趙東風(fēng) 秦傳睿 黨夢濤
摘要:針對芳香族硝基化合物生產(chǎn)、運(yùn)輸以及儲存過程中引發(fā)的重特大燃爆事故,采用試驗(yàn)及模型計(jì)算等方式對其自加速分解溫度(SADT)進(jìn)行獲取,并提出一種基于定量結(jié)構(gòu)-性質(zhì)關(guān)系(QSPR)的理論預(yù)測方法。通過絕熱加速量熱試驗(yàn)獲取18種芳香族硝基化合物的熱力學(xué)和動力學(xué)參數(shù),以此計(jì)算得到25 kg標(biāo)準(zhǔn)包裝下物質(zhì)的自加速分解溫度。應(yīng)用多元線性回歸(MLR)和人工神經(jīng)網(wǎng)絡(luò)(ANN)等機(jī)器學(xué)習(xí)方法分別構(gòu)建相應(yīng)的預(yù)測模型,最終驗(yàn)證并比較兩種模型的擬合能力、魯棒性和預(yù)測能力。結(jié)果表明:芳香族硝基化合物對應(yīng)MLR模型和ANN模型的相關(guān)系數(shù)分別為0.893和0.975,ANN模型在匹配度方面明顯優(yōu)于MLR模型。
關(guān)鍵詞:芳香族硝基化合物; 自加速分解溫度; 定量結(jié)構(gòu)-性質(zhì)關(guān)系
中圖分類號:X 937 文獻(xiàn)標(biāo)志碼:A
引用格式:趙東風(fēng),秦傳睿,黨夢濤.芳香族硝基化合物自加速分解溫度的定量結(jié)構(gòu)-性質(zhì)關(guān)系[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2023,47(6):171-177.
ZHAO Dongfeng, QIN Chuanrui, DANG Mengtao. Quantitative structure-property relationship of self-accelerating decomposition temperature of aromatic nitro compounds[J].Journal of China University of Petroleum(Edition of Natural Science),2023,47(6):171-177.
Quantitative structure-property relationship of self-accelerating
decomposition temperature of aromatic nitro compounds
ZHAO Dongfeng1, QIN Chuanrui2, DANG Mengtao1
(1.College of Chemistry and Chemical Engineering in China University of Petroleum (East China), Qingdao 266580, China;
2.College of Mechanical and Electrical Engineering in China University of Petroleum (East China), Qingdao 266580, China)
Abstract: Aiming at the serious explosion accidents caused by aromatic nitro compounds in production, transportation, and storage, the self-accelerating decomposition temperature (SADT) was obtained by experiments and model calculations, and a theoretical prediction method based on the quantitative structure-property relationship (QSPR) was proposed. The thermodynamic and kinetic parameters of 18 aromatic nitro compounds were obtained through adiabatic accelerated calorimetry experiments and the self-accelerating decomposition temperature of the substance in a standard packaging of 25 kilograms was calculated. In addition, machine learning methods such as multiple linear regression (MLR) and artificial neural network (ANN) were applied to construct corresponding prediction models. Finally, the fitting ability, robustness, and prediction ability of the two models were verified and compared. The results show that the correlation coefficients of aromatic nitro compounds corresponding to the MLR model and the ANN model are 0.893 and 0.975, respectively. The ANN model is obviously superior to the MLR model in terms of matching degree.
Keywords: aromatic nitro compounds; self-accelerating decomposition temperature; quantitative structure-property relationship
近年來硝基化合物的儲存安全問題[1-4]引起廣泛重視。對于自反應(yīng)化學(xué)品,自加速分解溫度(簡稱為SADT,其值為TSADT)是衡量和評估其儲存運(yùn)輸安全性能的重要參數(shù)之一。獲取SADT的試驗(yàn)方法有美國SADT試驗(yàn)、絕熱貯存試驗(yàn)、等溫貯存試驗(yàn)和蓄熱貯存試驗(yàn),且只有美國SADT試驗(yàn)可以測定220 L以下大規(guī)模包裝下的SADT數(shù)值[5]。此外在量熱試驗(yàn)方面,絕熱狀態(tài)下的熱動力學(xué)分析能夠更準(zhǔn)確模擬大規(guī)模存儲化學(xué)品期間其內(nèi)部與外界無明顯熱交換的真實(shí)場景。定量結(jié)構(gòu)-性質(zhì)關(guān)系(quantitative structure-property relationship,QSPR)被廣泛應(yīng)用于各種物質(zhì)的屬性預(yù)測,包括安全領(lǐng)域[6]。其主要以分子結(jié)構(gòu)、拓?fù)浜土孔踊瘜W(xué)中的形式篩選描述符,同時依靠大量的數(shù)據(jù)集和人工神經(jīng)網(wǎng)絡(luò)(如最小二乘法,支持向量機(jī)法)等獲取最終的多元線性或非線性回歸方程,最終實(shí)現(xiàn)熱穩(wěn)定性預(yù)測的目的[7-10]。筆者通過絕熱加速量熱試驗(yàn)獲取18種芳香族硝基化合物的熱力學(xué)和動力學(xué)參數(shù),并以此來計(jì)算25 kg標(biāo)準(zhǔn)包裝下物質(zhì)的自加速分解溫度。在此基礎(chǔ)上結(jié)合多元線性回歸(multiple linear regression, MLR)和人工神經(jīng)網(wǎng)絡(luò)(artificial neural network,ANN)分別建立物質(zhì)分子描述符與自加速分解溫度之間的QSPR預(yù)測模型。
1 數(shù)據(jù)樣本與研究方法
1.1 試驗(yàn)及基礎(chǔ)數(shù)據(jù)獲取
絕熱加速量熱儀已被廣泛用于評估化學(xué)反應(yīng)過程中的潛在熱危害[11-12]。采用TAC-500A絕熱加速量熱儀模擬18種芳香族硝基化合物的熱失控過程以此來獲取相應(yīng)的量熱數(shù)據(jù)及熱力學(xué)參數(shù),經(jīng)過動力學(xué)分析等計(jì)算對應(yīng)的自加速分解溫度。試驗(yàn)過程選擇加熱-等待-搜索(H-W-S)模式,將0.3~1.0 g的樣品置于球形碳鋼樣品池中,與設(shè)備連接形成密封系統(tǒng)。試驗(yàn)過程升溫區(qū)間設(shè)置為30~400 ℃。其中初始溫度設(shè)置為80 ℃,溫度梯度5 ℃,等待時間為30 min。
1.2 模型及參數(shù)計(jì)算
根據(jù)熱平衡理論,容器內(nèi)物質(zhì)發(fā)生分解反應(yīng)時的能量平衡方程為
式中,cp為比熱容;U為熱傳遞系數(shù);S為樣品盒容器的接觸面積;下標(biāo)c、s和env分別表示容器、樣品和外界環(huán)境;M為質(zhì)量;ΔHr為平均熱釋放量;α為轉(zhuǎn)化率;t為時間。
在冷卻失效的情況下,可以認(rèn)為樣品溫度與容器溫度保持一致,即
進(jìn)行以下變換得到通用的最大反應(yīng)速率到達(dá)時間(θ)計(jì)算式為
式中,q0表示在反應(yīng)溫度T處對應(yīng)的熱釋放量;R為氣體常數(shù),8.314 J/(mol·K-1);Ea為活化能;q0為在反應(yīng)溫度T處對應(yīng)的熱釋放量。
根據(jù)q0的定義,式(3)可進(jìn)一步變換得
絕熱條件下的自反應(yīng)速率可以表示為
式中,dT/dt為絕熱條件下的自反應(yīng)速率;A為指前因子;Tf為分解過程中的最高溫度;T0為初始分解溫度;ΔTad為絕熱溫升;n為反應(yīng)級數(shù)。
將式(6)帶入式(5)中得
兩邊取對數(shù)得
當(dāng)反應(yīng)活化能較大時,式(8)可以簡化為
此時lnθ與1/T呈線性關(guān)系,由直線的斜率即可求得活化能。同時,依據(jù)ARC試驗(yàn)獲取的樣品溫度隨時間變化梯度dT /dt以及動力學(xué)擬合得到的表觀活化能即可計(jì)算出不同溫度下的θ。而系統(tǒng)的時間常數(shù)τ的表達(dá)式為
式中,參數(shù)M設(shè)置為25 kg標(biāo)準(zhǔn)包裝質(zhì)量。令時間常數(shù)τ與最大反應(yīng)速率到達(dá)時間θ相等,所求得的溫度即為系統(tǒng)的不回歸溫度TNR,將TNR帶入Semenov均溫模型最終可計(jì)算得到物質(zhì)的自加速分解溫度TSADT:
1.3QSPR預(yù)測及驗(yàn)證
(1)通過Gaussian 09 軟件構(gòu)建分子模型,提交計(jì)算后以獲得分子的穩(wěn)定構(gòu)型[13]。隨后將優(yōu)化后的穩(wěn)定構(gòu)型導(dǎo)入到ChemDes計(jì)算平臺,由此獲得每種物質(zhì)的1 135種描述符[14]。樣品編號中1~15號被選定為訓(xùn)練集,剩下的16~18號為測試集。采用數(shù)學(xué)分析軟件SPSS Statistics 24對15種訓(xùn)練集進(jìn)行分析,從而訓(xùn)練并建立MLR模型。隨后將MLR模型篩選得到的描述符通過MATLAB軟件建立ANN模型。
(2)選用相關(guān)系數(shù)R2、均方根誤差eRMS和平均相對誤差eAR對所建模型的擬合能力進(jìn)行驗(yàn)證。采用留一法(Leave One-Out,LOO)交互驗(yàn)證和殘差圖分析方法對所建模型的穩(wěn)健性進(jìn)行驗(yàn)證[16]。采用測試集的交互驗(yàn)證系數(shù)Q2ext、eRMS、eAR來評估模型的外部預(yù)測能力。圖1為絕熱試驗(yàn)及QSPR模型構(gòu)建流程。
2 結(jié)果分析
2.1 ARC試驗(yàn)結(jié)果及動力學(xué)
通過熱惰性因子Φ修正后的量熱數(shù)據(jù)見表1。由于18種芳香族硝基化合物所對應(yīng)的數(shù)據(jù)量較大,選取1,4-二硝基苯、2,4-二硝基苯胺和2,6-二硝基苯胺為例,其對應(yīng)的絕熱測試數(shù)據(jù)如圖2所示。在獲取上述參數(shù)的同時,對3種硝基化合物進(jìn)行絕熱動力學(xué)分析。溫升速率過大時,樣品可能處于非絕熱狀態(tài),截取其分解初期溫升速率較低的數(shù)據(jù)進(jìn)行動力學(xué)分析,圖3為3種樣品的實(shí)測和擬合曲線。通過曲線的斜率即可獲取不同樣品在絕熱狀態(tài)下的表觀活化能。同理,25 kg聯(lián)合國標(biāo)準(zhǔn)包裝下18種芳香族硝基化合物的熱動力學(xué)數(shù)據(jù)及TSADT如表2所示。
2.2 MLR模型
選擇逐步回歸算法來篩選描述符的最佳子集,擬合過程中F進(jìn)入和排除值分別為4和3[18],MLR擬合得到的多元線性回歸方程為
TSADT=804.593-109.398TP-373.256QHmax+231.2fGATSP1-1290.417fMORSEC23.(12)
式中,Tp為二維描述符中T總尺寸指數(shù)/按原子極化率加權(quán);QHmax為H原子上的正電荷最大數(shù)量;fGATSp1為基于原子極化率的 Geary 自相關(guān)描述符;fMoRSEC23為基于原子電荷的 3-D MoRse 描述符。
MLR模型的主要性能參數(shù)見表3,訓(xùn)練集中的R2、eRMS和eAR分別為0.893、12.234、0.051。可以看出,其均方根誤差和平均相對誤差較小,表明該線性模型的擬合能力較強(qiáng),相關(guān)性較好。同時留一法驗(yàn)證系數(shù)的Q2LOO數(shù)值也較小,模型的穩(wěn)定性較高。
圖4和5分別為MLR模型中SADT預(yù)測值與試驗(yàn)值的比較及殘差分布。圖4中數(shù)據(jù)點(diǎn)均分布在對角線附近,且無較大的偏離,由此表明擬合得到的模型具有一定的預(yù)測能力。在殘差圖中所有樣本的殘差值均勻且隨機(jī)分布于基準(zhǔn)線的兩側(cè)說明線性QSPR模型建立過程未產(chǎn)生系統(tǒng)誤差。通過上述分析可以看出,建立的MLR預(yù)測模型精度較高,有著一定的預(yù)測能力。
2.3 ANN模型
人工神經(jīng)網(wǎng)絡(luò)由多個分層組織的神經(jīng)元組成,通常包含輸入層、隱含層和輸出層3層[19-20]。選擇由MLR模型篩選出來的描述符作為人工神經(jīng)網(wǎng)絡(luò)的輸入變量,構(gòu)建的ANN模型的預(yù)測結(jié)果見表4。
通過對比各驗(yàn)證參數(shù)可以看出,ANN模型的精度明顯高于MLR模型。如圖6所示,18種芳香族硝基化合物自加速分解溫度預(yù)測值和試驗(yàn)值均分布在對角線兩側(cè)。進(jìn)一步對比發(fā)現(xiàn),ANN模型中有更多的數(shù)據(jù)線分布在對角線上,且數(shù)據(jù)偏離程度也更小。由此說明自加速分解溫度與描述符之間存在較強(qiáng)的非線性關(guān)系,圖7給出ANN模型的殘差圖,預(yù)測殘差均勻且隨機(jī)分布于基準(zhǔn)線,該模型在建立過程中同樣未產(chǎn)生系統(tǒng)誤差。
通過比較2個模型的R2、eRMS以及eAR等參數(shù)可以發(fā)現(xiàn),ANN模型的性能參數(shù)均優(yōu)于MLR模型,具體表現(xiàn)在精度更高,預(yù)測能力也相對更強(qiáng)等方面。
3 結(jié) 論
(1)通過絕熱加速量熱裝置對18種芳香族硝基化合物進(jìn)行熱分析試驗(yàn),獲取相應(yīng)的動力學(xué)數(shù)據(jù),并計(jì)算得到對應(yīng)的自加速分解溫度數(shù)值。
(2)MLR模型和ANN模型均有著較好的擬合和預(yù)測精度,且ANN模型明顯優(yōu)于MLR模型,說明芳香族硝基化合物的自加速分解溫度與分子結(jié)構(gòu)間存在較強(qiáng)的非線性關(guān)系。
(3)模型雖然具有一定的預(yù)測能力,但受到絕熱加速量熱試驗(yàn)環(huán)境、現(xiàn)有樣本集數(shù)量等因素的影響。
參考文獻(xiàn):
[1] MIHAILIDOU E K, ANTONIADIS K D, ASSAEL M J. The 319 major industrial accidents since 1917[J]. International Review of Chemical Engineering, 2012,4(6):529-540.
[2] ZHAO B. Facts and lessons related to the explosion accident in Tianjin Port, China[J]. Natural Hazards, 2016,84(1):707-713.
[3] CHUNG Y S , KIM H S. On the August 12, 2015 occurrence of explosions and fires in Tianjin, China, and the atmospheric impact observed in central Korea[J]. Air Quality Atmosphere & Health, 2015,8(6):1-12.
[4] YANG X, LI Y, CHEN Y, et al. Case study on the catastrophic explosion of a chemical plant for production of m-phenylenediamine[J]. Journal of Loss Prevention in the Process Industries, 2020,67(1):104232.
[5] MALOW M, WEHRSTEDT K D. Prediction of the self-accelerating decomposition temperature (SADT) for liquid organic peroxides from differential scanning calorimetry (DSC) measurements[J]. Journal of Hazardous Materials, 2005,120(1/2/3):21-24.
[6] FAYET G, KNORR A, ROTUREAU P. First QSPR models to predict the thermal stability of potential self-reactive substances[J]. Process Safety and Environmental Protection, 2022,163:191-199.
[7] ZHOU L, WANG B, JIANG J, et al. Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds[J]. Thermochimica Acta, 2017,655:112-116.
[8] FAYET G, ROTUREAU P, PRANA V, et al. Global and local quantitative structure-property relationship models to predict the impact sensitivity of nitro compounds[J]. Process Safety Progress, 2012,31(3):291-303.
[9] XU J, ZHU L, FANG D, et al. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors[J]. Journal of Molecular Graphics and Modelling, 2012,36:10-19.
[10] PAN Y, ZHANG Y, JIANG J ,et al. Prediction of the self-accelerating decomposition temperature of organic peroxides using the quantitative structure-property relationship (QSPR) approach[J]. Journal of Loss Prevention in the Process Industries, 2014,31:41-49.
[11] YAO H, NI L, WU P, et al. Thermal hazard and pyrolysis mechanism of tetrazolo [1, 5-a] pyridine by TG, DSC, ARC, TG-MS and DFT methods[J]. Journal of Analytical and Applied Pyrolysis, 2021,159:105299.
[12] ZHAO J, GUI X, ZHANG W, et al. Thermal hazard evaluation of styrene-methyl methacrylate bulk copolymerization by differential scanning calorimetry and accelerating rate calorimetry[J]. Thermochimica Acta, 2021,706:179052.
[13] FAYET G, ROTUREAU P, JOUBERT L, et al. Development of a QSPR model for predicting thermal stabilities of nitroaromatic compounds taking into account their decomposition mechanisms[J]. Journal of Molecular Modeling, 2011,17(10):2443-2453.
[14] DONG J, CAO D S, MIAO H Y, et al. ChemDes: an integrated web-based platform for molecular descriptor and fingerprint computation[J]. Journal of Cheminformatics, 2015,7(1):1-10.
[15] TROPSHA A, GRAMATICA P, GOMBAR V K. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models[J]. QSAR & Combinatorial Science, 2003,22(1):69-77.
[16] PASHM F M, SHAFIEI F, DIALAMEPHOUR F. QSPR study on benzene derivatives to some physico-chemical properties by using topological indices[J]. Iranian Journal of Mathematical Chemistry, 2016,7(1):93-110.
[17] FAYET G, ROTUREAU P, JOUBERT L, et al. On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations[J]. Journal of Hazardous Materials, 2009,171(1/2/3):845-850.
[18] WANG D, YUAN Y, DUAN S, et al. QSPR study on melting point of carbocyclicnitroaromatic compounds by multiple linear regression and artificial neural network[J]. Chemometrics and Intelligent Laboratory Systems, 2015,143:7-15.
[19] 于桂杰,趙崇,遲建偉,等.基于人工神經(jīng)網(wǎng)絡(luò)的連續(xù)油管疲勞壽命預(yù)測[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2018,42(3):131-136.
YU Guijie, ZHAO Chong, CHI Jianwei, et al. Fatigue life prediction of coiled tubings based on artificial neural network[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018,42(3):131-136.
[20] 宋杰鯤,張?jiān)谛瘢瑥垥曰?一種基于熵權(quán)多目標(biāo)決策和人工神經(jīng)網(wǎng)絡(luò)的煉油企業(yè)績效評價方法[J].中國石油大學(xué)學(xué)報(自然科學(xué)版),2006,30(1):146-149,156.
SONG Jiekun, ZHANG Zaixu, ZHANG Xiaohui. An approach based on entropy-weighted technique for order preference by similarity to ideal solution and artificial neural network for oil refining enterprises performance evaluation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006,30(1):146-149,156.