姚琦馥,周界光,王健,陳黃鑫,楊瑤瑤,劉倩,閆磊,王瑛,周景忠,崔鳳娟,蔣云,馬建
小麥穗長(zhǎng)QTL鑒定及其遺傳分析
姚琦馥1,周界光2,王健2,陳黃鑫2,楊瑤瑤2,劉倩2,閆磊2,王瑛2,周景忠3,崔鳳娟3,蔣云4,馬建2
1銅仁學(xué)院農(nóng)林工程與規(guī)劃學(xué)院/貴州省梵凈山地區(qū)生物多樣性保護(hù)與利用重點(diǎn)實(shí)驗(yàn)室,貴州銅仁 554300;2四川農(nóng)業(yè)大學(xué)小麥研究所,成都 611130;3通遼市農(nóng)牧科學(xué)研究所,內(nèi)蒙古通遼 028015;4四川省農(nóng)業(yè)科學(xué)院生物技術(shù)核技術(shù)研究所,成都 610000
【目的】穗長(zhǎng)在決定小麥穗的構(gòu)造和產(chǎn)量潛力方面具有重要作用。挖掘具有育種利用價(jià)值的小麥穗長(zhǎng)數(shù)量性狀位點(diǎn)(quantitative trait loci,QTL),并解析其遺傳效應(yīng),為分子標(biāo)記輔助育種提供理論依據(jù)。【方法】以自然突變體和川農(nóng)16構(gòu)建的198份F6代重組自交系(recombinant inbred lines,RIL)群體(MC群體)作為研究材料,于2020—2021和2021—2022年生長(zhǎng)季,在四川溫江區(qū)、崇州市和雅安市(2021WJ、2022WJ、2021CZ、2022CZ和2021YA)進(jìn)行試驗(yàn),對(duì)5個(gè)環(huán)境下的穗長(zhǎng)進(jìn)行表型鑒定。利用基于16K SNP芯片構(gòu)建的高質(zhì)量遺傳連鎖圖譜對(duì)穗長(zhǎng)性狀位點(diǎn)進(jìn)行定位。另外,根據(jù)穗長(zhǎng)主效QTL側(cè)翼標(biāo)記的基因型分析主效位點(diǎn)對(duì)產(chǎn)量相關(guān)性狀的遺傳效應(yīng),從而評(píng)估其對(duì)產(chǎn)量提升的潛力?!窘Y(jié)果】共鑒定到14個(gè)控制穗長(zhǎng)發(fā)育的QTL,主要分布在1A(1個(gè))、1B(1個(gè))、2B(1個(gè))、3D(3個(gè))、4A(1個(gè))、4D(2個(gè))、5A(1個(gè))、5B(1個(gè))、7A(1個(gè))、7B(1個(gè))和7D(1個(gè))染色體。其中,在4個(gè)環(huán)境及最佳線性無(wú)偏預(yù)測(cè)(best linear unbiased prediction,BLUP)值中被檢測(cè)到,可解釋6.46%—20.12%的表型變異率,定位于1A染色體側(cè)翼標(biāo)記—間,被視為主效QTL。的正效應(yīng)位點(diǎn)來(lái)源于親本。在多環(huán)境QTL分析結(jié)果中也檢測(cè)到,表明其受環(huán)境影響較小,為主效且穩(wěn)定表達(dá)的QTL。的效應(yīng)在2個(gè)具有不同遺傳背景的驗(yàn)證群體中得到進(jìn)一步驗(yàn)證。除旗葉長(zhǎng)無(wú)顯著變化以外,攜帶正效應(yīng)位點(diǎn)株系的每穗籽粒數(shù)(12.68%)、每穗粒重(14.99%)、千粒重(5.79%)、旗葉寬(2.94%)和小穗數(shù)(1.48%)顯著增加,花期(0.61%)顯著提前,而株高(-6.47%)和有效分蘗數(shù)(-36.11%)顯著減少?!窘Y(jié)論】在1A染色體定位到1個(gè)主效且穩(wěn)定的穗長(zhǎng)位點(diǎn)。正效應(yīng)位點(diǎn)顯著提高穗粒數(shù)、穗粒重、千粒重和小穗數(shù),具有一定的育種價(jià)值。
小麥;16K SNP芯片;QTL;穗長(zhǎng);產(chǎn)量
【研究意義】小麥作為主要的谷類作物之一,對(duì)全球的糧食安全有至關(guān)重要的作用[1]。全球可耕地面積的持續(xù)減少和人口的增加導(dǎo)致對(duì)小麥的需求劇增[2-4]。因此,提高小麥單產(chǎn)成為保障糧食安全、滿足人民谷物需求的主要措施。整個(gè)麥穗著生小麥的花序,所以穗作為小麥的繁殖器官,是小麥植株的重要組成部分[5-6],穗長(zhǎng)是重要的穗部性狀,與單位面積穗粒數(shù)密切相關(guān),對(duì)小麥產(chǎn)量提高有積極作用[7-9]。因此,挖掘穗長(zhǎng)相關(guān)的基因/QTL,并研究穗長(zhǎng)與農(nóng)藝性狀的遺傳關(guān)系,可為小麥現(xiàn)代分子育種提供參考[10]?!厩叭搜芯窟M(jìn)展】迄今為止,在小麥上已經(jīng)鑒定到許多控制穗長(zhǎng)的基因/QTL,F(xiàn)an等[1]檢測(cè)到26個(gè)和穗長(zhǎng)相關(guān)的QTL,其中,、和是在試驗(yàn)環(huán)境中穩(wěn)定的QTL,其中主效QTL和(478.65—541.29 Mb)分別可解釋7.99%— 16.58%和13.09%—30.43%的表型變異。Li等[2]用分別種植在5個(gè)不同生態(tài)環(huán)境中的雙親群體川麥42/科成麥1和川麥42/川農(nóng)16進(jìn)行QTL定位,共鑒定到34個(gè)穗密度和穗長(zhǎng)共定位的QTL,其中,6個(gè)主效QTL至少在4個(gè)生態(tài)環(huán)境中被檢測(cè)到,BLUP值解釋7.13%—33.60%的表型變異。這些主效QTL均定位在5A和6A染色體,分別命名為和,這兩個(gè)QTL對(duì)株高、粒長(zhǎng)和千粒重有一因多效的作用。Xu等[11]利用2個(gè)骨干親本碧螞4號(hào)/百農(nóng)矮抗58構(gòu)建的包含248個(gè)株系的RIL群體為材料,分別在染色體2D、3A、3B、3D、4A、4D、5A、5B、5D、7B和7D中檢測(cè)到18個(gè)穗長(zhǎng)相關(guān)的QTL,可解釋2.04%—22.31%的表型變異。其中,2個(gè)穩(wěn)定的主效QTL(13.25—36.89Mb)和506.65—524.73 Mb在4個(gè)生態(tài)環(huán)境中都可以檢測(cè)到,其增效位點(diǎn)來(lái)自于碧螞4號(hào),其中可解釋11.03%—22.31%的表型變異,可解釋4.65%—8.38%的表型變異。陳黃鑫等[12]以矮蘭麥和野生二粒小麥LM001構(gòu)建的F8代重組自交系(recombinant inbred lines,RIL)群體為材料,共檢測(cè)到17個(gè)與穗長(zhǎng)相關(guān)的QTL,分布在2A、2B、3A、4A、4B、5A和6B染色體上,(—)在5個(gè)環(huán)境中被檢測(cè)到,可解釋10.41%—16.29%的表型變異,為穩(wěn)定表達(dá)的主效位點(diǎn),其加性效應(yīng)來(lái)源于父本LM001。Ji等[13]以13F10和川麥42雜交構(gòu)建的F8代RIL群體為材料,檢測(cè)到1個(gè)與穗長(zhǎng)相關(guān)的主效QTL(516.60—521.27 Mb),可解釋7.88%—26.60%的表型變異,其早前研究表明5A染色體上控制穗長(zhǎng)的主效位點(diǎn)也是春化作用基因位點(diǎn)。Xiong等[14]利用和LX987構(gòu)建的包括400個(gè)單株的RIL群體為材料,在3A、4A、5B、6A、6B和7D染色體上共檢測(cè)到9個(gè)控制穗長(zhǎng)的QTL,可解釋3.00%—22.00%的表型變異,其中染色體6A上的是穩(wěn)定的主效QTL(—)。姚儉昕等[15]以小偃81和西農(nóng)1376構(gòu)建的包含120個(gè)株系的F9:10RIL群體為材料,共檢測(cè)到2個(gè)控制穗長(zhǎng)的QTL(—)和(—),可分別解釋18.34%—22.51%和9.57%— 14.94%的表型變異,這兩個(gè)主效QTL的增效等位基因均來(lái)源于小偃81。其中在基因組上的物理距離為20.77—22.45 Mb,此位點(diǎn)和為同一個(gè)基因,而Chai等[16]以Y8679/J411構(gòu)建的包含191個(gè)株系的RIL群體為材料,檢測(cè)到2個(gè)位于2D染色體與株高和穗長(zhǎng)相關(guān)的主效QTL和,分別解釋30.94%—40.63%和31.31%—41.95%的表型變異。其增效位點(diǎn)都來(lái)自于親本J411。并證明此位點(diǎn)為同時(shí)控制株高和穗長(zhǎng)的一致位點(diǎn)。Xu等[17]以人工合成異源六倍體小麥TAA10和重新合成異源六倍體小麥XX329雜交構(gòu)建的包括198個(gè)單株的F7:8RIL群體為材料,共檢測(cè)到7個(gè)與穗長(zhǎng)相關(guān)的QTL,其中5個(gè)是環(huán)境穩(wěn)定的QTL,可解釋7.22%—11.59%的表型變異,其中穩(wěn)定的主效QTL位點(diǎn)、和LOD值為6.19—12.89,可解釋21.77%—33.29%的表型變異,其增效位點(diǎn)來(lái)自于TAA10。和分別解釋14.75%和7.36%的表型變異,其增效位點(diǎn)來(lái)自于XX329。Ma等[18]以南大2419和望水白構(gòu)建的包含136個(gè)株系的RIL群體株系間隨機(jī)交配構(gòu)成的永久F2群體為材料,檢測(cè)到1個(gè)穗長(zhǎng)相關(guān)的主效QTL(—),解釋29.70%— 36.30%的表型變異。該QTL在永久F2群體中也可解釋31.40%的表型變異。望水白在染色體區(qū)間的等位基因增加穗長(zhǎng)、小穗數(shù)和不育小穗數(shù),減少穗密度,通過(guò)選擇育種將會(huì)產(chǎn)生大穗的材料。水志杰等[19]以西農(nóng)389×人工合成小麥材料KU98衍生的F7:8RIL群體為試驗(yàn)材料,基于小麥55K SNP芯片對(duì)該群體進(jìn)行基因分型,對(duì)小麥穗長(zhǎng)和穗寬性狀進(jìn)行了QTL定位,在1A、2D、3A、5A和7B染色體上共檢測(cè)到10個(gè)與穗長(zhǎng)性狀相關(guān)的QTL。許多研究在不同染色體上鑒定出穗長(zhǎng)穩(wěn)定的QTL。Yao等[20]報(bào)道大約有350個(gè)穗長(zhǎng)相關(guān)的QTL被鑒定,其中一些主效QTL分布在1D、2A、2B、2D、3A、3D、4A、4B、5A、5B、5D、6A、6B、6D、7A、7B和7D?!颈狙芯壳腥朦c(diǎn)】小麥21條染色體上都有影響穗長(zhǎng)的基因/QTL[1-2, 11-20]。但由于不同定位群體得出的結(jié)論有一定差異,且同時(shí)鑒定到的主效QTL數(shù)量很少,使得這些QTL在實(shí)際生產(chǎn)中的應(yīng)用十分有限。因此,發(fā)掘優(yōu)異的穗長(zhǎng)基因并解析其遺傳機(jī)制,有利于小麥產(chǎn)量的提升?!緮M解決的關(guān)鍵問(wèn)題】本研究以穗長(zhǎng)較長(zhǎng)的自然變異株為母本、小麥品種川農(nóng)16(CN16)為父本構(gòu)建的F6代RIL群體MC為材料,利用基于16K SNP芯片技術(shù)構(gòu)建的高密度遺傳圖譜對(duì)穗長(zhǎng)性狀進(jìn)行遺傳定位。結(jié)合產(chǎn)量相關(guān)性狀,分析穗長(zhǎng)主效QTL對(duì)產(chǎn)量的潛在影響,為分子育種提供理論依據(jù)。
采用自然突變體和小麥品種CN16雜交構(gòu)建的含有198個(gè)單株的F6代RIL群體MC為研究對(duì)象。具有多小花、長(zhǎng)穗、多小穗等特點(diǎn),是一個(gè)自然突變的優(yōu)異材料。CN16小麥品種具有合適的株型。此外,2個(gè)具有不同遺傳背景的F2分離群體/20828(包含218個(gè)單株)和/蜀麥969(包含178個(gè)單株)作為驗(yàn)證群體用于主效QTL效應(yīng)的驗(yàn)證。所有材料均由四川農(nóng)業(yè)大學(xué)小麥研究所搜集并提供。
將MC群體及親本分別于2021、2022年種植于崇州(2021CZ和2022CZ)、溫江(2021WJ和2022WJ)和雅安(2021YA)共5個(gè)環(huán)境。采用單籽粒播種法,按照行長(zhǎng)0.75 m、株距0.1 m、行間距0.3 m,將每個(gè)株系進(jìn)行單行播種。種植MC群體的5個(gè)環(huán)境均進(jìn)行2次重復(fù)試驗(yàn)。/20828和/蜀麥969于2021年種植于崇州。這兩個(gè)驗(yàn)證群體的種植方式與MC群體的相同。所有種植材料的田間管理根據(jù)當(dāng)?shù)貧夂蜻M(jìn)行田間常規(guī)管理。
當(dāng)小麥生長(zhǎng)至成熟期時(shí),在5個(gè)環(huán)境對(duì)MC群體的穗長(zhǎng)表型進(jìn)行調(diào)查。單株主穗的基部到頂部(不包含芒)的長(zhǎng)度為穗長(zhǎng)。對(duì)每個(gè)株系選取至少4株長(zhǎng)勢(shì)一致的單株進(jìn)行表型測(cè)量,4個(gè)單株的平均值被認(rèn)定為該株系的穗長(zhǎng)。MC群體的株高、穗長(zhǎng)、有效分蘗數(shù)、千粒重、開花期、每穗粒重、旗葉長(zhǎng)、旗葉寬的最佳線性無(wú)偏預(yù)測(cè)(BLUP)值已被用于相關(guān)性分析[21-22],而本研究對(duì)調(diào)控穗長(zhǎng)的遺傳位點(diǎn)進(jìn)行鑒定和分析。此外,驗(yàn)證群體/20828和/蜀麥969的穗長(zhǎng)表型調(diào)查方式與MC群體的相同。
利用Zhou等[22]通過(guò)16K SNP芯片構(gòu)建的遺傳連鎖圖譜對(duì)控制穗長(zhǎng)發(fā)育的位點(diǎn)進(jìn)行遺傳定位。運(yùn)用IciMapping 4.2軟件中完備區(qū)間作圖法對(duì)單個(gè)環(huán)境的QTL進(jìn)行檢測(cè),參數(shù)設(shè)置為Step=0.1 cM、PIN=0.001和LOD≥2.5。同時(shí),運(yùn)用IciMapping 4.2軟件對(duì)QTL進(jìn)行多環(huán)境分析,參數(shù)設(shè)置為Step=0.1 cM、PIN=0.001和LOD≥5。按照國(guó)際遺傳命名規(guī)則(https://wheat.pw. usda.gov/ggpages/wgc/98/Intro.htm)對(duì)檢測(cè)到的QTL命名。利用WheatOmics v1.0公布的中國(guó)春參考基因組(CS RefSeq v2.1)獲得QTL側(cè)翼標(biāo)記序列的物理位置。
基于QTL的定位結(jié)果,將與主效QTL連鎖的SNP標(biāo)記轉(zhuǎn)化為kompetitive allele specific PCR(KASP)標(biāo)記。具體的轉(zhuǎn)化方法參考Zhou等[22]的描述。KASP標(biāo)記包含2條特異引物(5′-GAAGGTGACCAAGTT CATGCTGCAACATGTATGTCCGACCTa-3′和5′-GA AGGTCGGAGTCAACGGATTGCAACATGTATGTCCGACCTg-3′)與1條通用引物(5′-GCAAATGGTGC GTTGATGGT-3′),KASP引物的合成由北京擎科生物科技有限公司完成。利用開發(fā)的KASP引物對(duì)/蜀麥969和/20828 F2分離群體的每個(gè)單株進(jìn)行基因型分型。最后,對(duì)攜帶正效應(yīng)位點(diǎn)和不攜帶正效應(yīng)位點(diǎn)的純合單株的穗長(zhǎng)進(jìn)行統(tǒng)計(jì)分析,而基因型為雜合類型的單株不參與統(tǒng)計(jì)分析。
穗長(zhǎng)表型數(shù)據(jù)的多環(huán)境方差分析(analysis of variance,ANOVA)通過(guò)IciMapping 4.2軟件獲得。使用SAS 9.4軟件對(duì)穗長(zhǎng)的BLUP值和廣義遺傳力(2)進(jìn)行計(jì)算。用Excel 2019對(duì)穗長(zhǎng)表型數(shù)據(jù)的平均值進(jìn)行計(jì)算。運(yùn)用Origin 2021軟件繪制穗長(zhǎng)的頻率分布圖。利用IBM SPSS Statistics 20進(jìn)行穗長(zhǎng)表型數(shù)據(jù)的描述性統(tǒng)計(jì)分析、獨(dú)立樣本檢驗(yàn)和顯著性分析。
通過(guò)對(duì)5個(gè)種植環(huán)境下的MC群體穗長(zhǎng)表型值進(jìn)行鑒定。親本的穗長(zhǎng)均顯著高于親本CN16(表1和圖1,<0.05)。MC群體穗長(zhǎng)2為0.70,表明其主要受遺傳因子影響。RIL中穗長(zhǎng)表型值范圍為7.05—18.68 cm,在不同環(huán)境中都存在超親分離現(xiàn)象,且其頻率分布呈近似正態(tài)分布(表1和圖2),表明MC群體穗長(zhǎng)性狀具有典型的數(shù)量遺傳特點(diǎn)。ANOVA分析表明環(huán)境、基因型和環(huán)境?×?基因型互作對(duì)多環(huán)境的穗長(zhǎng)有顯著影響(表2)。
根據(jù)BLUP值對(duì)MC群體在不同環(huán)境的穗長(zhǎng)表型進(jìn)行了相關(guān)性分析,其相關(guān)系數(shù)介于0.15—0.81(圖2)。除2021CZ和2021YA之間不存在顯著相關(guān)外,其余環(huán)境之間均表現(xiàn)出極顯著的正相關(guān)(<0.01)。
表1 MC群體親本及其RIL穗長(zhǎng)的表型分布
WJ:溫江;CZ:崇州;YA:雅安;BLUP:最佳線性無(wú)偏預(yù)測(cè);N:無(wú)重復(fù)值;*和**:在0.05和0.01水平差異顯著。下同
WJ: Wenjiang; CZ: Chongzhou; YA: Ya’an; BLUP: Phenotype values based on the best linear unbiased prediction;N: no duplicate values; * and **: Significant difference at level 0.05 and 0.01. the same as below
表2 MC群體穗長(zhǎng)的方差分析
bar=2 cm
同時(shí)評(píng)估了MC群體穗長(zhǎng)和其他產(chǎn)量相關(guān)性狀的相關(guān)性(表3)。結(jié)果顯示,穗長(zhǎng)與小穗數(shù)、每穗籽粒數(shù)和每穗粒重之間存在極顯著的正相關(guān)(<0.01),相關(guān)系數(shù)分別為0.43、0.64和0.50。穗長(zhǎng)和有效分蘗數(shù)之間存在極顯著的負(fù)相關(guān)(<0.01),相關(guān)系數(shù)為-0.45。穗長(zhǎng)與株高、千粒重、旗葉長(zhǎng)、旗葉寬和開花期之間無(wú)顯著相關(guān)性。
根據(jù)Zhou等[22]構(gòu)建的遺傳連鎖圖譜和5個(gè)環(huán)境的穗長(zhǎng)表型數(shù)據(jù),共鑒定到14個(gè)控制穗長(zhǎng)發(fā)育的QTL,主要分布在1A(1個(gè))、1B(1個(gè))、2B(1個(gè))、3D(3個(gè))、4A(1個(gè))、4D(2個(gè))、5A(1個(gè))、5B(1個(gè))、7A(1個(gè))、7B(1個(gè))和7D(1個(gè))染色體(表4)。其中,在4個(gè)環(huán)境及BLUP值中被檢測(cè)到,可解釋6.46%—20.12%的表型變異率,定位于1A染色體側(cè)翼標(biāo)記和之間,被視為主效QTL。的正效應(yīng)位點(diǎn)來(lái)源于突變體親本。其余13個(gè)QTL均在2個(gè)環(huán)境及以下被檢測(cè)到,最高可解釋8.40%的表型變異率,都被視為微效QTL。多環(huán)境QTL分析結(jié)果中同樣檢測(cè)到,且可解釋表型變異率大于10%,表明其受環(huán)境影響較小,為主效且穩(wěn)定的QTL(表5)。
表3 MC群體穗長(zhǎng)與產(chǎn)量相關(guān)性狀的相關(guān)性
根據(jù)穗長(zhǎng)主效側(cè)翼標(biāo)記的基因型,將MC群體分為攜帶增效位點(diǎn)的株系和不攜帶增效位點(diǎn)的株系,并對(duì)這2類株系進(jìn)行分析(圖3)。結(jié)果顯示,除2021YA之外的所有環(huán)境中,攜帶正效應(yīng)位點(diǎn)株系的穗長(zhǎng)均極顯著高于沒有攜帶正效應(yīng)位點(diǎn)的株系,最高能顯著提高11.53%的穗長(zhǎng)(圖3)。
**:在0.01水平差異顯著。下同 **: Significant difference at level 0.01. the same as below
為了驗(yàn)證的遺傳效應(yīng),將其連鎖的SNP標(biāo)記轉(zhuǎn)化為KASP標(biāo)記,序列見材料方法1.5部分。KASP引物在/20828和/蜀麥969群體中的基因型分型結(jié)果顯示,在/20828和/蜀麥969群體中,攜帶正效應(yīng)位點(diǎn)的單株分別有56株和30株,不攜帶正效應(yīng)位點(diǎn)的單株分別有55株和52株(圖4)。通過(guò)對(duì)這些單株所對(duì)應(yīng)的穗長(zhǎng)進(jìn)行統(tǒng)計(jì)分析,發(fā)現(xiàn)在/20828和/蜀麥969群體中攜帶正效應(yīng)位點(diǎn)的單株比不攜帶正效應(yīng)位點(diǎn)的單株分別極顯著增加7.42%和9.99%的穗長(zhǎng)(<0.01,圖4)。結(jié)果表明,的確是一個(gè)具有顯著增加穗長(zhǎng)效應(yīng)的主效QTL。
進(jìn)一步根據(jù)穗長(zhǎng)主效QTL側(cè)翼標(biāo)記的基因型分析其對(duì)產(chǎn)量相關(guān)性狀的影響。除旗葉長(zhǎng)無(wú)顯著變化外,攜帶正效應(yīng)位點(diǎn)株系的每穗籽粒數(shù)(12.68%)、每穗粒重(14.99%)、千粒重(5.79%)和旗葉寬(2.94%)極顯著提高,開花期(0.61%)極顯著提前,小穗數(shù)(1.48%)顯著增加,而株高(-6.47%)和有效分蘗數(shù)(-36.11%)極顯著減少(圖5)。暗示正效應(yīng)位點(diǎn)對(duì)于產(chǎn)量可能有著積極的影響,具有較大的育種價(jià)值。
表4 MC群體穗長(zhǎng)相關(guān)的QTL
Chr.:染色體;+和?:攜帶和不攜帶QSl.sau.1A正效應(yīng)位點(diǎn)的株系;n:株系數(shù)。下同
表5 MC群體穗長(zhǎng)相關(guān)的多環(huán)境QTL
LOD(A):加性和顯性效應(yīng)的閾值;LOD(AbyE):環(huán)境對(duì)加性和顯性效應(yīng)影響的閾值;(A):加性和顯性效應(yīng)的表型變異率;(AbyE):環(huán)境對(duì)加性和顯性效應(yīng)影響的表型變異率;--:與表4中的穗長(zhǎng)QTL未對(duì)應(yīng)上的QTL
LOD(A): Logarithm of the odds of additive and dominant effects; LOD(AbyE): Logarithm of the odds of the influence of environment on additive and dominant effects;(A): Phenotypic variation explained of additive and dominant effects;(AbyE): Phenotypic variation explained of environmental impact on additive and dominant effects; --: The QTL not corresponding to the spike length QTL in Table 4
+和?:攜帶和不攜帶對(duì)應(yīng)QSl.sau.1A正效應(yīng)位點(diǎn)的單株。下同
在CS RefSeq v2.1中檢索本研究和前人研究中穗長(zhǎng)QTL的側(cè)翼標(biāo)記序列,通過(guò)比對(duì)其物理位置來(lái)確定QTL是否重疊[23-24]。水志杰等[19]檢測(cè)到1個(gè)與穗長(zhǎng)性狀相關(guān)的主效QTL,位于1A染色體標(biāo)記區(qū)間—(51.96— 54.49 Mb)。Kumar等[8]在1A染色體短臂檢測(cè)到1 個(gè)與穗長(zhǎng)性狀相關(guān)的位于標(biāo)記區(qū)間—(23.57—67.92 Mb)。本研究鑒定到1個(gè)控制穗長(zhǎng)發(fā)育的主效定位于1A染色體上的側(cè)翼標(biāo)記—(1.21—11.43 Mb)。其物理區(qū)間無(wú)重疊,可能為新的QTL,由于不同材料間遺傳背景的差異,所以需對(duì)進(jìn)行候選基因克隆來(lái)進(jìn)一步確定其是否為新的穩(wěn)定遺傳的主效QTL。
*:在0.05水平差異顯著;a—i:QSl.sau.1A對(duì)于其他農(nóng)藝性狀的影響
穗長(zhǎng)是受多基因控制的小麥重要農(nóng)藝性狀。與產(chǎn)量三要素畝穗數(shù)、穗粒數(shù)和粒重之間存在一定關(guān)系[25],深入研究小麥穗長(zhǎng)性狀對(duì)提高小麥產(chǎn)量有重要意義[26-27]。此外,小麥為異源六倍體生物,基因組大,遺傳關(guān)系復(fù)雜,很難闡釋清楚小麥產(chǎn)量相關(guān)性狀的遺傳關(guān)系。增加穗長(zhǎng)而未影響穗密度需提高可育穗粒數(shù)來(lái)增加產(chǎn)量。因此,在育種過(guò)程中要協(xié)調(diào)穗長(zhǎng)與其他產(chǎn)量性狀間的關(guān)系,才能達(dá)到更大的收獲指數(shù)[28]?;诖?,本研究分別用種植在5個(gè)生態(tài)環(huán)境的MC群體評(píng)價(jià)穗長(zhǎng)和產(chǎn)量相關(guān)性狀間的相關(guān)性。正效應(yīng)位點(diǎn)可顯著增加每穗籽粒數(shù)、每穗粒重、千粒重、小穗數(shù)和旗葉寬,促進(jìn)開花期提前,顯著減少有效分蘗數(shù)和株高。李濤等[29]研究表明,當(dāng)同時(shí)聚合和時(shí),在川麥42×川農(nóng)16 RIL群體中株高、穗長(zhǎng)和千粒重分別增加13.10%、8.00%和7.50%,對(duì)穗粒數(shù)基本沒有影響;而在川麥42×川麥39 RIL群體中,株高和千粒重分別增加7.40%和4.70%,而穗長(zhǎng)和穗粒數(shù)基本不受影響。CUI等[30]基于2個(gè)定位群體的條件QTL分析株高與其組成成分穗長(zhǎng)和節(jié)間長(zhǎng)之間的遺傳關(guān)系,結(jié)果表明,在QTL水平上,穗長(zhǎng)對(duì)株高的貢獻(xiàn)最小。唐華蘋等[10]基于穗長(zhǎng)的條件QTL結(jié)果,利用與穗長(zhǎng)主效位點(diǎn)、和緊密連鎖的側(cè)翼標(biāo)記基因型分析它們對(duì)其他農(nóng)藝性狀的影響,表明對(duì)于株高、穗莖長(zhǎng)、每穗小穗數(shù)和千粒重沒有顯著影響,對(duì)千粒重有顯著影響,對(duì)株高和穗莖長(zhǎng)有極顯著影響。Ji等[13]研究發(fā)現(xiàn)穗長(zhǎng)與籽粒長(zhǎng)呈極顯著正相關(guān)(<0.01),與穗密度呈極顯著負(fù)相關(guān)(<0.01)。以上研究表明,穗長(zhǎng)與產(chǎn)量性狀之間的關(guān)系在不同背景下表現(xiàn)并不一致,暗示正效應(yīng)位點(diǎn)對(duì)于產(chǎn)量提高可能有著積極的影響,具有潛在的育種價(jià)值。為了能真正評(píng)價(jià)該位點(diǎn)的育種效應(yīng),后期應(yīng)該設(shè)置小區(qū)試驗(yàn)進(jìn)一步評(píng)價(jià)是否對(duì)單位面積穗數(shù)、千粒重以及單位面積產(chǎn)量有實(shí)際效應(yīng),以明確其真實(shí)效應(yīng)。
基于CS RefSeq v2.1,的側(cè)翼標(biāo)記1和的區(qū)間大小為10.22 Mb,區(qū)間內(nèi)共包含414個(gè)基因,其中,高可信基因202個(gè)。根據(jù)202個(gè)高可信基因的功能注釋,預(yù)測(cè)了8個(gè)(、、、、、、、)可能影響穗長(zhǎng)發(fā)育的基因。
在1A染色體定位到1個(gè)主效且穩(wěn)定地控制穗長(zhǎng)發(fā)育的QTL,定位于側(cè)翼標(biāo)記—(1.21—11.43 Mb)。正效應(yīng)位點(diǎn)除對(duì)旗葉長(zhǎng)無(wú)顯著影響外,可顯著增加每穗粒數(shù)、每穗粒重、千粒重、小穗數(shù)和旗葉寬,促進(jìn)開花期提前,顯著減少有效分蘗數(shù)和株高。其中,的側(cè)翼標(biāo)記和的區(qū)間大小為10.22 Mb,區(qū)間內(nèi)預(yù)測(cè)了8個(gè)(、、、、、、、)可能影響穗長(zhǎng)發(fā)育的基因。
[1] Fan X L, Chi F, Ji J, Zhang W, Zhao X Q, Liu J J, Meng D Y, Tong Y P, Wang T, Li J M. Dissection of pleiotropic QTL regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional QTL mapping. Frontiers in Plant Science, 2019, 10: 187.
[2] Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identifcation and validation of two major QTLs for spike compactness and length in bread wheat (L.) showing pleiotropic effects on yield-related traits. Theoretical and Applied Genetics, 2021, 134: 3625-3641.
[3] Butterworth M H, Semenov M A, Barnes A, Moran D, West J S, Fitt B D L. North-South divide: contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 2010, 7(42): 123-130.
[4] Su Z Q, Jin S J, Lu Y, Zhang G R, Chao S, Bai G H. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Molecular Breeding, 2016, 36(2): 15.
[5] Faris J D, Zhang Z C, Garvin D F, Xu S S. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat. Molecular Genetics and Genomics, 2014, 289(4): 641-651.
[6] Koppolu R, Schnurbusch T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. Journal of Integrative Plant Biology, 2019, 61(3): 278-295.
[7] Jantasuriyarat C, Vales M I, Watson C J W, Riera- Lizarazu O. Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (L.). Theoretical and Applied Genetics, 2004, 108(2): 261-273.
[8] Kumar N, Kulwal P L, Balyan H S, Gupta P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breeding, 2007, 19(2): 163-177.
[9] Wu X Y, Cheng R R, Xue S L, Kong Z X, Wan H S, Li G Q, Huang Y L, Jia H Y, Jia J Z, Zhang L X, Ma Z Q. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (L.). Molecular Breeding,2014, 33(1): 129-138.
[10] 唐華蘋, 陳黃鑫, 李聰, 茍璐璐, 譚翠, 牟楊, 唐力為, 蘭秀錦, 魏育明, 馬建. 基于55K SNP芯片的普通小麥穗長(zhǎng)非條件和條件QTL分析. 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55(8): 1492-1502.doi: 10.3864/j. issn.0578-1752.2022.08.002.
Tang H P, Chen H X, Li C, Gou L L, Tan C, Mu Y, Tang L W, Lan X J, Wei Y M, Ma J. Unconditional and Conditional QTL analysis of wheat spike length in common wheat based on 55K SNP array. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502. doi: 10. 3864/j.issn.0578-1752.2022.08.002.(in Chinese)
[11] Xu X, Li X J, Zhang D H , Zhao J S, Jiang X L, Sun H L, Ru Z G. Identification and validation of QTLs for kernel number per spike and spike length in two founder genotypes of wheat. BMC Plant Biology, 2022, 22(1): 146.
[12] 陳黃鑫, 李聰, 吳坤燕, 王岳, 牟楊, 唐華蘋, 唐力為, 蘭秀錦, 馬建. 四倍體小麥株高和穗長(zhǎng)性狀的QTL定位及其遺傳效應(yīng)分析. 麥類作物學(xué)報(bào), 2022, 42(7): 799-807.
Chen H X, Li C, Wu K Y, Wang Y, Mu Y, Tang H P, Tang L W, Lan X J, Ma J. Detection of QTLs for plant height and spike length in tetraploid wheat and analysis of their genetic effect. Journal of Triticeae Crops, 2022, 42(7): 799-807. (in Chinese)
[13] Ji G S, Xu Z B, Fan X L, Zhou Q, Yu Q, Liu X F, Liao S M, Feng B, Wang T. Identification of a major and stable QTL on chromosome 5A confers spike length in wheat (L.). Molecular Breeding, 2021, 41(9): 56.
[14] Xiong H C, Li Y T, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Liu L X. Genetic mapping by integration of 55K SNP array and KASP markers reveals candidate genes for important agronomic traits in hexaploid wheat. Frontiers in Plant Science, 2021, 12: 628478.
[15] 姚儉昕, 張傳量, 宋曉朋, 許小宛, 邢永鋒, 呂棟云, 宋鵬博, 楊孟于, 孫道杰. 基于90K芯片的小麥穗長(zhǎng)和旗葉長(zhǎng)QTL分析. 麥類作物學(xué)報(bào), 2020, 40(11): 1283-1289.
Yao J X, Zhang C L, Song X P, Xu X W, Xing Y F, Lü D Y, Song P B, Yang M Y, Sun D J. QTL analysis of wheat spike length and flag leaf length based on 90k SNP assay. Journal of Triticeae Crops, 2020, 40(11): 1283-1289. (in Chinese)
[16] Chai L L, Chen Z Y, Bian R L, Zhai H J, Cheng X J, Peng H R, Yao Y Y, Hu Z R, Xin M M, Guo W L, Sun Q X, Zhao A J, Ni Z F. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (L.). Theoretical and Applied Genetics, 2018, 131(12): 2621-2637.
[17] Xu H W, Zhang R Q, Wang M M, Li L H, Yan L, Wang Z, Zhu J, Chen X Y, Zhao A J, Su Z Q, Xing J W, Sun Q X, Ni Z F. Identification and characterization of QTL for spike morphological traits, plant height and heading date derived from the D genome of natural and resynthetic allohexaploid wheat. Theoretical and Applied Genetics, 2022, 135(2): 389-403.
[18] Ma Z Q, Zhao D M, Zhang C Q, Zhang Z Z, Xue S L, Lin F, Kong Z X, Tian D G, Luo Q Y. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2populations. Molecular Genetics and Genomics, 2007, 277(1): 31-42.
[19] 水志杰, 安沛沛, 劉天相, 吳洪啟, 劉樂, 史雪, 王中華. 利用人工合成小麥RIL群體進(jìn)行小麥穗長(zhǎng)和穗寬性狀的QTL分析. 麥類作物學(xué)報(bào), 2020, 40(6): 656-664.
Shui Z J, An P P, Liu T X, Wu H Q, Liu L, Shi X, Wang Z H. QTL analysis of spike length and width using RIL population of synthetic wheat. Journal of Triticeae Crops, 2020, 40(6): 656-664. (in Chinese)
[20] Yao H N, Xie Q, Xue S L, Luo J, Lu J K, Kong Z X, Wang Y P, Zhai W L, Lu N, Wei R, Yang Y, Han Y Z, Zhang Y, Jia H Y, Ma Z Q.on chromosome 7D of wheat (L.) regulates both head length and spikelet number. Theoretical and Applied Genetics, 2019, 132(6): 1789-1797.
[21] 姚琦馥, 陳黃鑫, 周界光, 馬瑞瑩, 鄧亮, 譚陳芯雨, 宋靖涵, 呂季娟, 馬建. 基于16K SNP芯片的小麥株高QTL鑒定及其遺傳分析. 中國(guó)農(nóng)業(yè)科學(xué), 2023, 56(12): 2237-2248.doi: 10.3864/j.issn.0578- 1752.2023.12.001.
Yao Q F, Chen H X, Zhou J G, Ma R Y, Deng L, Tan C X Y, Song J H, Lü J J, Ma J. QTL identification and genetic analysis of plant height in wheat based on 16K SNP array. Scientia Agricultura Sinica, 2023, 56(12): 2237-2248. doi: 10. 3864/j.issn.0578-1752.2023. 12.001.(in Chinese)
[22] Zhou J G, Li W, Yang Y Y, Xie X L, Liu J J, Liu Y L, Tang H P, Deng M, Xu Q, Jiang Q F, Chen G Y, Qi P F, Jiang Y F, Chen G D, He Y J, Ren Y P, Tang L W, Gou L L, Zheng Y L, Wei Y M, Ma J. A promising QTLlikely superior tofor the number of spikelets per spike of wheat shows no adverse effects on yield-related traits. Theoretical and Applied Genetics, 2023, 136(9): 181.
[23] INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM(IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
[24] Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Molecular Plant, 2021, 14(12): 1965-1968.
[25] Wang M X, Lu J, Liu R, Li Y F, Ao D H, Wu Y, Zhang L. Identification and validation of a major quantitative trait locus for spike length and compactness in the wheat (L.) line chuanyu12D7. Frontiers in plant science, 2023, 14: 1186183.
[26] Li W L, Nelson J C, Chu C Y, Shi L H, Huang S H, Liu D J. Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica, 2002, 125(3): 357-366.
[27] 王夢(mèng)可, 趙德輝, 曾占奎, 陳鵬, 張雷宜, 蘭彩霞, 劉瑞芳, 王春平. 小麥穗長(zhǎng)性狀基因的發(fā)掘與標(biāo)記開發(fā). 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 51(2): 11-21.
Wang M K, Zhao D H, Zeng Z K, Chen P, Zhang L Y, Lan C X, Liu R F, Wang C P. Gene detection and marker development of spike length traits in wheat. Journal of Northwest A&F University (Natural Science Edition), 2023, 51(2): 11-21. (in Chinese)
[28] Zhang X Y, Jia H Y, Li T A, Wu J Z, Nagarajan R, Lei L, Powers C, KAN C C, Hua W, Liu Z Y, ChEN C, Carver B F, Yan L L.modifies spike architecture and enhances grain yield in wheat. Science, 2022, 376(6589): 180-183.
[29] 李濤, 陸炳, 李俊, 鄧光兵, 張海莉, 梁俊俊, 余懋群, 楊武云, 龍海. 2個(gè)小麥株高QTL位點(diǎn)驗(yàn)證及其對(duì)產(chǎn)量相關(guān)性狀的效應(yīng)分析. 西南農(nóng)業(yè)學(xué)報(bào), 2019, 32(3): 476-483.
Li T, Lu B, Li J, Deng G B, Zhang H L, Liang J J, Yu M Q, Yang W Y, Long H. Validation of two plant height QTLs and their effects on yield-related traits in common wheat. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 476-483. (in Chinese)
[30] Cui F, LI J, Ding A M, Zhao C H, Wang L, Wang X Q, Li S S, Bao Y G, Li X F, Feng D S, Kong L R, Wang H G. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 2011, 122(8): 1517-1536.
Identification and Genetic Analysis of QTL for Spike Length in Wheat
1College of Agroforestry Engineering and Planning, Tongren University/Guizhou Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren 554300, Guizhou;2Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130;3Tongliao Institute of Agriculture and Animal Husbandry Sciences, Tongliao 028015, Inner Mongolia;4Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610000
【Objective】Spike length (SL) plays an important role in determining spike structure and yield potential of wheat. Quantitative trait loci (QTL) for spike length were excavated and their genetic effects were further analyzed to provide theoretical basis for molecular breeding.【Method】This study consisted of a population of 198 F6recombinant inbred lines (RIL) derived from the cross between the natural mutantand the cultivar Chuannong 16 (MC population). The MC population and its parents were planted in five different environments including Wenjiang in 2021 and 2022 (2021WJ and 2022WJ); Chongzhou in 2021 and 2022 (2021CZ and 2022CZ); and Ya’an in 2021 (2021YA) for spike length measurement. The 16K SNP chip-based constructed high-quality and high-density genetic linkage maps were used to map QTL for spike length. Additionally, the genotype of the flanking markers for the major spike length QTL was used to analyze its genetic effect on yield-related traits and thus to evaluate its potentiality for yield improvement.【Result】A total of 14 QTL for spike length were identified and they were mainly distributed on chromosomes 1A (one), 1B (one), 2B (one), 3D (three), 4A (one), 4D (two), 5A (one), 5B (one), 7A (one), 7B (one), and 7D (one). Among them,was detected in four environments and the best linear unbiased prediction (BLUP) value, explained 6.46% to 20.12% of the phenotypic variation, and thus was regarded as a major QTL. The positive allele atcame from the parental line. QTL analysis across multiple environments also detected, indicating it exhibits minimal environmental influence and represents a major and stably expressed QTL. The effect ofwas successfully verified in two populations with different genetic backgrounds. Genetic effects analysis showed that the positive allele ofshowed a significant effect on improving grain number per spike (12.68%), grain weight per spike (14.99%), 1000-grain weight (5.79%), flag leaf width (2.94%), spikelet number (1.48%), and flowering date (0.61%), and a significant effect of reducing plant height (-6.47%) and effective tiller number (-36.11%).【Conclusion】A major and stably expressed spike length QTL,, was detected on chromosome 1A. Its positive allele significantly increased grain number per spike, grain weight per spike, thousand grain weight, and spikelet number per spike, indicating its great breeding value.
wheat; 16K SNP array; QTL; spike length; yield
10.3864/j.issn.0578-1752.2023.24.002
2023-08-11;
2023-10-10
貴州省科技計(jì)劃基礎(chǔ)研究項(xiàng)目(黔科合基礎(chǔ)-ZK[2021]一般131)、銅仁市科技計(jì)劃基礎(chǔ)研究項(xiàng)目(銅市科研〔2023〕36號(hào))
姚琦馥,E-mail:yaoqifu@126.com。周界光,E-mail:351062153@qq.com。姚琦馥和周界光為同等貢獻(xiàn)作者。通信作者馬建,E-mail:jianma@sicau.edu.cn。通信作者蔣云,E-mail:m13438880787@163.com
(責(zé)任編輯 李莉)