• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of bio-inspired helicoid laminated composite plates resting on Pasternak foundation excited by explosive loading

    2023-12-27 04:10:04NgocTuDoQuocHoPhm
    Defence Technology 2023年12期

    Ngoc-Tu Do ,Quoc-Ho Phm

    a Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi, Viet Nam

    b Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

    Keywords:Isogeometric analysis Pasternak foundation Dynamic response Laminated composite

    ABSTRACT This paper uses isogeometric analysis (IGA) based on higher-order shear deformation theory (HSDT) to study the dynamic response of bio-inspired helicoid laminated composite (B-iHLC) plates resting on Pasternak foundation (PF) excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness (k1) and shear stiffness (k2).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions (BCs),and foundation stiffness on dynamic response of B-iHLC plates is carried out.

    1.Research problem overview

    Nature is remarkable in its ability to create structures that can efficiently handle loads with minimal stress and deformation and are capable of withstanding high-impact forces.There are many studies demonstrating nature's superior structures that humans can apply in design and manufacture.Some works study sandwich structures with a honeycomb core based on the idea of following the honeycomb structure in nature [1-3].Besides,the layering configurations observed in various natural structures such as plants,insects,and animals result in increased stiffness.By adopting these configurations in laminated structures,it is possible to attain high stiffness without sacrificing toughness [4-6].Researchers are exploring the design and manufacture of hierarchical structures that are inspired by natural materials such as spider webs,shells,bones,and leaves.The goal is to create new materials with properties and functions that are similar to those found in nature.By mimicking the hierarchical structures of biological materials,researchers aim to develop materials with high strength,toughness,and stability,as well as low weight and improved sustainability [7-9].Its helical or Bouligand structure,composed of chitin,effectively dissipates energy,prevents the growth of cracks,and provides high stiffness [10].Inspired by the helical arrangement of layers in laminated composite structures,researchers have investigated the impact of foreign objects on these structures[11-16].The superiority of the helical layup is evident in the work of researchers like Liu et al.[17],who demonstrated its selfrecoverability capacity.Yin et al.[18] have also studied the toughening mechanism in helicoidal plates inspired by the anatomy of coelacanth fish.Fig.1 illustrates various biological sources from which helical structures can be derived.

    Fig.1.Bio-inspired helicoidal structure:(a)Fingerprint and DNA;(b)Snail shell;(c)Helicoidal fiber organization of Odontodactylus scyllarus[19];(d)The exoskeleton of a beetle;(e) Collagen fibril lamellae from Arapaima gigas scales [20];(f) The Bouligand helicoidal structure is inspired by (a)-(e) these biological structures and can be used to design (g)composite laminates.The potential applications of these bio-inspired helicoidal composite laminates include anti-low velocity impact or anti-bullet products for (h) warcraft,(i)tanks,and (j) warships,as well as energy applications such as (k) wind and (l) hydraulic turbine blades.(Adapted with permission of Jiang et al.[21] from Elsevier).

    There are many review articles in the literature that summarize the work done on the analysis of laminated composite plates,beams,and shells under various loading conditions.Reddy [22]published an extensive review of shear deformation theories and their origins for the analysis of laminated structures.Carrera [23]reviewed the available zigzag theories in the literature for analyzing laminated composite and sandwich structures.Zhang and Yang [24] published a review of finite element-based analysis of laminated structures.Liew et al.[25]reviewed various meshless methods for analyzing laminated structures.Mohamed et al.[26]presented the review of the mechanical behavior of bio-inspired composite plates.Zhang et al.[27]predicted the bending resistance of basalt fiber laminate composite with a bionic helical structure.Almitani et al.[28] provided exact solutions for the bending and buckling analysis of B-iHLC beams supported on PF.Garg et al.[29]conducted a study of the free vibration and buckling analysis of BiHLC plates using a higher-order zigzag theory.Furthermore,readers can find different methods for analyzing the mechanical behavior of composite plates in Refs.[30-32].

    Studying the mechanical behavior of structures lying on elastic foundations (EFs) has typical works as Guellil et al.[33] presented the influences of porosity distributions on the mechanical bending response of functionally graded plates resting on EFs using Navier solution.Hadji et al.[34]analyzed the influence of porosity and EF on the bending behavior of sandwich structures.Zaitoun et al.[35]examined the vibration of a functionally graded (FG) sandwich plate resting on the viscoelastic foundation based on the accurate high-order shear deformation theory (HSDT).In addition,the hygro-thermo-mechanical bending and vibration response of FG plates resting on EFs is introduced in Refs.[36,37]and the influence of the visco-Pasternak foundation parameters on the mechanical behavior of FG sandwich plates is presented in Refs.[38,39].Besides,the results on the effect of the elastic foundation on the mechanical response of plates can be provided in Refs.[40-42].

    To overcome the limitations of classical FEM and analytical methods for computing the complex structures,Hughes et al.[43,44] introduced the IGA method based on computer-aided design (CAD).The effectiveness of IGA has been demonstrated in various studies [45-53].IGA can be implemented on computers with open access to the internet.Since then,many researchers have applied IGA to structural analysis using different plate theories.For example,Valizadeh et al.[54] used IGA with the first-order shear deformation theory (FSDT) to analyze the bending,vibration,and flutter of functionally graded materials(FGM)structures.Natarajan et al.[55]studied the non-local free flexural vibration of FGM plates using IGA with a third-order NURBS basis function.Anitescu et al.[56] analyzed electrodynamics using IGA based on a dual-basis diagonal mass formulation.The advancement of IGA is that it is possible to solve mathematical models with the C1 continuity problem without requiring any additional variables or Hermite interpolation functions.The basic idea of IGA is to use elementary functions to accurately describe the geometric domain as well as to approximate unknown fields.Since the geometric domain is modeled correctly and the number of variables does not increase.It hence motivates us to employ IGA based on HSDT for analysis of BiHLC plates subjected to explosive loading.

    Explosive loading is a type of short-term load with great intensity,dangerous to weapons,equipment and people,so the study of structures subjected to this loading is necessary.Based on the study of Khdeir et al.[57],the sinusoidally explosive loadingp(t)is a type of short-term load that can be caused by various sources,such as explosions,supersonic projectiles,or rockets that operate nearby acting perpendicular (z-direction) to the surface of plates.This type of loading can be mathematically described by the function.

    in whichts=0.006 s,γ=330 s-1,q0=68.9476 MPa;aandbare the length and width of composite plates,respectively(see Fig.2).

    Fig.2.The model of the B-iHLC plate resting on Pasternak foundation.

    Several studies have been conducted to investigate the mechanical behavior of structures subjected to explosive loading,and some typical works are Refs.[58-61].More recently,Duc et al.[62,63] analyzed the nonlinear vibration of Functionally Graded Material (FGM) plates under blast loading,while Qi et al.[64]investigated the forced vibration of curved sandwich panels subjected to explosive loading.It is worth noting that all the aforementioned studies employed analytical solutions to examine the response of the structures under consideration.

    Through the evaluation of the results achieved,it can be observed that IGA in combination with HSDT is very suitable for analyzing structures and provides high accuracy.Thus,the novelty of this work is the implementation of a finite element formulation based on IGA and HSDT for dynamic analysis of B-iHLC plates located on PF excited by explosive loading.Moreover,the new numerical results on the influence of geometrical,material,and EF on the dynamic analysis of B-iHLC plates are provided in detail.The authors believe that this study will be an important basis for scientists to apply to research and design military equipment such as tanks,armored vehicles,missiles,submarines,combat aircraft,and so on.

    Besides the introduction,this paper is composed of five sections.In section 2,the authors delve into geometrical models,elastic foundations,and thermal environments.Section 3 presents a comprehensive derivation of the motion equation for B-iHLC plates.To validate the proposed method,the authors conduct numerical simulations and present the results in section 4.Finally,section 5 concludes the paper by summarizing the key findings.

    2.Geometrical model and material properties

    In this study,three different helical designs,namely the helicoidal-recursive (HR),helicoidal exponential (HE),and helicoidal-semicircular (HS) are analyzed.Fig.3 displays an isometric view of these configurations,which are summarized in Table 1.

    The plate resting on PF includes springer stiffness(k1)and shear layer stiffness (k2) can be determined as follows [65]:

    The Pasternak foundation model is a two-parameter model that describes the foundation reaction as a function of the deflection and its Laplacian.The negative sign in front of the second term indicates that the shear resistance is opposite to the direction of curvature [66].This means that when the deflection is concave upward,the shear resistance is downward,and vice versa.The negative sign also ensures that the total foundation reaction is zero when there is no deflection.

    3.Theory and formulation

    3.1.Higher-order shear deformation theory (HSDT)

    The displacement field following HSDT is expressed by [67]

    whereu0,v0,θx,θy,andware displacement variables.f(z)=z(1-4z2/3h2)is the continuous function [68].

    Then,the strain-displacement relations are defined by

    withf′(z)is the derivative of the functionf(z).

    In which

    The stress resultants are calculated as follows:

    with A,B,Bb,F(xiàn),F(xiàn)band H are defined by

    where

    with α is the fiber angle of theklayer.

    Replacing Eq.(8) into Eq.(7),authors get

    3.2.The governing equations of FGP plates

    In the realm of classical mechanics,Hamilton's principle is a variational principle that asserts that the motion of a system is determined by minimizing the action functional.This action is computed by taking the integral of the Lagrangian over time,where the Lagrangian represents the difference between kinetic and potential energy.The subtraction of potential energy from kinetic energy is denoted by a negative sign in the equation[69].

    where,the virtual strain energy is

    The virtual work done by the transverse forces is

    The virtual deformed elastic foundation is

    The virtual kinetic energy is (see Appendix A for details):

    where L is expressed by

    in there

    where

    with ρ is the mass density,and

    The weak form for the vibration of plates is expressed by[69]

    3.3.Isogeometric analysis

    In this study,the displacement field is approximated by the NURBS functions as follows [47]:

    where dK={u0Kv0K wKθxKθyK}Tis the displacement of control pointK,and RKrepresent the shape function [44].

    Substituting Eq.(26) into Eq.(6),we have

    in which

    Substituting Eq.(27)into Eq.(25),the motion equation of plates is

    where,the stiffness matrix is

    The mass matrix is

    The foundation stiffness matrixis

    The transverse load vector is

    Now,the motion equation of FGP plates is defined by

    If the force vector is a time function F=F(t)and takes into account the structural damping,Eq.(40) is rewritten by

    in which C=αM+βK,with α and β are Rayleigh damping factors defined through damping ratio ζ and the first two natural frequencies[69].

    To solve Eq.(41),the authors use the Newmark method with the steps presented in Appendix B.This paper focuses on IGA,where boundary conditions(BCs)are determined based on the geometric constraints at the edges.The BCs used in this study are denoted and presented as follows:

    -Clamped(C):

    -Simply supported (S):

    -Free support(F):at the boundary edge,all degrees of freedom(DOFs) are non-zero.

    4.Numerical results

    4.1.Verification

    Example 1: the outcomes reported by Mohamed et al.[26] are utilized to validate the current model on the free vibration analysis of B-iHLC plates.For this illustration,a composite plate consisting of 32 layers of linear helicoid ([0/24/48/72/96/120/144/168/192/216/240 …/360]s) and Fibonacci helicoidal [0/10/10/20/30/50/80/130/210/340/190/170/360/170/170/340]s) is employed.The utilized material properties areE1/E2=10,G12=G13=0.5E2,G23=0.2E2,ν12=0.25,ρ=100.The results obtained in the current method and those reported by Mohamed et al.[26] are listed in Table 2It is noticeable that the current results match well with previous findings.The discrepancy between the current results and those reported by Mohamed et al.[26] is due to the adoption of FSDT by the latter authors within the differential quadrature method(DQM)framework.The results of the proposed method converge at a mesh size of 11× 11.As a result,the same mesh size will be employed in future investigations.

    Table 2 Convergence and validation study.

    Example 2: The SSSS square laminated plate sorted as [0/90/0]with geometrical dimension:h=0.1524 m;a=b=5his considered.The utilized material properties are:E1=172.369 GPa,E2=6.895 GPa,G12=G13=3.448 GPa,G23=1.379 GPa,ν12=0.25,ρ=1603.03 kg/m3.The plate is subjected to a sinusoidally distributed transverse load including triangular loads as

    in whichts=0.006 s,γ=330s-1,q0=68.9476 MPa.As shown in Fig.4,the central displacement of the composite plate is compared to the precise solutions calculated by Khdeir and Reddy [57] using HSDT.The central deflection graph is in close agreement,with the difference between the current results and the exact solutions being minimal and acceptable.Based on the above examples,it can be concluded that the proposed method is suitable for the vibration analysis of composite plates.Note that,in this study,the cubic Bspline basis functions are applied.

    Fig.4.The time history analysis of SSSS composite square plates.

    4.2.Free vibration problem

    Firstly,the SSSS 20-layered HR1 square plate with geometric dimensionsa=b=1 m,h=a/50 and the material properties as shown in example 2 of subsection 4.1.The composite plates resting on PF with the foundation stiffness get valuesk1=0.1 GPa/m andk2=0.01 GPa·m.The first six mode shapes of the composite plate are plotted in Fig.5.It can be seen that it seems that the second and third-mode shapes are similar,as expected.The difference is due to the direction of view since the square plate is simply supported on four sides.

    Fig.5.The mode shapes of the SCSC FGP square plate:(a)Mode 1,f1=497.0727 Hz;(b)Mode 2,f2=693.4083 Hz;(c)Mode 3,f3=769.1244 Hz;(d)Mode 4,f4=917.3449 Hz;(e)Mode 5, f5=946.3468 Hz;(f) Mode 6, f6=1128.356 Hz.

    Fig.6.The effect of helicoidal schemes on the dynamic response of SSSS B-iHLC plates(12 layers) without damping ratio(ζ=0): (a) The deflection response at the plate center point;(b) The stressσx via thickness at t=0.001 s;(c) The stressvia thickness at t=0.001 s.

    Fig.7.The effect of helicoidal schemes on the dynamic response of SSSS B-iHLC plates(12 layers)including damping ratio(ζ=0.08):(a)The deflection response at the plate center point;(b) The stress via thickness at t=0.0025 s;(c) The stressvia thickness at t=0.0025 s.

    Secondly,Table 3 reports natural frequencies for different helicoidal schemes,foundation stiffness(k1,k2)and length-tothickness ratio(a/h)of SSSS composite plates with 24 layers,while Table 4 lists natural frequencies of SCSC composite plates with 16 layers.From these tables,it can be seen that the helical diagram effect has a significant influence on the free vibrations of composite plates,the increase or decrease of the natural frequency depends not only on the number of layers but also on the parameters β,γ,φ and χ.As expected,a thicker plate demonstrates greater stiffness and,as a result,has a higher natural frequency.Additionally,the PF improves plate stiffness,which raises the natural frequency.In addition,it is clear that the shear layer(k2)offers stronger support than the springer layer (k1).

    Table 4 The natural frequency for SCSC B-iHLC plates with 16 layers via helicoidal schemes,foundation stiffness(k1,k2)and length-to-thickness ratio(a/h).

    Thirdly,the effect of the number of layers (NOLs) on free vibration of B-iHLC is considered.The dependency of natural frequency over NOLs can be observed in Table 5 and Table 6.When increasing NOLs,no clear trend regarding the variation in the value for the natural frequency is observed.For instance,for the CCCC boundary condition,the natural frequency increases and decreases for the remaining configurations as the number of layers increase for the HS3 configuration(observe Table 5).For the SSSS boundary condition,the natural frequency decreases and then increases with an increase in the number of layers with HR2,HR2 and HE2 configurations.Whereas for the HR1 and HS1 configurations,the natural frequency decreases with an increase in the number of layers;vice versa for HS2 and HS3 configurations.HE1 and HE3 configurations,the natural frequency changes don't follow any rules(observe Table 6).Herein,a/h=5,10 is the thick plate whilea/h=50 anda/h=100 correspond to the moderately and thin plate,respectively.

    Table 5 The natural frequency for CCCC B-iHLC thin plates(a/h=100) via number of layers.

    Table 6 The natural frequency for SSSS B-iHLC thick plates(a/h=10) via number of layers.

    4.3.Forced vibration problem

    In this section,the authors examine the vibration characteristics of B-iHLC plates subjected to the sinusoidally explosive loading as defined in Eq.(1).The structural parameters will be completely displayed on each figure for the reader's convenience.The material properties of B-iHLC plates are provided in Example 2 of subsection 4.1.

    Firstly,the effect of the helicoidal schemes on the forced vibration of SSSS B-iHLC square plates without damping ratio(ζ=0)and including damping ratio(ζ=0.08)are displayed in Figs.6 and 7,respectively.It can be seen that the B-iHLC plate with the HS3 configuration has the greatest stiffness resulting in the smallest displacement response.In contrast,the B-iHLC plate with the HS1 configuration results in the greatest displacement response by providing the smallest stiffness.In addition,the stress response along the plate thickness has a jump due to delamination in the laminated composite structure.It is obvious that the stress curve of the B-iHLC plates is smoother than that of the conventional laminated composite plates.The smoothness of the stress curve depends on the number of layers and the helicoidal configuration.Moreover,the B-iHLC plate will oscillate gradually if structural damping is included.Secondly,Fig.8 presents the impact of NOLs on the vibration characteristic of CCCC HR2 square plates without damping ratio(ζ=0).Observing this figure,we can see that the deflection response of HR2 plates with 20 layers is the largest and the smallest with the 28 layer HR2 plates.This proves that with the same thickness,the HR2 plates with 28 layers is the hardness and the softest in case of HR2 plates with 20 layers.Note that,the responses of the plate are separated into two phases.In the first phase,the plate is forced vibration due to being subjected to transverse loads.And in the second phase,the plate is free vibration,i.e,the vibration of the plate is harmonic.

    Finally,Fig.9 displays the impact of NOLs on the vibration characteristic of SCSC HE2 square plates without damping ratio(ζ=0).Observing that the deflection response of HR2 plates with 28 layers is the largest and the smallest with the 12 layers HR2 plates.This proves that with the same thickness,the HE2 plates with 12 layers is the hardness and the softest in the case of HR2 plates with 28 layers.As expected,the displacement (w) and stress (σx)response curves versus time are congruent.

    Fig.9.The effect of the number of layers(NOLs)on the dynamic response of SCSC HE2 square plates including damping ratio(ζ=0.1):a)The deflection response at the plate center point;(b)The stress response at the plate center point;(c)The stressvia thickness at t=0.0025 s.

    5.Conclusions

    This paper aims to present the free and forced vibration behavior of B-iHLC plates having different helicoidal schemes.The analysis is carried out using the IGA-based HSDT in the framework of Hamilton's equation.The validation study is carried out by comparing the present results with those available in the literature.The effects of the material properties,geometric properties,BCs,and helicoidal layup scheme are carried out in detail.The important findings from the present study are:

    · The choice of the helical scheme has a significant impact on the vibration behavior of the helical B-iHLC plates.

    · The boundary conditions also play a vital role in determining the vibration behavior of composite plates.

    · The number of layers significantly affects the vibration response of B-iHLC plates,depending on boundary conditions and different helicoidal schemes will lead to different behaviours.

    · IGA is a modern numerical method that provides high convergence and accuracy while satisfying the majority of higher-order plate theories.

    · The numerical results are expected to be useful for the design and fabrication of composite plates in military equipment such as tanks,armored vehicles,missiles,submarines,combat aircraft,etc.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Appendix A

    The virtual kinetic energy is

    Appendix B

    The steps of the Newmark-beta method to solve Eq.(41) as follows:

    Step 1.Defining the initial conditions.

    in which α,γ are determined by assuming that the acceleration varies linearly in each integral step.

    With the convergence condition,

    Step 3.Determining the effective stiffness matrix and the nodal force vector,

    Step 4.Determining the nodal displacement vector ut+Δt,

    Repeating the loop until the finish.

    久久这里只有精品中国| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 中文字幕熟女人妻在线| av天堂在线播放| 欧美精品啪啪一区二区三区| 亚洲天堂国产精品一区在线| 亚洲精品456在线播放app | 精品国内亚洲2022精品成人| 日本精品一区二区三区蜜桃| 国产一级毛片七仙女欲春2| 国内精品久久久久精免费| 欧美成狂野欧美在线观看| 色噜噜av男人的天堂激情| 免费人成在线观看视频色| 精品99又大又爽又粗少妇毛片 | 国产欧美日韩一区二区精品| 国产精品,欧美在线| 99久久久亚洲精品蜜臀av| 国产激情欧美一区二区| 操出白浆在线播放| 听说在线观看完整版免费高清| 亚洲自拍偷在线| 国产伦精品一区二区三区四那| 日本a在线网址| 露出奶头的视频| 天堂动漫精品| 一区二区三区激情视频| 精品福利观看| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 黄片小视频在线播放| eeuss影院久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 91麻豆精品激情在线观看国产| 国产乱人伦免费视频| 国产综合懂色| 男人的好看免费观看在线视频| 母亲3免费完整高清在线观看| 国产伦人伦偷精品视频| or卡值多少钱| 午夜福利视频1000在线观看| 国产美女午夜福利| 99久久精品一区二区三区| 亚洲国产欧美网| 国产乱人伦免费视频| 色哟哟哟哟哟哟| 久久中文看片网| 黄色视频,在线免费观看| 色精品久久人妻99蜜桃| 亚洲,欧美精品.| 国产三级中文精品| 色吧在线观看| 亚洲欧美日韩高清专用| 亚洲av电影不卡..在线观看| 中文字幕av在线有码专区| 99国产精品一区二区三区| 亚洲自拍偷在线| 日本精品一区二区三区蜜桃| 亚洲精品影视一区二区三区av| 久久午夜亚洲精品久久| 小蜜桃在线观看免费完整版高清| 女同久久另类99精品国产91| 亚洲精品日韩av片在线观看 | 哪里可以看免费的av片| 1000部很黄的大片| 老司机在亚洲福利影院| 老司机深夜福利视频在线观看| 国产精品 欧美亚洲| 欧美极品一区二区三区四区| 少妇的丰满在线观看| 日本撒尿小便嘘嘘汇集6| e午夜精品久久久久久久| 日韩欧美国产在线观看| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| 九九热线精品视视频播放| 嫩草影院入口| 国产真实乱freesex| 国产av麻豆久久久久久久| 欧美不卡视频在线免费观看| 亚洲美女黄片视频| 狠狠狠狠99中文字幕| 国产淫片久久久久久久久 | 国产精品嫩草影院av在线观看 | 最新中文字幕久久久久| 丝袜美腿在线中文| 精品无人区乱码1区二区| 久久久久免费精品人妻一区二区| 国产精品综合久久久久久久免费| 久久久成人免费电影| 国产精品自产拍在线观看55亚洲| 成年人黄色毛片网站| 国产成人a区在线观看| 99国产精品一区二区三区| 91久久精品电影网| 欧美黄色片欧美黄色片| 少妇人妻精品综合一区二区 | 十八禁人妻一区二区| aaaaa片日本免费| 国产 一区 欧美 日韩| 一个人看视频在线观看www免费 | 91久久精品国产一区二区成人 | 国产精品久久久久久久电影 | 久久久久久九九精品二区国产| 国内揄拍国产精品人妻在线| 国产亚洲欧美在线一区二区| 操出白浆在线播放| 丁香六月欧美| 老熟妇乱子伦视频在线观看| eeuss影院久久| 精品久久久久久久毛片微露脸| 俺也久久电影网| 黑人欧美特级aaaaaa片| 国产毛片a区久久久久| 亚洲 国产 在线| 18禁国产床啪视频网站| www.999成人在线观看| 欧美成人a在线观看| 舔av片在线| 久久香蕉精品热| 国产精品免费一区二区三区在线| 亚洲精品成人久久久久久| 男女午夜视频在线观看| 99久久久亚洲精品蜜臀av| 色哟哟哟哟哟哟| 久久香蕉精品热| 精品一区二区三区人妻视频| 婷婷精品国产亚洲av| 变态另类成人亚洲欧美熟女| 看黄色毛片网站| 18禁在线播放成人免费| 免费观看的影片在线观看| 亚洲成人久久性| 成人18禁在线播放| 国产主播在线观看一区二区| 免费人成在线观看视频色| 日本黄色片子视频| 欧美乱妇无乱码| 国产精品一及| 在线观看一区二区三区| 热99在线观看视频| 久久亚洲精品不卡| 搡女人真爽免费视频火全软件 | 黄片大片在线免费观看| 午夜福利免费观看在线| 国产精品爽爽va在线观看网站| 亚洲国产精品sss在线观看| 女人高潮潮喷娇喘18禁视频| av福利片在线观看| 国产精品电影一区二区三区| 可以在线观看毛片的网站| 亚洲av成人精品一区久久| 黄色丝袜av网址大全| 一本精品99久久精品77| 亚洲人成网站高清观看| 国产欧美日韩精品一区二区| 成人欧美大片| 一级毛片高清免费大全| 免费一级毛片在线播放高清视频| 一个人看的www免费观看视频| 成人特级黄色片久久久久久久| 欧美区成人在线视频| 不卡一级毛片| 日本黄色视频三级网站网址| 亚洲 国产 在线| 午夜福利高清视频| 欧美av亚洲av综合av国产av| 中文字幕人成人乱码亚洲影| 亚洲片人在线观看| 久久久成人免费电影| 久久精品影院6| 欧美一区二区国产精品久久精品| 国产精品爽爽va在线观看网站| 搡老妇女老女人老熟妇| 91九色精品人成在线观看| 国产精品国产高清国产av| 老汉色∧v一级毛片| 一本综合久久免费| 桃色一区二区三区在线观看| а√天堂www在线а√下载| avwww免费| 亚洲av二区三区四区| 特大巨黑吊av在线直播| 亚洲av一区综合| 免费无遮挡裸体视频| 在线a可以看的网站| 综合色av麻豆| 国产欧美日韩一区二区三| 十八禁网站免费在线| 亚洲内射少妇av| 亚洲av美国av| 亚洲精品成人久久久久久| 欧美绝顶高潮抽搐喷水| 亚洲久久久久久中文字幕| 桃红色精品国产亚洲av| 我要搜黄色片| 国产一区在线观看成人免费| 国产三级中文精品| 日本与韩国留学比较| 国内揄拍国产精品人妻在线| 久久久久久久久大av| 亚洲熟妇熟女久久| 有码 亚洲区| 国产黄色小视频在线观看| 日本 欧美在线| 毛片女人毛片| x7x7x7水蜜桃| 亚洲av电影不卡..在线观看| 天堂影院成人在线观看| 99精品在免费线老司机午夜| 中文资源天堂在线| 亚洲精品一卡2卡三卡4卡5卡| 韩国av一区二区三区四区| 日韩精品中文字幕看吧| 成人特级黄色片久久久久久久| 身体一侧抽搐| 欧美日韩黄片免| 麻豆久久精品国产亚洲av| 波野结衣二区三区在线 | 亚洲国产精品合色在线| 黄色片一级片一级黄色片| 亚洲av电影在线进入| 亚洲七黄色美女视频| 日韩欧美精品免费久久 | 亚洲av免费在线观看| 国产黄色小视频在线观看| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式 | 一级黄色大片毛片| 999久久久精品免费观看国产| 一级a爱片免费观看的视频| 国产国拍精品亚洲av在线观看 | 国产麻豆成人av免费视频| 国产高清videossex| 好看av亚洲va欧美ⅴa在| 精品一区二区三区视频在线观看免费| 国产乱人视频| 久久精品国产亚洲av香蕉五月| 综合色av麻豆| 成年人黄色毛片网站| 日本三级黄在线观看| 亚洲一区二区三区不卡视频| 91字幕亚洲| 国产精品,欧美在线| 男女之事视频高清在线观看| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 国产精品99久久99久久久不卡| 18禁黄网站禁片免费观看直播| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| 国产精品久久久久久久电影 | 俄罗斯特黄特色一大片| 午夜精品在线福利| 桃色一区二区三区在线观看| 国产精品一区二区免费欧美| 1000部很黄的大片| 国产私拍福利视频在线观看| 日日干狠狠操夜夜爽| 日本黄色片子视频| 成人精品一区二区免费| 岛国在线观看网站| 亚洲成人精品中文字幕电影| 久久久久久久久久黄片| 嫩草影院精品99| 叶爱在线成人免费视频播放| 变态另类丝袜制服| 午夜亚洲福利在线播放| 在线观看美女被高潮喷水网站 | 波多野结衣高清作品| 欧美午夜高清在线| 国产三级黄色录像| 成人特级av手机在线观看| 19禁男女啪啪无遮挡网站| 亚洲av一区综合| 免费看十八禁软件| 国产欧美日韩一区二区精品| 69人妻影院| 久久久国产成人免费| 欧美另类亚洲清纯唯美| 精品一区二区三区av网在线观看| 欧美日韩国产亚洲二区| 婷婷亚洲欧美| 午夜影院日韩av| 综合色av麻豆| 我要搜黄色片| 黄色片一级片一级黄色片| 天天添夜夜摸| 亚洲欧美激情综合另类| 黑人欧美特级aaaaaa片| 特级一级黄色大片| 亚洲乱码一区二区免费版| 黄色视频,在线免费观看| 国产精品美女特级片免费视频播放器| 啦啦啦观看免费观看视频高清| 亚洲国产高清在线一区二区三| 午夜免费观看网址| 一区二区三区免费毛片| 午夜视频国产福利| 热99在线观看视频| 一进一出抽搐动态| 欧美日韩精品网址| 亚洲国产欧美人成| 在线播放国产精品三级| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放| 啦啦啦韩国在线观看视频| 国产真人三级小视频在线观看| 给我免费播放毛片高清在线观看| 好看av亚洲va欧美ⅴa在| 精品国产美女av久久久久小说| 免费人成视频x8x8入口观看| 国产精品亚洲av一区麻豆| 在线播放无遮挡| 97碰自拍视频| 亚洲av日韩精品久久久久久密| tocl精华| 99久久精品国产亚洲精品| 日韩大尺度精品在线看网址| 黄色成人免费大全| eeuss影院久久| 男女之事视频高清在线观看| 国产亚洲欧美98| 非洲黑人性xxxx精品又粗又长| 久久久久久久亚洲中文字幕 | 国产69精品久久久久777片| 少妇的逼水好多| 麻豆成人av在线观看| 国产主播在线观看一区二区| 99久久无色码亚洲精品果冻| 成人鲁丝片一二三区免费| 亚洲久久久久久中文字幕| 天堂网av新在线| 一级黄色大片毛片| 男女午夜视频在线观看| a级毛片a级免费在线| 欧美激情在线99| 99在线视频只有这里精品首页| 国产av一区在线观看免费| 色老头精品视频在线观看| 国产高清视频在线播放一区| 99热只有精品国产| a级毛片a级免费在线| 欧美一区二区亚洲| 成年人黄色毛片网站| www.熟女人妻精品国产| 国产黄片美女视频| 一区二区三区激情视频| 国产极品精品免费视频能看的| 亚洲精品一区av在线观看| 国产精品女同一区二区软件 | 精品人妻1区二区| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 一个人看视频在线观看www免费 | 日日干狠狠操夜夜爽| 亚洲av电影不卡..在线观看| 在线十欧美十亚洲十日本专区| 在线观看一区二区三区| 日本 欧美在线| 两个人看的免费小视频| 免费av不卡在线播放| 成人国产一区最新在线观看| 亚洲性夜色夜夜综合| 色av中文字幕| 又黄又粗又硬又大视频| 亚洲国产精品999在线| 国产一区二区三区在线臀色熟女| 欧美成狂野欧美在线观看| 99久久综合精品五月天人人| 国产探花极品一区二区| 伊人久久大香线蕉亚洲五| 国产精品精品国产色婷婷| 久久久色成人| 亚洲av成人精品一区久久| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 国产视频内射| 伊人久久精品亚洲午夜| 一区福利在线观看| 免费看十八禁软件| 亚洲av成人精品一区久久| 日本免费一区二区三区高清不卡| 叶爱在线成人免费视频播放| 成熟少妇高潮喷水视频| 国产精品亚洲一级av第二区| 天堂动漫精品| 成人av在线播放网站| 无限看片的www在线观看| 亚洲成人精品中文字幕电影| 久久久久久久午夜电影| 18禁裸乳无遮挡免费网站照片| 色精品久久人妻99蜜桃| 午夜福利成人在线免费观看| 欧美最黄视频在线播放免费| 在线a可以看的网站| 人人妻,人人澡人人爽秒播| 19禁男女啪啪无遮挡网站| 国产成人影院久久av| 99久久成人亚洲精品观看| 国产免费男女视频| 亚洲中文字幕一区二区三区有码在线看| 男女下面进入的视频免费午夜| 国产精品免费一区二区三区在线| 最近最新免费中文字幕在线| 成年免费大片在线观看| 蜜桃亚洲精品一区二区三区| 免费观看精品视频网站| 色哟哟哟哟哟哟| 老汉色av国产亚洲站长工具| 午夜激情福利司机影院| 久久久久免费精品人妻一区二区| 亚洲国产精品999在线| 欧美黑人巨大hd| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 久久久久久久亚洲中文字幕 | 男女做爰动态图高潮gif福利片| 亚洲成av人片免费观看| 亚洲欧美日韩东京热| 黄片小视频在线播放| 毛片女人毛片| 人人妻人人看人人澡| 久久精品国产自在天天线| 男人的好看免费观看在线视频| 午夜视频国产福利| 搡女人真爽免费视频火全软件 | 久久精品国产综合久久久| 日本免费一区二区三区高清不卡| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 亚洲欧美精品综合久久99| 黄色日韩在线| 欧美日韩瑟瑟在线播放| 91av网一区二区| 性色avwww在线观看| 色综合欧美亚洲国产小说| 婷婷亚洲欧美| 亚洲精品国产精品久久久不卡| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 噜噜噜噜噜久久久久久91| 99久久综合精品五月天人人| 成年女人看的毛片在线观看| 国产精品自产拍在线观看55亚洲| 内地一区二区视频在线| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 嫩草影院入口| 99热精品在线国产| 啦啦啦免费观看视频1| a在线观看视频网站| 色视频www国产| 国产伦一二天堂av在线观看| 少妇的逼好多水| 亚洲人成网站在线播| 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 免费在线观看成人毛片| 久久精品91蜜桃| 亚洲五月天丁香| 黄色成人免费大全| 精品欧美国产一区二区三| 久久香蕉精品热| 免费看十八禁软件| 久久久久久人人人人人| 免费观看人在逋| 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区久久| 九色国产91popny在线| 久久香蕉国产精品| 久久精品亚洲精品国产色婷小说| 69av精品久久久久久| 久久国产精品影院| 亚洲国产色片| 国产av在哪里看| 婷婷丁香在线五月| 免费av毛片视频| 国产探花在线观看一区二区| 国产三级黄色录像| 香蕉久久夜色| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 亚洲成人久久爱视频| 男女午夜视频在线观看| 黄色丝袜av网址大全| www.999成人在线观看| 国产亚洲精品av在线| 亚洲黑人精品在线| 午夜福利在线观看免费完整高清在 | 婷婷精品国产亚洲av在线| 亚洲精品456在线播放app | 日韩欧美精品v在线| 亚洲男人的天堂狠狠| 在线免费观看的www视频| 国产欧美日韩精品一区二区| 在线观看美女被高潮喷水网站 | 国产一级毛片七仙女欲春2| 国产麻豆成人av免费视频| 亚洲成人中文字幕在线播放| 一本精品99久久精品77| 一个人免费在线观看的高清视频| 成人国产综合亚洲| 午夜福利视频1000在线观看| 日本五十路高清| 国产精品 欧美亚洲| 少妇的逼好多水| 91九色精品人成在线观看| 亚洲精品影视一区二区三区av| 亚洲成人久久性| 少妇的丰满在线观看| 国产精品一及| 中文字幕高清在线视频| 色播亚洲综合网| 12—13女人毛片做爰片一| 亚洲一区高清亚洲精品| 丰满人妻一区二区三区视频av | 亚洲精品色激情综合| 国产亚洲精品av在线| 久久天躁狠狠躁夜夜2o2o| 12—13女人毛片做爰片一| 久久草成人影院| 久久精品国产清高在天天线| 成人精品一区二区免费| 久久久久久久精品吃奶| 成人av一区二区三区在线看| 色视频www国产| 丰满的人妻完整版| 国产aⅴ精品一区二区三区波| 美女大奶头视频| 精品一区二区三区视频在线 | 可以在线观看毛片的网站| 国产精品香港三级国产av潘金莲| 精品久久久久久久末码| av专区在线播放| 美女黄网站色视频| 欧美成人免费av一区二区三区| 女同久久另类99精品国产91| 欧美在线一区亚洲| 色综合婷婷激情| 九九久久精品国产亚洲av麻豆| 精品久久久久久久末码| 日本一本二区三区精品| 国产真实伦视频高清在线观看 | 搞女人的毛片| 午夜福利免费观看在线| 天堂网av新在线| 国产91精品成人一区二区三区| 最新在线观看一区二区三区| 免费在线观看影片大全网站| 午夜老司机福利剧场| 内射极品少妇av片p| 一个人免费在线观看的高清视频| 国产色婷婷99| 国产蜜桃级精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 1000部很黄的大片| 亚洲五月婷婷丁香| 老熟妇乱子伦视频在线观看| 欧美日韩乱码在线| 丁香六月欧美| 亚洲片人在线观看| 亚洲中文日韩欧美视频| 中国美女看黄片| 2021天堂中文幕一二区在线观| 精品人妻一区二区三区麻豆 | 啦啦啦韩国在线观看视频| 亚洲七黄色美女视频| 身体一侧抽搐| 精品日产1卡2卡| 麻豆国产97在线/欧美| 国产乱人伦免费视频| 一级黄片播放器| 精品国产美女av久久久久小说| 亚洲成av人片在线播放无| 性色avwww在线观看| 国产男靠女视频免费网站| 久久久久久久亚洲中文字幕 | 一卡2卡三卡四卡精品乱码亚洲| 老汉色av国产亚洲站长工具| www日本在线高清视频| 成人av在线播放网站| 一a级毛片在线观看| 可以在线观看毛片的网站| 亚洲精华国产精华精| 2021天堂中文幕一二区在线观| 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 大型黄色视频在线免费观看| 国产在视频线在精品| 观看美女的网站| 久久久久久九九精品二区国产| 国内久久婷婷六月综合欲色啪| 露出奶头的视频| 一区二区三区激情视频| 欧美中文日本在线观看视频| 波多野结衣高清作品| 国语自产精品视频在线第100页| 狂野欧美白嫩少妇大欣赏| 国产精品,欧美在线| 久久精品国产亚洲av涩爱 | 天堂网av新在线| 色播亚洲综合网| 免费看a级黄色片| 啦啦啦观看免费观看视频高清| 欧美激情在线99| 日本五十路高清| 啦啦啦观看免费观看视频高清| 观看美女的网站| 国产一级毛片七仙女欲春2| 亚洲男人的天堂狠狠| av在线天堂中文字幕| 国产99白浆流出| 欧美日韩亚洲国产一区二区在线观看| 久久久久久国产a免费观看|