• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Autonomous UAV 3D trajectory optimization and transmission scheduling for sensor data collection on uneven terrains

    2023-12-27 04:10:12AndreySvkinStishVermWeiNi
    Defence Technology 2023年12期

    Andrey V.Svkin ,Stish C.Verm ,* ,Wei Ni

    a School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia

    b Data61, CSIRO, Canberra, ACT, 2601, Australia

    Keywords:Unmanned aerial system UAS Unmanned aerial vehicle UAV Wireless sensor networks UAS-Assisted data collection 3D trajectory optimization Data transmission scheduling

    ABSTRACT This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle (UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.

    1.Introduction

    With their maneuverability and relatively low cost,Unmanned Aerial Vehicles (UAVs) provide effective means for many civilian applications,including support of wireless communication networks,environmental monitoring,emergency communications,disaster management,smart agriculture,and last mile delivery,see e.g.Refs.[1-4] and references therein.Furthermore,Unmanned Aerial Systems (UASs) consisting of UAVs,attracts more and more attention in various defence applications,where they are used to reduce risk to humans.These defence applications include but not limited to air combat,target tracking,unexploded ordnance detection,eavesdropping and counter-eavesdropping,see Refs.[5-12].Recent advances in wireless sensing technologies have resulted in the deployment of a large number of ground sensors for environmental monitoring,see e.g.Refs.[1,2].Data collection in wireless sensor networks can be challenging due to energy constraints or harsh environments.Data collection in wireless sensor networks is another area of UAV applications[1,2,4,13-17].A UAV is able to fly sufficiently close to a sensing device to increase data transmission rate and probability.A challenging and common in defence applications version of this problem is a case where a UAV is navigated over an uneven terrain,rather than broadly assumed flat terrain areas.Uneven terrains are geometrically complex grounds that are impossible to model with a sufficient accuracy by flat surfaces.On such uneven terrains,the Line-of-Sight (LoS) between the UAV and the transmitting sensors can be occlude by the terrain.Typical examples of uneven terrains include high density urban areas with big constructions and narrow roads.Another example is a precision agriculture scenario with a large number of sensing devices located in a mountain vineyard[1].Moreover,this problem is very important in defence applications,where the objective of the UAV is to covertly collect intelligence information from a ground sensor network located in a hilly area.

    This paper addresses the problem of data collection from a wireless sensor network mounted on an uneven terrain by a UAV.The ground sensors harvest renewable energy from the environment to recharge their batteries and use the energy for sensing and data transmission.Moreover,the sensors measure the environment and buffer the measurements.The objective of the UAV is to collect data from the sensors by exploiting the LoS from the sensors.Moreover,the UAV is navigated to get as close to the sensors as possible to achieve high rate and high probability of successful data transmission.The paper [3] also considers a case of an uneven terrain,however,Ref.[3] studies a mobile-edge computing problem,not a data collection problem.Moreover,Ref.[3] does not consider data buffer and energy limitations for ground nodes,whereas the current paper takes all such limitations into account and addresses a case of ground sensors harvesting energy into batteries and equipped with buffers for measurements.

    We propose a novel method for joint UAV path planning and data transmission,which maximizes a utility function describing the amount of transmitted data,the transmission time delays,and the propulsion energy of the UAV.We prove the asymptotic global optimality of the developed path planning method.More precisely,we prove that the constructed solution tends to the global maximum as some set of parameters tends to infinity.

    The contribution and the novelty of this paper can be highlighted as follows.The paper studies the problem of joint UAV 3D trajectory optimization and transmission scheduling for data collection from wireless sensors located on a hilly terrain where the LoS between the UAV and the sensors is often interrupted.The UAV and the sensors can communicate only via LoS paths.The aim is to fly the UAV and schedule transmissions between the sensors and the UAV so that the UAV can establish LoS paths with the ground sensors sufficiently often to collect more data from the sensors.This is a difficult and original problem as other publications on this topic[1,2,4,13-17] do not properly investigate the challenge of frequent loss of the LoS between the UAV and the sensors due to a rough non-flat terrain.Moreover,the proposed algorithm is globally optimal and it is mathematically rigorously proved unlike many other published results in the area.

    2.System model and problem statement

    We consider the following UAS.There is a UAV flying in a 3D environment.The vector(x(t),y(t),z(t))gives the current 3D position of the UAV.The following common mathematical of the motion is used:

    where v(·)∈[0,C1],ω(·)∈[-C2,C2]andu(·)∈[-C3,C3].Here μ(·)is the direction of the vehicle in a horizontal plane,v(·),ω(·)andu(·)are the inputs of the model representing linear horizontal,angular and vertical velocities of the UAV,respectively,C1,C2andC3are maximum limits of the corresponding control inputs.We also assume that for the UAV altitudez(t),the following inequalities must always hold:

    with some given 0 <Zmin<Zmax.

    The UAV is moving over an uneven terrain modelled by some a priori known altitude functione(x,y),wheree(x,y)is the altitude of the terrain point with 2D position(x,y).Notice that some points of the terrain can have altitudes aboveZminand evenZmax.The following constraint should hold for any trajectory(x(t),y(t),z(t)):

    with some given ε >0.It is obvious that if Eq.(3) holds,a collision between the UAV and the terrain is impossible.

    Furthermore,there areMground sensors,labelledj=1,…,M.Each sensor is equipped with an electric battery and harvests renewable energy from the environment.The harvested energy recharges the sensor's battery and is used to power sensing and data transmission.The function 0≤ej(t)≤Erepresents the battery state of sensorj,whereE>0 is a given constant.

    Each sensor makes some measurements so that new sets of measurement data are collected at time instants 0,τ,2τ,3τ,…Where τ >0 is a given time.Moreover,these data are buffered by the sensors,and the data queue length of sensorjat timetisdj(t)∈{0,1,…,D},whereD>0 is a given positive integer.The new data obtained at the timekτ have to be dropped if the buffer is full,i.e.d(kτ)=D.Furthermore,at any time instanth0j+khwhereh0jandh>0 are given constants,j=1,…,M,k=0,1,2,…,the UAV can select the ground sensorjfor data transmission.Then,the sensor transmits one set of data,and the transmitted data is erased from the buffer,hence,dj(·) is decreased by 1.In other words,h determines the transmission rate of the sensors as each sensor can make one transmission at any time instanth0j+kh.The constantsh0jdetermine transmission time shifts of the sensors,as the sensors may not be synchronized and have differenth0jso they transmit at different times.Each sensor also harvests energy from the environment,charges its battery,and spends some amount of energy on measurements.So,if during a time interval [t1,t2] the sensor does not transmit data,the battery state is described by the equationej(t2)=min{ej(t1)+Ej(t2-t1),E}whereEj>0 is some given constant describing the energy harvesting rate,andEj>0 is some given constant describing the sensor's battery maximum state.In other words,without transmission,the state of the battery is increasing linearly over time but it cannot exceed the maximum battery stateE.Notice that the constantsEjmay be different for different ground sensors,as some of them can be located in shadow etc.,so they harvest less solar or some other renewable energy.Furthermore,if a ground sensorjtransmits a set of data at timeh0j+kh,its battery levelej(·) instantaneously decreases by the amountEtr,whereEtr>0 is some given constant describing the amount of energy needed for one transmission.

    The UAV can select the sensor j for transmission at time h0j+khif the following conditions hold:

    C1) LoS from the UAV to the sensor j is not blocked by some part of the terrain,see Fig.1.

    Fig.1.The LoS from the UAV to sensor 1 is blocked,the LoS from the UAV to sensor 2 is not blocked.

    C2) The distancerj(h0j+kh) between the UAV and the sensor j satisfiesrj(h0j+kh) ≤R,whereR>0 is the communication radius of the sensor.

    C3) The buffer is not empty,i.e.,dj(h0j+kh) >0.

    C4) The battery has enough energy for transmission,i.e.ej(h0j+kh) ≥Etr.

    Let 0 <P(r)≤1,r∈[ε,R]be a given decreasing function describing probability of successful transmission of data from a sensor to the UAV from the distancer.

    The objective of the UAV is to navigate itself and schedule transmission times of the ground sensors to collect as many sensor data as possible.

    Notice that in the current paper,we concentrate on LoS communication between the UAV and the ground sensors.LoS communication is preferred for UAV-sensor communication because it provides a strong,stable,and fast connection.Moreover,LoS becomes indispensable when high-frequency bands are utilized for communication,e.g.,in the upcoming six-generation(6G)mobile communication era where quasi-optical millimeter wave(mmWave),terahertz,and visual light communications (VLC) are expected to dominate.

    On the other hand,LoS communication may not always be possible due to physical constraints,such as terrain or buildings,that can block the LoS between the UAV and the sensor.Our trajectory design philosophy is to design the trajectory of a UAV in such a way that at any point of the trajectory,there is a LoS between the UAV and its intended sensor.This design philosophy of maintaining effective LoS to the sensors is practical and rational.The reason is that the channel conditions of NLoS links can only be acquired via measurements on-the-spot or estimated empirically.The former (i.e.,on-the-spot channel measurement) violates the causality of the trajectory design,while the latter (i.e.,empirical modelling) is typically statistical and becomes inaccurate when it comes to a specific link.

    We will control the system over the interval [t0,t0+T],wheret0>0 andT>0 are given.We assume that the UAV initial conditionz(t0) satisfies the constraints Eqs.(2) and (3).LetNj(t1,t2] be the amount of data from the sensorjreceived by the UAV over the time period(t1,t2].Furthermore,ε(·)denotes mathematical expectation of some random variable.Moreover,we introduce the functions γj(h0j+kh),j=1,...,Mas follows:γj(h0j+kh):=1 if the sensor j is selected by the UAV for transmission of data at timeh0j+kh,or γj(h0j+kh):=0 otherwise.In other words,the function γj(·)defines the transmission schedules for the ground sensorj.

    Now,we introduce our optimal control problem:

    where α >0 and β >0 are given constants,g (·,·,·)≥0 is a given function such that the integral term in Eq.(4) describes the propulsion energy of the UAV,and the maximum is taken over all possible UAV control inputs v(·),ω(·),u(·)and all possible sensor transmission schedules γj(·),j=1,...,M.The first term of Eq.(4)is included to achieve data transmission from as many ground sensors as possible,the second term is included to achieve a high value of the total amount of data transmission from all sensors,and the third term is included to achieve a low value of the energy expenditure of the UAV.Notice that the function g (·,·,·) is different for different types of UAVs.

    Problem Statement.To jointly design UAV inputs v(·),ω(·),u(·)for the UAV Eq.(1)and sensor transmission schedules γj(·),j=1,...,M,that maximize the utility function Eq.(4) s.t.Eqs.(2),(3).

    Remark 2.1.We assume that at any time t the UAV knows ej(t)and dj(t).Data and energy are obtained by the sensors at constant rates known to the UAV.Also,the UAV knows about all the transmissions(successful and unsuccessful) made by each sensor.Therefore,to derive ej(t) and dj(t) fort∈[t0,t0+T] the UAV needs to know just initial values ej(t0)and dj(t0).In practice,this can be achieved if the UAV operates during the interval [t0,t0+sT] wheres≥2 is some integer.Then during [t0,t0+T],the UAV just gets close to each sensor to get their current buffer and battery states,and then solves the stated problem during each interval[t0+rT,t0+(r+1)T],1=r<s.Another possibility is that in some scenarios as the sensors did not transmit beforet0,we can assume that their buffers and batteries have the maximum states att0.Also,it is assumed that the UAV knows the predetermined constantRin C2),sensor coordinates and the elevation functione(x,y) to determine LoS.

    3.Path planning algorithm

    We select a positive integerQand split the time interval [t0,t0+T]intoQsmaller subintervals with the length of δ:=each.We consider such control inputs vi(t),ωi(t),ui(t)that they change their values at timest0,t0+δ,…,t0+(Q-1)δ and keep fixed values over any smaller subinterval [t0+jδ,t0+(j+1)δ],0=j≤Q-1.We also select some integersq1>0,q2>0 andq3>0.These integers are the quantization levels of the control inputs.More precisely,introduce the following set of inputs:

    The set of control inputs Eq.(5) can approximate any control

    For all 0 <s<Sj,

    input,including an input delivering global maximum if parametersQ,q1,q2andq3are large enough.

    Now,we propose the following maximization algorithm.

    MA1:Take all piecewise constant functions belonging to the class Eq.(5)that change their values att0,t0+δ,…,t0+(Q-1)δ,use these functions as the inputs of Eq.(1),check the constraints Eqs.(2),(3),and obtain the corresponding trajectories of the UAV over the interval [t0,t0+T] satisfying the constraints Eqs.(2),(3).

    We buildW:=q1(2q2+1)(2q3+1)sets of constant control inputs from the class Eq.(5) for any smaller subinterval.Hence,as there areQsubintervals,we haveWQpossible system inputs.However,according toMA1,a branch of the tree of possible control inputs is ended every time when at least one of the constraints Eqs.(2),(3)is violated.Therefore,in practical scenarios,we usually have a much smaller number of possible inputs to check thanWQ.Notice thatWQdepends on algorithm parametersq1,q2,q3,Qand does not depend on the number of sensors M.As the computational procedure Eq.(6),Eq.(7) is a dynamic programming type procedure[18],with fixedq1,q2,q3,Q,the computational complexity ofMA1-MA4equalsO(M).

    Proposition 3.1.There exists a set of control inputs and transmission schedules at which the global maximum in the optimization problem Eq.(4) s.t.Eqs.(4) (2),(3) is achieved.Whenq1→∞,q2→∞,q3→∞andQ→∞,the value of Eq.(4) delivered by the input and scheduling sequences constructed inMA1-MA4tends to the global maximum of this constrained optimization problem.

    proof of Proposition 3.1.Indeed,the set of all possible control inputs for Eq.(1) such that the constraints Eqs.(2) and (3) hold satisfies the mathematical properties of the uniform continuousness and uniform boundedness [19].Hence,using the Arzela-Ascoli theorem [19],we can conclude that the global maximum in the constrained optimization problem Eq.(4) s.t.Eq.(2) is achieved.Furthermore,we can take control inputs v0(·),ω0(·),u0(·)and transmission schedulesthat give a value of Eq.(4)which is as close as we wish to the global maximum of Eq.(4).Such inputs may be approximated with any desired accuracy by piecewise constant inputs.Hence,we can build a sequence of inputs belonging to the class Eq.(5) that tends to v0(·),ω0(·),u0(·)if q1,q2,q3and Q approach to infinity.Hence,for this constructed input sequence and transmission schedulesthe value of the function Eq.(4)tends to the global maximum whenq1→∞,q2→∞,q3→∞andQ→∞.On the other hand,it follows from the dynamic programming principle(see e.g.[18]) that for any particular UAV path determined by particular inputs,the maximum of ε(Nj(t0,t0+T)is obtained from the transmission scheduling function γj(·)constructed byMA2and Eqs.(6)and (7).This implies that the value of Eq.(4) for the inputs and transmission schedules delivered by the algorithmMA1-MA4tends to the global maximum asq1→∞,q2→∞,q3→∞andQ→∞.This ends the proof of Proposition 3.1.

    We point out that the proposed algorithm builds an almost optimal solution of the studied constrained optimization problem.More precisely,the obtained trajectories converge to the trajectory delivering the global optimum asq1,q2,q3andQtend to infinity.

    4.Computer simulations

    In the current section,the results of computer simulations for the Proposed Algorithm Approach (PAA) for joint UAV path planning and data transmission scheduling are presented.The proposed solution is compared with the state-of-the-art method of Ref.[20],referred to as Conventional Algorithm Approach (CAA).The simulations of the algorithms are performed in MATLAB.To mimic a real-world mountain terrain,terrain data from Yellowstone,USA has been used for the simulation,see Figs.2 and 3.This real-world terrain is generated with the help of the data collected by the United States Geological Survey [21].The environment consists of an uneven surface with five ground sensors.Each of them is shown as a black dot in Figs.2 and 3.The simulations run over 900 s,and start from the UAV initial position marked by yellow square in Figs.2 and 3.

    As CAA is designed for the case of the UAV moving in a horizontal plane,to get a fair comparison with the proposed method,we consider the scenario withZmin=Zmaxwhere the UAV moves in the horizontal planez(t)=Zminwith the vertical speedu(t)=0.The values of the constants used for both simulations are given in Table 1.

    The probability distribution function of successful transmission is defined asP(r)=The function may not accurately depict real-life transmission probability and is only used to test the proposed algorithm.Nevertheless,the function can be readily replaced by any other probability distribution function.The proposed algorithm only needs a monotonically decreasing function forP(r)and does not depend on it critically.We take the functiong(v,ω,u)=|v|+|ω|+|u|.To compare these two algorithms,we plot the values of the utility function Eq.(4) versus time for the UAV trajectories constructed by the CAA and the PAA in Fig.4.

    CAA:This approach is based on designing a Dubins path that is a shortest smooth trajectory that is sufficiently close to all the sensors[20].The control input to the system is [v(t),ω(t),0],where the vertical velocity componentu(t)is always zero,so the UAV moves with a constant altitude.The linear speed of the UAV is constant.Using the brute force technique,the possible path value of (M+1)points on theXY-plane is calculated and compared.The solution gives the shortest path.However,this path does not satisfy a nonholonomic smoothness constraint.The Dubins curve is used to fit the non-holonomic constraints and generate a path on a horizontal plane for the UAV.It travels above the sensors in sequence{1,2,3,4,5},see Fig.2.Since the information about the state of the battery and data buffers’ states of the ground sensors is not taken into account while planning the trajectory,the UAV ends up visiting least-priority sensors first.It results in a smaller amount of data collected,and the value of the utility function is relatively low,see Fig.4.

    Fig.2.Trajectories view I.

    Fig.3.Trajectories view II.

    Fig.4.Utility vunction.

    PAA:We apply the proposed algorithm with parametersQ=9,q1=4,q2=5,C1=125 m/s,C2=10 rad/s andC3=10 m/s.Then a set of control inputs is calculated by Eq.(5).After checking the constraints Eqs.(2),(3) as required inMA1,the number of eligible control options drops significantly.We apply the control input produced by the optimization schemeMA4that gives the highest value for the utility function Eq.(4).The sequence of the sensors to be visited by the UAV is{4,3,2,1,5},and it is different from the CAA,see Figs.2 and 3.The amount of data and battery stored in sensor 4 is significantly higher when compared to other sensors.Unlike the CAA,the PAA prioritizes sensor 4 over other sensors,see Fig.2.Also,an advantage of the PAA is that it results in achieving the LoS between the UAV and the ground sensors more often than in the case of the CAA.The value of the utility function of the proposed algorithm is significantly higher that for the CAA.The PAA provides much better data collection from the ground sensors,see Fig.4.The proposed algorithm is more effective and efficient for maximizing data collection and minimizing energy expenditure when compared to the CAA.

    5.Conclusions

    A problem of joint 3D trajectory optimization and communication for a UAV flying over an uneven terrain was investigated.Under considered scenarios,the UAV navigates itself with the purpose to collect data from ground sensors mounted on an uneven terrain.A constructive and almost globally optimal method for joint trajectory optimization and sensor transmission scheduling was proposed and rigorously analysed.Computer simulations and comparisons with another advanced method demonstrated the performance of the presented method.There are several promising directions for future research in this area.One such a research direction is to extend the developed method to the case of several cooperating UAVs.In multi-UAV scenarios the issue of avoiding collisions between the UAVs should be addressed.Another challenge is to reduce computational complexity of an algorithm,especially for the multi-UAV case.It would be very interesting to obtain some not globally optimal but significantly less computationally expensive algorithm.Also,a promising direction of future research is to investigate scenarios in which sensor data collection is conducted by a team of cooperating UAVs and ground unmanned vehicles.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work received funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571.

    亚洲国产精品成人久久小说| 久久久久久久午夜电影| 国产高潮美女av| 国产黄片美女视频| 亚洲经典国产精华液单| 国产精品.久久久| 网址你懂的国产日韩在线| 人妻制服诱惑在线中文字幕| 99精国产麻豆久久婷婷| 国产熟女欧美一区二区| av.在线天堂| 麻豆久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 婷婷色麻豆天堂久久| 国产一区二区在线观看日韩| 99热网站在线观看| 久久久久久久午夜电影| 国产免费视频播放在线视频| 日本一二三区视频观看| 性色avwww在线观看| 国产人妻一区二区三区在| 晚上一个人看的免费电影| 免费黄频网站在线观看国产| 免费少妇av软件| 免费电影在线观看免费观看| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 欧美bdsm另类| 成人毛片60女人毛片免费| 在现免费观看毛片| 热99国产精品久久久久久7| 最近2019中文字幕mv第一页| 别揉我奶头 嗯啊视频| 国产探花在线观看一区二区| 国产成人freesex在线| av国产久精品久网站免费入址| 毛片女人毛片| 简卡轻食公司| 国产在线一区二区三区精| kizo精华| 一个人看的www免费观看视频| 1000部很黄的大片| 男女下面进入的视频免费午夜| 国产一区二区亚洲精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 老司机影院成人| 啦啦啦啦在线视频资源| 久久久a久久爽久久v久久| 国产成人午夜福利电影在线观看| 国产探花极品一区二区| www.av在线官网国产| 在线看a的网站| 国产 一区精品| 国产国拍精品亚洲av在线观看| 偷拍熟女少妇极品色| 能在线免费看毛片的网站| 国产视频内射| 性色avwww在线观看| 国产精品99久久99久久久不卡 | 亚洲性久久影院| 五月开心婷婷网| 国产精品一区二区性色av| 精品人妻视频免费看| 七月丁香在线播放| 欧美国产精品一级二级三级 | 亚洲欧美一区二区三区黑人 | 欧美日韩视频高清一区二区三区二| 26uuu在线亚洲综合色| 精品午夜福利在线看| av国产免费在线观看| 久久久成人免费电影| 日韩不卡一区二区三区视频在线| 国产国拍精品亚洲av在线观看| 欧美另类一区| 我要看日韩黄色一级片| 啦啦啦在线观看免费高清www| 最近最新中文字幕免费大全7| 久久人人爽人人爽人人片va| 搡女人真爽免费视频火全软件| 久久精品国产亚洲av涩爱| 久久久久久久久久成人| 国产毛片a区久久久久| 联通29元200g的流量卡| 91在线精品国自产拍蜜月| 可以在线观看毛片的网站| 国产乱人偷精品视频| 一级爰片在线观看| 久久精品熟女亚洲av麻豆精品| 午夜精品一区二区三区免费看| 国产免费又黄又爽又色| 一级爰片在线观看| 成人欧美大片| 18+在线观看网站| 看黄色毛片网站| 国产探花在线观看一区二区| 久久这里有精品视频免费| 国产精品麻豆人妻色哟哟久久| 成人欧美大片| 欧美高清性xxxxhd video| 日本三级黄在线观看| av专区在线播放| 成人午夜精彩视频在线观看| 可以在线观看毛片的网站| 亚洲人成网站在线观看播放| 国产成人一区二区在线| 人人妻人人爽人人添夜夜欢视频 | 国产伦精品一区二区三区四那| 99久久精品一区二区三区| 国产午夜精品一二区理论片| 久久精品国产亚洲av涩爱| 内射极品少妇av片p| 国产精品.久久久| 神马国产精品三级电影在线观看| 精华霜和精华液先用哪个| 亚洲美女视频黄频| 成人国产av品久久久| 久久久久久久久久人人人人人人| 免费观看av网站的网址| 亚洲精品aⅴ在线观看| 久久久午夜欧美精品| 亚洲精品日韩av片在线观看| 99久久中文字幕三级久久日本| 日韩av免费高清视频| 嫩草影院新地址| videossex国产| 国内精品宾馆在线| 狂野欧美白嫩少妇大欣赏| 天堂俺去俺来也www色官网| 久久精品久久久久久久性| 国产v大片淫在线免费观看| 久久精品国产a三级三级三级| 午夜精品国产一区二区电影 | 久久综合国产亚洲精品| 最近中文字幕高清免费大全6| 最近手机中文字幕大全| 国产中年淑女户外野战色| 国产精品蜜桃在线观看| 久久久久久久久久久丰满| 在线观看一区二区三区激情| 国产在线男女| 国产毛片在线视频| 岛国毛片在线播放| 精品国产露脸久久av麻豆| av免费观看日本| 色吧在线观看| 精品一区在线观看国产| 国产成人免费无遮挡视频| 中文乱码字字幕精品一区二区三区| 韩国av在线不卡| 91精品国产九色| 亚洲人成网站高清观看| 日韩国内少妇激情av| 一个人看的www免费观看视频| 国产免费一级a男人的天堂| 亚洲av国产av综合av卡| 日本色播在线视频| 精品久久国产蜜桃| 大片免费播放器 马上看| 51国产日韩欧美| av在线app专区| 国产探花极品一区二区| 欧美区成人在线视频| 天天躁夜夜躁狠狠久久av| 久久久亚洲精品成人影院| 欧美日韩精品成人综合77777| 久久久国产一区二区| 亚洲aⅴ乱码一区二区在线播放| 老司机影院成人| 一级黄片播放器| 欧美极品一区二区三区四区| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 黄色配什么色好看| av网站免费在线观看视频| eeuss影院久久| 麻豆国产97在线/欧美| 99九九线精品视频在线观看视频| 精品一区二区三区视频在线| 国产精品蜜桃在线观看| 日本三级黄在线观看| 五月开心婷婷网| av网站免费在线观看视频| 久久久久精品久久久久真实原创| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲久久久久久中文字幕| 午夜精品一区二区三区免费看| 日韩国内少妇激情av| 1000部很黄的大片| 美女主播在线视频| 高清av免费在线| 欧美国产精品一级二级三级 | 中文字幕人妻熟人妻熟丝袜美| 国产探花在线观看一区二区| 一个人看的www免费观看视频| 天天躁夜夜躁狠狠久久av| 国产精品成人在线| 一级a做视频免费观看| 免费观看性生交大片5| 18禁在线无遮挡免费观看视频| 狂野欧美激情性bbbbbb| 国产伦精品一区二区三区四那| 久久久久久久久久久免费av| 哪个播放器可以免费观看大片| a级毛片免费高清观看在线播放| 亚洲av免费高清在线观看| 晚上一个人看的免费电影| 在线精品无人区一区二区三 | 在线看a的网站| 男女国产视频网站| 国产亚洲av嫩草精品影院| 在线亚洲精品国产二区图片欧美 | 亚洲精品乱码久久久v下载方式| 人妻 亚洲 视频| 人妻 亚洲 视频| 黄色日韩在线| 日韩伦理黄色片| 18禁裸乳无遮挡免费网站照片| 熟妇人妻不卡中文字幕| 久久久欧美国产精品| 午夜福利网站1000一区二区三区| 亚洲av男天堂| 国产精品国产三级国产av玫瑰| 中文精品一卡2卡3卡4更新| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看| 尾随美女入室| 天天躁夜夜躁狠狠久久av| 久久国产乱子免费精品| 精品一区在线观看国产| 激情 狠狠 欧美| 女人被狂操c到高潮| 国产在线男女| 交换朋友夫妻互换小说| 在线天堂最新版资源| 久久鲁丝午夜福利片| 永久网站在线| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 男插女下体视频免费在线播放| 99热全是精品| 亚洲av不卡在线观看| 男女无遮挡免费网站观看| 欧美高清成人免费视频www| 亚洲精品aⅴ在线观看| av播播在线观看一区| 久久久久久国产a免费观看| 国产精品一区www在线观看| 亚洲人成网站在线播| 亚洲经典国产精华液单| 五月玫瑰六月丁香| 久久午夜福利片| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 久久精品久久久久久久性| 国产毛片a区久久久久| 亚洲一级一片aⅴ在线观看| 伊人久久精品亚洲午夜| 日本一本二区三区精品| 一个人看视频在线观看www免费| 亚洲av国产av综合av卡| 一级毛片 在线播放| 在线观看美女被高潮喷水网站| 在线 av 中文字幕| 亚洲丝袜综合中文字幕| 午夜福利高清视频| 亚洲欧洲日产国产| 99热全是精品| 熟女av电影| 亚洲精品日韩av片在线观看| av在线播放精品| av黄色大香蕉| 日韩欧美 国产精品| 激情 狠狠 欧美| 国产v大片淫在线免费观看| 国产成人午夜福利电影在线观看| 神马国产精品三级电影在线观看| 搡老乐熟女国产| 女人被狂操c到高潮| 看免费成人av毛片| 国产一区二区在线观看日韩| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 夜夜看夜夜爽夜夜摸| 中文精品一卡2卡3卡4更新| 亚洲成人久久爱视频| 国产伦理片在线播放av一区| 在线观看一区二区三区| 禁无遮挡网站| 成人一区二区视频在线观看| 欧美精品人与动牲交sv欧美| 精品久久久久久久久av| 97精品久久久久久久久久精品| 久久亚洲国产成人精品v| 中文欧美无线码| 午夜福利视频精品| 亚洲天堂国产精品一区在线| 永久网站在线| 色哟哟·www| 一级黄片播放器| 免费大片黄手机在线观看| 亚洲综合色惰| 国产人妻一区二区三区在| 特级一级黄色大片| 久久精品久久久久久噜噜老黄| 久久97久久精品| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| 精品久久久久久久久av| 国产视频内射| 亚洲,欧美,日韩| 少妇人妻 视频| 日本一二三区视频观看| av在线老鸭窝| 天天躁夜夜躁狠狠久久av| 高清av免费在线| 国产视频内射| 国产人妻一区二区三区在| 久久久久久久久久成人| 日日啪夜夜撸| 欧美激情在线99| 亚洲精品成人av观看孕妇| 尾随美女入室| 亚洲精品视频女| 噜噜噜噜噜久久久久久91| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 草草在线视频免费看| 丰满少妇做爰视频| 国产黄片美女视频| 国产探花在线观看一区二区| 国内少妇人妻偷人精品xxx网站| 一级二级三级毛片免费看| 91精品国产九色| 99久久九九国产精品国产免费| 日韩大片免费观看网站| 春色校园在线视频观看| 亚洲精品国产av蜜桃| 欧美三级亚洲精品| 久久人人爽人人爽人人片va| 亚洲人与动物交配视频| 美女被艹到高潮喷水动态| 国产精品福利在线免费观看| 国产综合精华液| 国产精品伦人一区二区| 大陆偷拍与自拍| www.色视频.com| 亚洲最大成人手机在线| 美女被艹到高潮喷水动态| 久久这里有精品视频免费| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 亚洲精品456在线播放app| av专区在线播放| 亚洲一区二区三区欧美精品 | 久久影院123| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站| 97在线人人人人妻| 日本黄大片高清| 听说在线观看完整版免费高清| 欧美 日韩 精品 国产| 欧美日韩一区二区视频在线观看视频在线 | 九九爱精品视频在线观看| 欧美+日韩+精品| 大码成人一级视频| 五月天丁香电影| 亚洲经典国产精华液单| 国产精品人妻久久久影院| 精品久久久精品久久久| 国产日韩欧美亚洲二区| 成人亚洲精品一区在线观看 | 蜜臀久久99精品久久宅男| 日本wwww免费看| 亚洲精品影视一区二区三区av| 中文在线观看免费www的网站| 国产有黄有色有爽视频| 中国国产av一级| 国产欧美日韩一区二区三区在线 | 欧美日本视频| 男人舔奶头视频| 亚洲国产精品成人综合色| 国产亚洲av片在线观看秒播厂| 男女啪啪激烈高潮av片| 99九九线精品视频在线观看视频| 国产高清三级在线| 成人毛片60女人毛片免费| 身体一侧抽搐| 青青草视频在线视频观看| 亚洲三级黄色毛片| 欧美bdsm另类| a级毛片免费高清观看在线播放| 天堂俺去俺来也www色官网| 免费看光身美女| 亚洲av福利一区| 免费看日本二区| 肉色欧美久久久久久久蜜桃 | 久久国内精品自在自线图片| 中文资源天堂在线| 亚洲欧美日韩无卡精品| 亚洲精品久久午夜乱码| 男人添女人高潮全过程视频| 男女啪啪激烈高潮av片| 卡戴珊不雅视频在线播放| videos熟女内射| 美女主播在线视频| 狂野欧美激情性bbbbbb| 搞女人的毛片| 欧美国产精品一级二级三级 | 国产精品不卡视频一区二区| 欧美潮喷喷水| 成人国产麻豆网| 高清欧美精品videossex| 国产一区二区三区综合在线观看 | 精品人妻一区二区三区麻豆| 国产乱人视频| 禁无遮挡网站| 日韩国内少妇激情av| 色哟哟·www| 又爽又黄a免费视频| 婷婷色综合大香蕉| 国产精品秋霞免费鲁丝片| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| av福利片在线观看| 亚洲欧美日韩卡通动漫| 亚洲成人一二三区av| 日韩成人伦理影院| 在线观看一区二区三区| 国产精品国产三级国产专区5o| 新久久久久国产一级毛片| 三级经典国产精品| 久久6这里有精品| 人妻一区二区av| 精品一区在线观看国产| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 亚洲成人av在线免费| 日本av手机在线免费观看| 欧美高清成人免费视频www| 久久久久精品久久久久真实原创| 麻豆乱淫一区二区| 看免费成人av毛片| 亚洲精品久久午夜乱码| 特级一级黄色大片| 综合色av麻豆| 国产淫语在线视频| 免费不卡的大黄色大毛片视频在线观看| 黄色怎么调成土黄色| 日本黄色片子视频| 婷婷色麻豆天堂久久| 亚洲国产色片| 欧美xxⅹ黑人| 国语对白做爰xxxⅹ性视频网站| 成年版毛片免费区| 国精品久久久久久国模美| 18+在线观看网站| 各种免费的搞黄视频| 国产精品不卡视频一区二区| 亚洲精品久久午夜乱码| 香蕉精品网在线| 免费看光身美女| 亚洲内射少妇av| 国产大屁股一区二区在线视频| 欧美亚洲 丝袜 人妻 在线| 午夜爱爱视频在线播放| 成人高潮视频无遮挡免费网站| 国产综合精华液| 国产精品国产av在线观看| 九色成人免费人妻av| 国产色爽女视频免费观看| 又大又黄又爽视频免费| 韩国av在线不卡| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 九九在线视频观看精品| 亚洲av一区综合| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 亚洲国产av新网站| 特大巨黑吊av在线直播| 亚洲天堂av无毛| 美女视频免费永久观看网站| 婷婷色麻豆天堂久久| 欧美激情在线99| 亚洲最大成人中文| 美女xxoo啪啪120秒动态图| 成年女人在线观看亚洲视频 | 一边亲一边摸免费视频| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| av在线天堂中文字幕| 特大巨黑吊av在线直播| 日本与韩国留学比较| 国产成人a∨麻豆精品| 欧美激情国产日韩精品一区| 精品一区二区免费观看| 免费观看无遮挡的男女| 亚洲av中文字字幕乱码综合| 久久精品国产亚洲av涩爱| 偷拍熟女少妇极品色| 久久精品国产a三级三级三级| 免费大片黄手机在线观看| 视频中文字幕在线观看| 国产免费又黄又爽又色| 我的女老师完整版在线观看| 人妻少妇偷人精品九色| 丝袜喷水一区| 七月丁香在线播放| 性色av一级| 男女边摸边吃奶| 一个人观看的视频www高清免费观看| 人妻一区二区av| 亚洲国产精品专区欧美| 亚洲精品久久午夜乱码| 国产大屁股一区二区在线视频| 免费观看在线日韩| 大片电影免费在线观看免费| 热re99久久精品国产66热6| 成年版毛片免费区| 精品午夜福利在线看| 在线观看人妻少妇| 中文欧美无线码| 麻豆乱淫一区二区| 国产精品一区二区在线观看99| 免费av毛片视频| 成人二区视频| 在线看a的网站| 亚洲精品日本国产第一区| 麻豆成人av视频| 我的女老师完整版在线观看| 国产中年淑女户外野战色| 成人午夜精彩视频在线观看| 精品久久久久久久久av| 免费看av在线观看网站| 免费看光身美女| 色视频在线一区二区三区| 别揉我奶头 嗯啊视频| 免费看不卡的av| 深爱激情五月婷婷| 国产精品伦人一区二区| 中文欧美无线码| 王馨瑶露胸无遮挡在线观看| 男女那种视频在线观看| 亚洲怡红院男人天堂| 国产亚洲精品久久久com| 日本熟妇午夜| 天美传媒精品一区二区| tube8黄色片| 亚洲精品,欧美精品| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 午夜老司机福利剧场| 91精品一卡2卡3卡4卡| 久久久精品94久久精品| 久久精品国产亚洲av天美| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 99久久精品国产国产毛片| 欧美日韩综合久久久久久| 免费看a级黄色片| 国产高清国产精品国产三级 | 亚洲国产av新网站| 午夜爱爱视频在线播放| 秋霞在线观看毛片| 一个人看视频在线观看www免费| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 欧美区成人在线视频| 成人无遮挡网站| 搞女人的毛片| 亚洲欧美日韩卡通动漫| 亚洲精品一二三| 久久ye,这里只有精品| 国产日韩欧美亚洲二区| 免费看a级黄色片| 美女视频免费永久观看网站| 制服丝袜香蕉在线| 精品一区二区三区视频在线| 午夜精品一区二区三区免费看| 黄片无遮挡物在线观看| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 免费电影在线观看免费观看| videos熟女内射| 国产精品福利在线免费观看| 一级黄片播放器| 精品国产露脸久久av麻豆| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 国产欧美另类精品又又久久亚洲欧美| 联通29元200g的流量卡| 亚洲综合色惰| 在线观看一区二区三区激情| av播播在线观看一区| 一区二区三区免费毛片| 国产高清不卡午夜福利| 视频中文字幕在线观看| 中国美白少妇内射xxxbb| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久| 国产精品国产三级专区第一集| 嘟嘟电影网在线观看| 久久久午夜欧美精品| 香蕉精品网在线| 精品熟女少妇av免费看| 亚洲欧美一区二区三区国产| 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产| 边亲边吃奶的免费视频|