應(yīng)的小鼠模型[14]。本文實(shí)驗(yàn)結(jié)果顯示,與對(duì)照組相比,LPS組小鼠在評(píng)估其依賴海馬區(qū)域的空間記憶能力時(shí),表現(xiàn)出明顯的記憶提取缺陷。提示LPS引發(fā)的海馬炎癥導(dǎo)致了空間記憶提取障礙。在水迷宮訓(xùn)練期間,LPS組與對(duì)照組小鼠找到目標(biāo)平臺(tái)的時(shí)間差異無(wú)顯著性。在經(jīng)過(guò)1周水迷宮訓(xùn)練后的空間記憶形成測(cè)試中顯示,對(duì)照組小鼠在目標(biāo)平臺(tái)存在的特定象限進(jìn)行了更長(zhǎng)時(shí)間的探索,而LPS組小鼠則未顯示類似趨勢(shì),未能形成穩(wěn)定的空間記憶,即海馬依賴的空間記憶形成障礙,說(shuō)明LPS誘導(dǎo)的海馬炎癥損害了小鼠的空間記憶,這和許多文獻(xiàn)的結(jié)果是一致的[15-17]。本研究在水迷宮訓(xùn)練7 d后,將已經(jīng)形成空間記憶的小鼠分為兩組,分別側(cè)腦室注射LPS和生理鹽水。在第9天小鼠水迷宮空間記憶提取的測(cè)試顯示,對(duì)照組在目標(biāo)平臺(tái)存在的特定象限進(jìn)行更長(zhǎng)時(shí)間有目的的探索,而LPS組小鼠則無(wú)此表現(xiàn),說(shuō)明LPS側(cè)腦室注射小鼠表現(xiàn)出海馬依賴的空間記憶提取障礙。提示LPS誘發(fā)的海馬炎癥對(duì)空間記憶的損害主要是發(fā)生在記憶提取的過(guò)程,這是本文的一項(xiàng)新發(fā)現(xiàn)。
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中的免疫細(xì)胞,它們?cè)谏窠?jīng)調(diào)控中起著重要作用[18-20]。小膠質(zhì)細(xì)胞通過(guò)與神經(jīng)元、突觸以及其他膠質(zhì)細(xì)胞相互作用,參與多種神經(jīng)調(diào)控的生理和病理過(guò)程[21-23]。已有研究表明,在阿爾茨海默病等神經(jīng)退行性疾病中,小膠質(zhì)細(xì)胞在激活狀態(tài)下可以釋放大量炎癥因子,如IL-1β、TNF-α和IL-6等,導(dǎo)致神經(jīng)炎癥反應(yīng)甚至炎癥級(jí)聯(lián)反應(yīng)[24]。BV2細(xì)胞是一種常用的小鼠小膠質(zhì)細(xì)胞系,常被用作體外小膠質(zhì)細(xì)胞活化和炎癥反應(yīng)的模型系統(tǒng)。BV2細(xì)胞對(duì)細(xì)菌內(nèi)毒素LPS、Aβ蛋白等炎癥刺激有很好的反應(yīng)性[25]。本實(shí)驗(yàn)采用LPS刺激BV2細(xì)胞的結(jié)果表明,炎癥因子TNF-α和IL-6的表達(dá)明顯增加。而TNF-α和IL-6的產(chǎn)生可能是導(dǎo)致認(rèn)知障礙的原因,說(shuō)明海馬炎癥導(dǎo)致的空間記憶提取障礙可能與LPS介導(dǎo)的小膠質(zhì)細(xì)胞炎性激活有關(guān)。本文結(jié)果還表明,在LPS刺激BV2細(xì)胞1.0 h之后的其他時(shí)點(diǎn),兩組TNF-α和IL-6表達(dá)雖有上調(diào)但差異無(wú)顯著性。這可能是由于炎癥因子的產(chǎn)生和釋放是一個(gè)動(dòng)態(tài)過(guò)程,隨著時(shí)間的推移其產(chǎn)生會(huì)逐漸減少,部分原因可能是由于其表達(dá)的積累能夠通過(guò)自身或鄰近細(xì)胞的受體激活反饋抑制機(jī)制。同時(shí),持續(xù)的炎癥因子產(chǎn)生需要細(xì)胞消耗資源和能量,如果沒有新的激活信號(hào),細(xì)胞可能會(huì)減少炎癥因子的產(chǎn)生,以節(jié)省資源和能量。細(xì)胞對(duì)LPS處理的反應(yīng)取決于很多因素,包括細(xì)胞狀態(tài)、LPS濃度、細(xì)胞代數(shù)等,不同的實(shí)驗(yàn)條件也會(huì)導(dǎo)致不同的結(jié)果。有研究表明,使用更低濃度LPS刺激BV2細(xì)胞TNF-α表達(dá)在3 h時(shí)達(dá)到峰值,之后其表達(dá)下降,這與本文結(jié)果也是基本相符的[26]。
海馬炎癥可能通過(guò)多種機(jī)制導(dǎo)致空間記憶障礙。這包括神經(jīng)元損傷和死亡[27]、神經(jīng)可塑性的減弱,以及神經(jīng)遞質(zhì)平衡的改變。促炎因子釋放可以干擾神經(jīng)信號(hào)傳遞和神經(jīng)再生過(guò)程,進(jìn)而影響記憶形成和提?。?8]。此外,炎癥還可能影響血-腦脊液屏障的完整性,使得更多的炎癥遞質(zhì)進(jìn)入大腦,進(jìn)一步加劇神經(jīng)的病理狀態(tài)[29,30]。
綜上所述,本研究結(jié)果顯示,LPS誘發(fā)的海馬炎癥對(duì)小鼠空間記憶的獲取和提取有顯著影響,其機(jī)制可能與小膠質(zhì)細(xì)胞激活有關(guān)。這一結(jié)果有助于深入理解神經(jīng)炎癥與認(rèn)知功能及小膠質(zhì)細(xì)胞的之間的關(guān)系,抑制小膠質(zhì)細(xì)胞激活、減輕海馬炎癥可能為神經(jīng)退行性疾病的記憶障礙治療提供新的靶點(diǎn)。本研究還有不足之處,只探究了海馬炎癥對(duì)小鼠空間記憶影響,未來(lái)研究中尚需探討其他腦區(qū)的炎癥對(duì)小鼠認(rèn)知是否產(chǎn)生影響,從而進(jìn)一步認(rèn)識(shí)神經(jīng)炎癥和認(rèn)知功能以及小膠質(zhì)細(xì)胞的關(guān)系。
[參考文獻(xiàn)]
[1]BANKS W A, GRAY A M, ERICKSON M A, et al. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit[J]." Journal of Neuroinflammation, 2015,12:223.
[2]BLOCK M L, ZECCA L, HONG J S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms[J]." Nature Reviews Neuroscience, 2007,8(1):57-69.
[3]LEE J W, LEE Y K, YUK D Y, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation[J]." Journal of Neuroinflammation, 2008,5:37.
[4]SKRZYPCZAK-WIERCIOCH A, SAAT K. Lipopolysaccha-
ride-induced model of neuroinflammation: mechanisms of ac- "tion, research application and future directions for its use[J]." Molecules, 2022,27(17):5481.
[5]DE OLIVEIRA L R C, MIMURA L A N, FRAGA-SILVA T F C, et al. Calcitriol prevents neuroinflammation and reduces blood-brain barrier disruption and local macrophage/microglia activation[J]." Frontiers in Pharmacology, 2020,11:161.
[6]DECANDIA D, GELFO F, LANDOLFO E, et al. Dietary protection against cognitive impairment, neuroinflammation and oxidative stress in Alzheimer’s disease animal models of lipopolysaccharide-induced inflammation[J]." International Journal of Molecular Sciences, 2023,24(6):5921.
[7]張騰元,商曉鈺,謝俊霞,等. CB1R拮抗劑對(duì)MPTP誘導(dǎo)PD小鼠運(yùn)動(dòng)行為影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2023,59(3):357-360.
[8]QIN L Y, WU X F, BLOCK M L, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration[J]." Glia, 2007,55(5):453-462.
[9]HEIN A M, STASKO M R, MATOUSEK S B, et al. Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice[J]." Brain, Behavior, and Immunity, 2010, 24(2):243-253.
[10]HEIN A M, ZARCONE T J, PARFITT D B, et al. Beha-
vioral, structural and molecular changes following long-term hippocampal IL-1β overexpression in transgenic mice[J]." Journal of Neuroimmune Pharmacology, 2012,7(1):145-155.
[11]SHISHKINA G T, KALININA T S, GULYAEVA N V, et al. Changes in gene expression and neuroinflammation in the hippocampus after focal brain ischemia: involvement in the long-term cognitive and mental disorders[J]." Biochemistry Biokhimiia, 2021,86(6):657-666.
[12]XU F, HAN L L, WANG Y F, et al. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors[J]." BMC Medicine, 2023,21(1):7.
[13]YAMAGUCHI A, JITSUISHI T, HOZUMI T, et al. Temporal expression profiling of DAMPs-related genes revealed the biphasic post-ischemic inflammation in the experimental stroke model[J]." Molecular Brain, 2020,13(1):57.
[14]YUE L Y, LIU P, MA N T, et al. Interaction between extracellular ATP5A1 and LPS alleviates LPS-induced neuroinflammation in mice[J]." Neuroscience Letters, 2021,758:136005.
[15]ZHAO W X, XU Z P, CAO J B, et al. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice[J]." Journal of Neuroinflammation, 2019,16(1):230.
[16]ZHAO W X, ZHANG J H, CAO J B, et al. Acetaminophen attenuates lipopolysaccharide-induced cognitive impairment through antioxidant activity[J]." Journal of Neuroinflammation, 2017,14(1):17.
[17]ZHANG F, ZHANG J G, YANG W, et al. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation[J]." Biomedecine amp; Pharmacotherapie, 2018,107:1523-1529.
[18]BUDDE P P, MISTELI T. Cell biology beyond the cell[J]." The Journal of Cell Biology, 2010,190(1):7.
[19]KWON H S, KOH S H. Neuroinflammation in neurodegene-
rative disorders: the roles of microglia and astrocytes[J]." Translational Neurodegeneration, 2020,9(1):42.
[20]PRINZ M, JUNG S, PRILLER J. Microglia biology: one century of evolving concepts[J]." Cell, 2019,179(2):292-311.
[21]SALTER M W, STEVENS B. Microglia emerge as central players in brain disease[J]." Nature Medicine, 2017, 23(9):1018-1027
[22]SOMINSKY L, DE LUCA S, SPENCER S J. Microglia: key players in neurodevelopment and neuronal plasticity[J]." The International Journal of Biochemistry amp; Cell Biology, 2018,94:56-60.
[23]BAR E, BARAK B. Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders[J]." Glia, 2019,67(11):2125-2141.
[24]HOLSTE K G, XIA F, YE F H, et al. Mechanisms of neuroinflammation in hydrocephalus after intraventricular hemorrhage: a review[J]." Fluids and Barriers of the CNS, 2022,19(1):28.
[25]NORDEN D M, TROJANOWSKI P J, VILLANUEVA E, et al. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge[J]." Glia, 2016,64(2):300-316.
[26]唐相龍,龍宗泓,段光友,等. LOC339524基因介導(dǎo)脂多糖誘導(dǎo)小鼠小膠質(zhì)bv2細(xì)胞系炎癥因子的表達(dá)[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2019,41(4):289-295.
[27]AMANOLLAHI M, JAMEIE M, HEIDARI A, et al. The dialogue between neuroinflammation and adult neurogenesis: mechanisms involved and alterations in neurological diseases[J]." Molecular Neurobiology, 2023,60(2):923-959.
[28]WANG X X, ZHANG B, XIA R, et al. Inflammation, apoptosis and autophagy as critical players in vascular dementia[J]." European Review for Medical and Pharmacological Sciences, 2020, 24(18):9601-9614.
[29]LOPEZ-RODRIGUEZ A B, HENNESSY E, MURRAY C L, et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction[J]." Alzheimer’s amp; Dementia, 2021,17(10):1735-1755.
[30]NIKOLOPOULOS D, MANOLAKOU T, POLISSIDIS A, et al. Microglia activation in the presence of intact blood-brain barrier and disruption of hippocampal neurogenesis via IL-6 and IL-18 mediate early diffuse neuropsychiatric lupus[J]." Annals of the Rheumatic Diseases, 2023,82(5):646-657.
(本文編輯 于國(guó)藝)
[收稿日期]2024-02-21; [修訂日期]2024-05-15
[基金項(xiàng)目]山東省自然科學(xué)基金面上項(xiàng)目(ZR2023MH0-51);青島市自然科學(xué)基金原創(chuàng)探索項(xiàng)目(23-2-1-188-zyyd-jch)
[第一作者]劉曉敏(1998-),女,碩士研究生。
[通信作者]周宇(1973-),女,博士,教授,博士生導(dǎo)師。E-mail:zhouyu7310@163.com。王強(qiáng)(1964-),男,博士,教授,博士生導(dǎo)師。E-mail:wangqiang1954@qdu.edu.cn。