• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic analysis of bio-inspired helicoid laminated composite plates resting on Pasternak foundation excited by explosive loading

    2023-12-27 04:10:04NgocTuDoQuocHoPhm
    Defence Technology 2023年12期

    Ngoc-Tu Do ,Quoc-Ho Phm

    a Faculty of Mechanical Engineering, Hanoi University of Industry, Hanoi, Viet Nam

    b Faculty of Engineering and Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam

    Keywords:Isogeometric analysis Pasternak foundation Dynamic response Laminated composite

    ABSTRACT This paper uses isogeometric analysis (IGA) based on higher-order shear deformation theory (HSDT) to study the dynamic response of bio-inspired helicoid laminated composite (B-iHLC) plates resting on Pasternak foundation (PF) excited by explosive loading.IGA takes advantage of non-uniform rational Bspline(NURBS)basic functions to exactly represent the structure geometry models and the attainment of higher-order approximation conditions.This method also ensures a C1 continuous function in the analysis of transverse shear deformation via HSDT.Furthermore,IGA eliminates the requirement for correction factors and delivers accurate results.Pasternak foundation with two stiffness parameters:springer stiffness (k1) and shear stiffness (k2).The derivation of the governing equations is based on Hamilton's principle.The proposed method is validated through numerical examples.A comprehensive analysis of the impact of geometrical parameters,material properties,boundary conditions (BCs),and foundation stiffness on dynamic response of B-iHLC plates is carried out.

    1.Research problem overview

    Nature is remarkable in its ability to create structures that can efficiently handle loads with minimal stress and deformation and are capable of withstanding high-impact forces.There are many studies demonstrating nature's superior structures that humans can apply in design and manufacture.Some works study sandwich structures with a honeycomb core based on the idea of following the honeycomb structure in nature [1-3].Besides,the layering configurations observed in various natural structures such as plants,insects,and animals result in increased stiffness.By adopting these configurations in laminated structures,it is possible to attain high stiffness without sacrificing toughness [4-6].Researchers are exploring the design and manufacture of hierarchical structures that are inspired by natural materials such as spider webs,shells,bones,and leaves.The goal is to create new materials with properties and functions that are similar to those found in nature.By mimicking the hierarchical structures of biological materials,researchers aim to develop materials with high strength,toughness,and stability,as well as low weight and improved sustainability [7-9].Its helical or Bouligand structure,composed of chitin,effectively dissipates energy,prevents the growth of cracks,and provides high stiffness [10].Inspired by the helical arrangement of layers in laminated composite structures,researchers have investigated the impact of foreign objects on these structures[11-16].The superiority of the helical layup is evident in the work of researchers like Liu et al.[17],who demonstrated its selfrecoverability capacity.Yin et al.[18] have also studied the toughening mechanism in helicoidal plates inspired by the anatomy of coelacanth fish.Fig.1 illustrates various biological sources from which helical structures can be derived.

    Fig.1.Bio-inspired helicoidal structure:(a)Fingerprint and DNA;(b)Snail shell;(c)Helicoidal fiber organization of Odontodactylus scyllarus[19];(d)The exoskeleton of a beetle;(e) Collagen fibril lamellae from Arapaima gigas scales [20];(f) The Bouligand helicoidal structure is inspired by (a)-(e) these biological structures and can be used to design (g)composite laminates.The potential applications of these bio-inspired helicoidal composite laminates include anti-low velocity impact or anti-bullet products for (h) warcraft,(i)tanks,and (j) warships,as well as energy applications such as (k) wind and (l) hydraulic turbine blades.(Adapted with permission of Jiang et al.[21] from Elsevier).

    There are many review articles in the literature that summarize the work done on the analysis of laminated composite plates,beams,and shells under various loading conditions.Reddy [22]published an extensive review of shear deformation theories and their origins for the analysis of laminated structures.Carrera [23]reviewed the available zigzag theories in the literature for analyzing laminated composite and sandwich structures.Zhang and Yang [24] published a review of finite element-based analysis of laminated structures.Liew et al.[25]reviewed various meshless methods for analyzing laminated structures.Mohamed et al.[26]presented the review of the mechanical behavior of bio-inspired composite plates.Zhang et al.[27]predicted the bending resistance of basalt fiber laminate composite with a bionic helical structure.Almitani et al.[28] provided exact solutions for the bending and buckling analysis of B-iHLC beams supported on PF.Garg et al.[29]conducted a study of the free vibration and buckling analysis of BiHLC plates using a higher-order zigzag theory.Furthermore,readers can find different methods for analyzing the mechanical behavior of composite plates in Refs.[30-32].

    Studying the mechanical behavior of structures lying on elastic foundations (EFs) has typical works as Guellil et al.[33] presented the influences of porosity distributions on the mechanical bending response of functionally graded plates resting on EFs using Navier solution.Hadji et al.[34]analyzed the influence of porosity and EF on the bending behavior of sandwich structures.Zaitoun et al.[35]examined the vibration of a functionally graded (FG) sandwich plate resting on the viscoelastic foundation based on the accurate high-order shear deformation theory (HSDT).In addition,the hygro-thermo-mechanical bending and vibration response of FG plates resting on EFs is introduced in Refs.[36,37]and the influence of the visco-Pasternak foundation parameters on the mechanical behavior of FG sandwich plates is presented in Refs.[38,39].Besides,the results on the effect of the elastic foundation on the mechanical response of plates can be provided in Refs.[40-42].

    To overcome the limitations of classical FEM and analytical methods for computing the complex structures,Hughes et al.[43,44] introduced the IGA method based on computer-aided design (CAD).The effectiveness of IGA has been demonstrated in various studies [45-53].IGA can be implemented on computers with open access to the internet.Since then,many researchers have applied IGA to structural analysis using different plate theories.For example,Valizadeh et al.[54] used IGA with the first-order shear deformation theory (FSDT) to analyze the bending,vibration,and flutter of functionally graded materials(FGM)structures.Natarajan et al.[55]studied the non-local free flexural vibration of FGM plates using IGA with a third-order NURBS basis function.Anitescu et al.[56] analyzed electrodynamics using IGA based on a dual-basis diagonal mass formulation.The advancement of IGA is that it is possible to solve mathematical models with the C1 continuity problem without requiring any additional variables or Hermite interpolation functions.The basic idea of IGA is to use elementary functions to accurately describe the geometric domain as well as to approximate unknown fields.Since the geometric domain is modeled correctly and the number of variables does not increase.It hence motivates us to employ IGA based on HSDT for analysis of BiHLC plates subjected to explosive loading.

    Explosive loading is a type of short-term load with great intensity,dangerous to weapons,equipment and people,so the study of structures subjected to this loading is necessary.Based on the study of Khdeir et al.[57],the sinusoidally explosive loadingp(t)is a type of short-term load that can be caused by various sources,such as explosions,supersonic projectiles,or rockets that operate nearby acting perpendicular (z-direction) to the surface of plates.This type of loading can be mathematically described by the function.

    in whichts=0.006 s,γ=330 s-1,q0=68.9476 MPa;aandbare the length and width of composite plates,respectively(see Fig.2).

    Fig.2.The model of the B-iHLC plate resting on Pasternak foundation.

    Several studies have been conducted to investigate the mechanical behavior of structures subjected to explosive loading,and some typical works are Refs.[58-61].More recently,Duc et al.[62,63] analyzed the nonlinear vibration of Functionally Graded Material (FGM) plates under blast loading,while Qi et al.[64]investigated the forced vibration of curved sandwich panels subjected to explosive loading.It is worth noting that all the aforementioned studies employed analytical solutions to examine the response of the structures under consideration.

    Through the evaluation of the results achieved,it can be observed that IGA in combination with HSDT is very suitable for analyzing structures and provides high accuracy.Thus,the novelty of this work is the implementation of a finite element formulation based on IGA and HSDT for dynamic analysis of B-iHLC plates located on PF excited by explosive loading.Moreover,the new numerical results on the influence of geometrical,material,and EF on the dynamic analysis of B-iHLC plates are provided in detail.The authors believe that this study will be an important basis for scientists to apply to research and design military equipment such as tanks,armored vehicles,missiles,submarines,combat aircraft,and so on.

    Besides the introduction,this paper is composed of five sections.In section 2,the authors delve into geometrical models,elastic foundations,and thermal environments.Section 3 presents a comprehensive derivation of the motion equation for B-iHLC plates.To validate the proposed method,the authors conduct numerical simulations and present the results in section 4.Finally,section 5 concludes the paper by summarizing the key findings.

    2.Geometrical model and material properties

    In this study,three different helical designs,namely the helicoidal-recursive (HR),helicoidal exponential (HE),and helicoidal-semicircular (HS) are analyzed.Fig.3 displays an isometric view of these configurations,which are summarized in Table 1.

    The plate resting on PF includes springer stiffness(k1)and shear layer stiffness (k2) can be determined as follows [65]:

    The Pasternak foundation model is a two-parameter model that describes the foundation reaction as a function of the deflection and its Laplacian.The negative sign in front of the second term indicates that the shear resistance is opposite to the direction of curvature [66].This means that when the deflection is concave upward,the shear resistance is downward,and vice versa.The negative sign also ensures that the total foundation reaction is zero when there is no deflection.

    3.Theory and formulation

    3.1.Higher-order shear deformation theory (HSDT)

    The displacement field following HSDT is expressed by [67]

    whereu0,v0,θx,θy,andware displacement variables.f(z)=z(1-4z2/3h2)is the continuous function [68].

    Then,the strain-displacement relations are defined by

    withf′(z)is the derivative of the functionf(z).

    In which

    The stress resultants are calculated as follows:

    with A,B,Bb,F(xiàn),F(xiàn)band H are defined by

    where

    with α is the fiber angle of theklayer.

    Replacing Eq.(8) into Eq.(7),authors get

    3.2.The governing equations of FGP plates

    In the realm of classical mechanics,Hamilton's principle is a variational principle that asserts that the motion of a system is determined by minimizing the action functional.This action is computed by taking the integral of the Lagrangian over time,where the Lagrangian represents the difference between kinetic and potential energy.The subtraction of potential energy from kinetic energy is denoted by a negative sign in the equation[69].

    where,the virtual strain energy is

    The virtual work done by the transverse forces is

    The virtual deformed elastic foundation is

    The virtual kinetic energy is (see Appendix A for details):

    where L is expressed by

    in there

    where

    with ρ is the mass density,and

    The weak form for the vibration of plates is expressed by[69]

    3.3.Isogeometric analysis

    In this study,the displacement field is approximated by the NURBS functions as follows [47]:

    where dK={u0Kv0K wKθxKθyK}Tis the displacement of control pointK,and RKrepresent the shape function [44].

    Substituting Eq.(26) into Eq.(6),we have

    in which

    Substituting Eq.(27)into Eq.(25),the motion equation of plates is

    where,the stiffness matrix is

    The mass matrix is

    The foundation stiffness matrixis

    The transverse load vector is

    Now,the motion equation of FGP plates is defined by

    If the force vector is a time function F=F(t)and takes into account the structural damping,Eq.(40) is rewritten by

    in which C=αM+βK,with α and β are Rayleigh damping factors defined through damping ratio ζ and the first two natural frequencies[69].

    To solve Eq.(41),the authors use the Newmark method with the steps presented in Appendix B.This paper focuses on IGA,where boundary conditions(BCs)are determined based on the geometric constraints at the edges.The BCs used in this study are denoted and presented as follows:

    -Clamped(C):

    -Simply supported (S):

    -Free support(F):at the boundary edge,all degrees of freedom(DOFs) are non-zero.

    4.Numerical results

    4.1.Verification

    Example 1: the outcomes reported by Mohamed et al.[26] are utilized to validate the current model on the free vibration analysis of B-iHLC plates.For this illustration,a composite plate consisting of 32 layers of linear helicoid ([0/24/48/72/96/120/144/168/192/216/240 …/360]s) and Fibonacci helicoidal [0/10/10/20/30/50/80/130/210/340/190/170/360/170/170/340]s) is employed.The utilized material properties areE1/E2=10,G12=G13=0.5E2,G23=0.2E2,ν12=0.25,ρ=100.The results obtained in the current method and those reported by Mohamed et al.[26] are listed in Table 2It is noticeable that the current results match well with previous findings.The discrepancy between the current results and those reported by Mohamed et al.[26] is due to the adoption of FSDT by the latter authors within the differential quadrature method(DQM)framework.The results of the proposed method converge at a mesh size of 11× 11.As a result,the same mesh size will be employed in future investigations.

    Table 2 Convergence and validation study.

    Example 2: The SSSS square laminated plate sorted as [0/90/0]with geometrical dimension:h=0.1524 m;a=b=5his considered.The utilized material properties are:E1=172.369 GPa,E2=6.895 GPa,G12=G13=3.448 GPa,G23=1.379 GPa,ν12=0.25,ρ=1603.03 kg/m3.The plate is subjected to a sinusoidally distributed transverse load including triangular loads as

    in whichts=0.006 s,γ=330s-1,q0=68.9476 MPa.As shown in Fig.4,the central displacement of the composite plate is compared to the precise solutions calculated by Khdeir and Reddy [57] using HSDT.The central deflection graph is in close agreement,with the difference between the current results and the exact solutions being minimal and acceptable.Based on the above examples,it can be concluded that the proposed method is suitable for the vibration analysis of composite plates.Note that,in this study,the cubic Bspline basis functions are applied.

    Fig.4.The time history analysis of SSSS composite square plates.

    4.2.Free vibration problem

    Firstly,the SSSS 20-layered HR1 square plate with geometric dimensionsa=b=1 m,h=a/50 and the material properties as shown in example 2 of subsection 4.1.The composite plates resting on PF with the foundation stiffness get valuesk1=0.1 GPa/m andk2=0.01 GPa·m.The first six mode shapes of the composite plate are plotted in Fig.5.It can be seen that it seems that the second and third-mode shapes are similar,as expected.The difference is due to the direction of view since the square plate is simply supported on four sides.

    Fig.5.The mode shapes of the SCSC FGP square plate:(a)Mode 1,f1=497.0727 Hz;(b)Mode 2,f2=693.4083 Hz;(c)Mode 3,f3=769.1244 Hz;(d)Mode 4,f4=917.3449 Hz;(e)Mode 5, f5=946.3468 Hz;(f) Mode 6, f6=1128.356 Hz.

    Fig.6.The effect of helicoidal schemes on the dynamic response of SSSS B-iHLC plates(12 layers) without damping ratio(ζ=0): (a) The deflection response at the plate center point;(b) The stressσx via thickness at t=0.001 s;(c) The stressvia thickness at t=0.001 s.

    Fig.7.The effect of helicoidal schemes on the dynamic response of SSSS B-iHLC plates(12 layers)including damping ratio(ζ=0.08):(a)The deflection response at the plate center point;(b) The stress via thickness at t=0.0025 s;(c) The stressvia thickness at t=0.0025 s.

    Secondly,Table 3 reports natural frequencies for different helicoidal schemes,foundation stiffness(k1,k2)and length-tothickness ratio(a/h)of SSSS composite plates with 24 layers,while Table 4 lists natural frequencies of SCSC composite plates with 16 layers.From these tables,it can be seen that the helical diagram effect has a significant influence on the free vibrations of composite plates,the increase or decrease of the natural frequency depends not only on the number of layers but also on the parameters β,γ,φ and χ.As expected,a thicker plate demonstrates greater stiffness and,as a result,has a higher natural frequency.Additionally,the PF improves plate stiffness,which raises the natural frequency.In addition,it is clear that the shear layer(k2)offers stronger support than the springer layer (k1).

    Table 4 The natural frequency for SCSC B-iHLC plates with 16 layers via helicoidal schemes,foundation stiffness(k1,k2)and length-to-thickness ratio(a/h).

    Thirdly,the effect of the number of layers (NOLs) on free vibration of B-iHLC is considered.The dependency of natural frequency over NOLs can be observed in Table 5 and Table 6.When increasing NOLs,no clear trend regarding the variation in the value for the natural frequency is observed.For instance,for the CCCC boundary condition,the natural frequency increases and decreases for the remaining configurations as the number of layers increase for the HS3 configuration(observe Table 5).For the SSSS boundary condition,the natural frequency decreases and then increases with an increase in the number of layers with HR2,HR2 and HE2 configurations.Whereas for the HR1 and HS1 configurations,the natural frequency decreases with an increase in the number of layers;vice versa for HS2 and HS3 configurations.HE1 and HE3 configurations,the natural frequency changes don't follow any rules(observe Table 6).Herein,a/h=5,10 is the thick plate whilea/h=50 anda/h=100 correspond to the moderately and thin plate,respectively.

    Table 5 The natural frequency for CCCC B-iHLC thin plates(a/h=100) via number of layers.

    Table 6 The natural frequency for SSSS B-iHLC thick plates(a/h=10) via number of layers.

    4.3.Forced vibration problem

    In this section,the authors examine the vibration characteristics of B-iHLC plates subjected to the sinusoidally explosive loading as defined in Eq.(1).The structural parameters will be completely displayed on each figure for the reader's convenience.The material properties of B-iHLC plates are provided in Example 2 of subsection 4.1.

    Firstly,the effect of the helicoidal schemes on the forced vibration of SSSS B-iHLC square plates without damping ratio(ζ=0)and including damping ratio(ζ=0.08)are displayed in Figs.6 and 7,respectively.It can be seen that the B-iHLC plate with the HS3 configuration has the greatest stiffness resulting in the smallest displacement response.In contrast,the B-iHLC plate with the HS1 configuration results in the greatest displacement response by providing the smallest stiffness.In addition,the stress response along the plate thickness has a jump due to delamination in the laminated composite structure.It is obvious that the stress curve of the B-iHLC plates is smoother than that of the conventional laminated composite plates.The smoothness of the stress curve depends on the number of layers and the helicoidal configuration.Moreover,the B-iHLC plate will oscillate gradually if structural damping is included.Secondly,Fig.8 presents the impact of NOLs on the vibration characteristic of CCCC HR2 square plates without damping ratio(ζ=0).Observing this figure,we can see that the deflection response of HR2 plates with 20 layers is the largest and the smallest with the 28 layer HR2 plates.This proves that with the same thickness,the HR2 plates with 28 layers is the hardness and the softest in case of HR2 plates with 20 layers.Note that,the responses of the plate are separated into two phases.In the first phase,the plate is forced vibration due to being subjected to transverse loads.And in the second phase,the plate is free vibration,i.e,the vibration of the plate is harmonic.

    Finally,Fig.9 displays the impact of NOLs on the vibration characteristic of SCSC HE2 square plates without damping ratio(ζ=0).Observing that the deflection response of HR2 plates with 28 layers is the largest and the smallest with the 12 layers HR2 plates.This proves that with the same thickness,the HE2 plates with 12 layers is the hardness and the softest in the case of HR2 plates with 28 layers.As expected,the displacement (w) and stress (σx)response curves versus time are congruent.

    Fig.9.The effect of the number of layers(NOLs)on the dynamic response of SCSC HE2 square plates including damping ratio(ζ=0.1):a)The deflection response at the plate center point;(b)The stress response at the plate center point;(c)The stressvia thickness at t=0.0025 s.

    5.Conclusions

    This paper aims to present the free and forced vibration behavior of B-iHLC plates having different helicoidal schemes.The analysis is carried out using the IGA-based HSDT in the framework of Hamilton's equation.The validation study is carried out by comparing the present results with those available in the literature.The effects of the material properties,geometric properties,BCs,and helicoidal layup scheme are carried out in detail.The important findings from the present study are:

    · The choice of the helical scheme has a significant impact on the vibration behavior of the helical B-iHLC plates.

    · The boundary conditions also play a vital role in determining the vibration behavior of composite plates.

    · The number of layers significantly affects the vibration response of B-iHLC plates,depending on boundary conditions and different helicoidal schemes will lead to different behaviours.

    · IGA is a modern numerical method that provides high convergence and accuracy while satisfying the majority of higher-order plate theories.

    · The numerical results are expected to be useful for the design and fabrication of composite plates in military equipment such as tanks,armored vehicles,missiles,submarines,combat aircraft,etc.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Appendix A

    The virtual kinetic energy is

    Appendix B

    The steps of the Newmark-beta method to solve Eq.(41) as follows:

    Step 1.Defining the initial conditions.

    in which α,γ are determined by assuming that the acceleration varies linearly in each integral step.

    With the convergence condition,

    Step 3.Determining the effective stiffness matrix and the nodal force vector,

    Step 4.Determining the nodal displacement vector ut+Δt,

    Repeating the loop until the finish.

    av国产免费在线观看| 你懂的网址亚洲精品在线观看 | 在线播放无遮挡| 免费黄色在线免费观看| 男女边吃奶边做爰视频| 国产男人的电影天堂91| 国产精品av视频在线免费观看| 久久精品人妻少妇| 久久精品91蜜桃| 看免费成人av毛片| 久久久久久久久久成人| 国产色爽女视频免费观看| 欧美成人一区二区免费高清观看| 国产亚洲精品久久久com| 亚洲av成人av| 高清午夜精品一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲五月天丁香| 国产亚洲91精品色在线| 日日啪夜夜撸| 97超碰精品成人国产| 国产久久久一区二区三区| 久久久久网色| 搡老妇女老女人老熟妇| 亚洲av.av天堂| 国产伦在线观看视频一区| 乱人视频在线观看| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 如何舔出高潮| 久久精品夜夜夜夜夜久久蜜豆| 伦精品一区二区三区| 超碰97精品在线观看| 99九九线精品视频在线观看视频| 少妇丰满av| 亚洲欧美成人精品一区二区| 亚洲国产精品成人综合色| 日韩av在线免费看完整版不卡| 中文字幕制服av| 日韩 亚洲 欧美在线| 色播亚洲综合网| av国产久精品久网站免费入址| 天天躁日日操中文字幕| 久久亚洲精品不卡| 哪个播放器可以免费观看大片| 精华霜和精华液先用哪个| 中文欧美无线码| 日本与韩国留学比较| 久久精品人妻少妇| 久久99精品国语久久久| 美女大奶头视频| 26uuu在线亚洲综合色| 少妇被粗大猛烈的视频| 日本午夜av视频| 久久精品91蜜桃| 久久久a久久爽久久v久久| 性色avwww在线观看| 久久亚洲精品不卡| 三级男女做爰猛烈吃奶摸视频| 亚洲丝袜综合中文字幕| 成人av在线播放网站| 黑人高潮一二区| 午夜福利在线在线| 欧美最新免费一区二区三区| 一个人看的www免费观看视频| 亚洲欧美精品自产自拍| 亚洲精品aⅴ在线观看| 国产av在哪里看| 亚洲美女视频黄频| 日韩中字成人| 欧美bdsm另类| 高清日韩中文字幕在线| 色哟哟·www| 一夜夜www| 午夜a级毛片| 在线观看66精品国产| 黄色欧美视频在线观看| 国产中年淑女户外野战色| 中文字幕熟女人妻在线| 免费电影在线观看免费观看| 3wmmmm亚洲av在线观看| 久久99蜜桃精品久久| 精品人妻偷拍中文字幕| 亚洲国产高清在线一区二区三| 一个人看的www免费观看视频| 成人高潮视频无遮挡免费网站| 中文字幕免费在线视频6| 三级毛片av免费| 99在线视频只有这里精品首页| 成人漫画全彩无遮挡| 午夜a级毛片| 亚洲怡红院男人天堂| 亚洲精品,欧美精品| 成人国产麻豆网| 国产精品人妻久久久影院| 综合色av麻豆| 久久午夜福利片| 三级经典国产精品| 久久久久久久久中文| 成人美女网站在线观看视频| 精品99又大又爽又粗少妇毛片| 久久久久性生活片| 99热6这里只有精品| 日本黄色片子视频| 成人亚洲精品av一区二区| 嘟嘟电影网在线观看| 国产精品国产三级国产专区5o | 亚洲性久久影院| 精品酒店卫生间| 你懂的网址亚洲精品在线观看 | 1024手机看黄色片| 少妇熟女欧美另类| 中文字幕免费在线视频6| 免费人成在线观看视频色| av在线亚洲专区| av在线亚洲专区| 亚洲av二区三区四区| 亚洲av成人精品一区久久| 97超碰精品成人国产| .国产精品久久| 日韩精品青青久久久久久| 免费观看a级毛片全部| 亚洲精品乱码久久久久久按摩| 亚洲精品,欧美精品| 婷婷色综合大香蕉| 亚洲精品久久久久久婷婷小说 | 亚洲成人精品中文字幕电影| 最新中文字幕久久久久| 亚洲国产欧洲综合997久久,| 偷拍熟女少妇极品色| 春色校园在线视频观看| 麻豆精品久久久久久蜜桃| 亚洲精品乱码久久久v下载方式| 久久精品熟女亚洲av麻豆精品 | 日韩欧美精品免费久久| 亚洲av熟女| 18禁在线播放成人免费| 亚洲精品,欧美精品| 日本黄大片高清| 天堂中文最新版在线下载 | 国产三级中文精品| 亚洲激情五月婷婷啪啪| 午夜日本视频在线| av在线观看视频网站免费| 日本与韩国留学比较| 免费观看a级毛片全部| 亚洲欧美精品专区久久| 日本黄色视频三级网站网址| 午夜福利高清视频| 男人舔奶头视频| 日本五十路高清| 精品无人区乱码1区二区| 国产精品一区www在线观看| 中文字幕免费在线视频6| 国产激情偷乱视频一区二区| 亚洲经典国产精华液单| 亚洲真实伦在线观看| 在线免费观看的www视频| 女人十人毛片免费观看3o分钟| 丝袜美腿在线中文| 欧美性感艳星| 激情 狠狠 欧美| 国产精品女同一区二区软件| 一级毛片我不卡| 国产精品一二三区在线看| 麻豆乱淫一区二区| 秋霞在线观看毛片| 又黄又爽又刺激的免费视频.| 国产又色又爽无遮挡免| 插逼视频在线观看| 亚洲国产精品sss在线观看| 亚洲伊人久久精品综合 | 性色avwww在线观看| 日韩一区二区三区影片| 又黄又爽又刺激的免费视频.| 欧美日韩国产亚洲二区| 欧美日韩一区二区视频在线观看视频在线 | 免费观看人在逋| av在线天堂中文字幕| 观看免费一级毛片| 国语对白做爰xxxⅹ性视频网站| 乱人视频在线观看| 18禁在线播放成人免费| 久久人人爽人人爽人人片va| 成人特级av手机在线观看| 日韩成人av中文字幕在线观看| 69av精品久久久久久| 秋霞在线观看毛片| 联通29元200g的流量卡| 99久久九九国产精品国产免费| 精品一区二区三区人妻视频| 日韩制服骚丝袜av| 久久久精品94久久精品| 大香蕉97超碰在线| 中文在线观看免费www的网站| 九草在线视频观看| 亚洲精品乱码久久久久久按摩| 欧美日韩在线观看h| 亚洲国产精品sss在线观看| 亚洲精品成人久久久久久| 日本色播在线视频| 亚洲国产精品sss在线观看| 亚洲乱码一区二区免费版| 免费看a级黄色片| 亚洲乱码一区二区免费版| 亚洲欧洲国产日韩| 亚洲av福利一区| 中国国产av一级| 午夜福利在线观看吧| 日韩 亚洲 欧美在线| 国产v大片淫在线免费观看| 亚洲久久久久久中文字幕| 国产在线一区二区三区精 | 日韩,欧美,国产一区二区三区 | 狠狠狠狠99中文字幕| 亚洲综合精品二区| 网址你懂的国产日韩在线| 99久久九九国产精品国产免费| 国产精品国产三级专区第一集| 国产高清视频在线观看网站| 精品久久久久久久末码| 特大巨黑吊av在线直播| 欧美人与善性xxx| 午夜福利在线在线| 亚洲av电影在线观看一区二区三区 | 亚洲一级一片aⅴ在线观看| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 国产精品久久久久久久久免| 亚洲久久久久久中文字幕| 欧美变态另类bdsm刘玥| 国产熟女欧美一区二区| 男女下面进入的视频免费午夜| 国产精品精品国产色婷婷| 1024手机看黄色片| 亚洲在线自拍视频| 国产精品.久久久| 亚洲精品,欧美精品| 久久精品影院6| 午夜福利在线观看吧| 成年版毛片免费区| 日韩一区二区视频免费看| 国产色婷婷99| kizo精华| 欧美日本视频| 亚洲性久久影院| 搞女人的毛片| 久久久久免费精品人妻一区二区| 国产 一区 欧美 日韩| 尾随美女入室| 九草在线视频观看| ponron亚洲| 国产一区亚洲一区在线观看| 性色avwww在线观看| 亚洲不卡免费看| 亚洲最大成人中文| 亚洲欧洲国产日韩| 岛国在线免费视频观看| 日本黄色片子视频| 国产成人一区二区在线| 只有这里有精品99| 国产精品日韩av在线免费观看| 亚洲四区av| 久久精品夜色国产| 水蜜桃什么品种好| 国产精品久久电影中文字幕| 亚洲人成网站高清观看| 国产色爽女视频免费观看| 91狼人影院| 日本-黄色视频高清免费观看| 午夜福利在线在线| 爱豆传媒免费全集在线观看| 日本av手机在线免费观看| 熟女人妻精品中文字幕| 色尼玛亚洲综合影院| 久久久久免费精品人妻一区二区| 国产精品一区二区性色av| 久久这里只有精品中国| 床上黄色一级片| 乱人视频在线观看| 插阴视频在线观看视频| 国产精品伦人一区二区| 久久99热这里只有精品18| 黑人高潮一二区| 综合色av麻豆| 插阴视频在线观看视频| 欧美成人午夜免费资源| 黄色日韩在线| 免费av毛片视频| 午夜老司机福利剧场| 尤物成人国产欧美一区二区三区| 美女脱内裤让男人舔精品视频| 丰满人妻一区二区三区视频av| 毛片女人毛片| 国产一区有黄有色的免费视频 | 最近中文字幕高清免费大全6| 欧美xxxx黑人xx丫x性爽| 秋霞在线观看毛片| 欧美高清成人免费视频www| 日本与韩国留学比较| 亚洲最大成人av| 狂野欧美白嫩少妇大欣赏| 亚洲av成人精品一区久久| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 51国产日韩欧美| 99热精品在线国产| 中文字幕av成人在线电影| 男女国产视频网站| 干丝袜人妻中文字幕| 国产精品1区2区在线观看.| 亚洲伊人久久精品综合 | 99久久无色码亚洲精品果冻| 特大巨黑吊av在线直播| 人妻制服诱惑在线中文字幕| 老司机影院毛片| 免费观看在线日韩| 2021天堂中文幕一二区在线观| 国产精品av视频在线免费观看| 国产一区二区在线av高清观看| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区国产| 一级av片app| 欧美一级a爱片免费观看看| 亚洲无线观看免费| 波野结衣二区三区在线| av在线观看视频网站免费| 日本wwww免费看| 精品久久久久久久末码| 欧美极品一区二区三区四区| 中文资源天堂在线| 日本午夜av视频| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 午夜福利在线观看免费完整高清在| 国产亚洲91精品色在线| 国产美女午夜福利| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 久久久久久久久中文| 国产三级在线视频| 一级二级三级毛片免费看| 人妻少妇偷人精品九色| 中文字幕制服av| 麻豆成人av视频| 日韩一本色道免费dvd| 精品一区二区免费观看| 久久综合国产亚洲精品| 一级黄片播放器| 国产成人a区在线观看| 99视频精品全部免费 在线| 99热网站在线观看| 国语对白做爰xxxⅹ性视频网站| 级片在线观看| 全区人妻精品视频| 亚洲精品乱久久久久久| 一区二区三区乱码不卡18| 一级爰片在线观看| 免费观看在线日韩| 哪个播放器可以免费观看大片| 欧美一区二区亚洲| 韩国高清视频一区二区三区| 国产探花极品一区二区| 神马国产精品三级电影在线观看| 黑人高潮一二区| 午夜精品在线福利| 大又大粗又爽又黄少妇毛片口| 亚洲精品自拍成人| av视频在线观看入口| 国产在视频线在精品| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 国产综合懂色| 特级一级黄色大片| 亚洲真实伦在线观看| 日韩强制内射视频| 久久精品久久久久久久性| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av| 99热6这里只有精品| www.av在线官网国产| 日韩精品有码人妻一区| 亚洲国产最新在线播放| 联通29元200g的流量卡| 亚洲自拍偷在线| 毛片女人毛片| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 亚洲成人久久爱视频| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看 | 久久久精品大字幕| 深夜a级毛片| 国内精品宾馆在线| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 亚洲成人久久爱视频| 夫妻性生交免费视频一级片| 91久久精品国产一区二区三区| 国产精品久久电影中文字幕| 午夜福利网站1000一区二区三区| 日韩成人av中文字幕在线观看| 国产成人aa在线观看| 亚洲人成网站在线观看播放| 国产免费一级a男人的天堂| 乱系列少妇在线播放| 国产色爽女视频免费观看| 高清午夜精品一区二区三区| 热99在线观看视频| 午夜福利在线观看吧| 亚洲国产成人一精品久久久| 看免费成人av毛片| 精品人妻视频免费看| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频 | 成人美女网站在线观看视频| 2021天堂中文幕一二区在线观| 午夜免费激情av| 亚洲无线观看免费| 日韩欧美三级三区| 久久久国产成人精品二区| 国产午夜福利久久久久久| 欧美性猛交╳xxx乱大交人| 精品人妻一区二区三区麻豆| 婷婷色麻豆天堂久久 | www.av在线官网国产| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 三级国产精品欧美在线观看| 久久久精品94久久精品| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放 | 亚洲精品国产av成人精品| 亚洲av中文字字幕乱码综合| 亚洲精品日韩在线中文字幕| 免费观看性生交大片5| 老师上课跳d突然被开到最大视频| 成人毛片a级毛片在线播放| 久久久精品欧美日韩精品| 中文字幕免费在线视频6| 国产成人精品久久久久久| 美女xxoo啪啪120秒动态图| 尤物成人国产欧美一区二区三区| ponron亚洲| av视频在线观看入口| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 午夜爱爱视频在线播放| 免费无遮挡裸体视频| 国国产精品蜜臀av免费| 男人狂女人下面高潮的视频| 国产白丝娇喘喷水9色精品| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 免费看av在线观看网站| 成人综合一区亚洲| 中文欧美无线码| 午夜福利视频1000在线观看| 免费看光身美女| 国产精品人妻久久久影院| 蜜桃亚洲精品一区二区三区| 日本免费一区二区三区高清不卡| 日本免费a在线| 男女那种视频在线观看| 成人三级黄色视频| 能在线免费观看的黄片| 国语自产精品视频在线第100页| 少妇的逼好多水| 久久久久久久久久久丰满| 只有这里有精品99| 国产真实乱freesex| 亚洲经典国产精华液单| 久久精品综合一区二区三区| 国产精品麻豆人妻色哟哟久久 | 亚洲av日韩在线播放| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 亚洲精品色激情综合| 国产精品久久电影中文字幕| 久久欧美精品欧美久久欧美| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 69人妻影院| 中文字幕人妻熟人妻熟丝袜美| 亚洲av日韩在线播放| 青青草视频在线视频观看| 内地一区二区视频在线| ponron亚洲| 日本av手机在线免费观看| 天堂影院成人在线观看| 久久热精品热| 最近中文字幕高清免费大全6| 可以在线观看毛片的网站| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| av国产免费在线观看| 变态另类丝袜制服| 久久久久久伊人网av| 麻豆av噜噜一区二区三区| 国产精品一区二区性色av| 欧美成人a在线观看| 国产午夜精品论理片| 少妇的逼好多水| 色尼玛亚洲综合影院| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 亚洲成人av在线免费| 国产黄a三级三级三级人| 51国产日韩欧美| 国产精品一区二区在线观看99 | 国产av码专区亚洲av| 一区二区三区四区激情视频| 免费av观看视频| 久久精品影院6| 中文字幕人妻熟人妻熟丝袜美| 五月伊人婷婷丁香| 国产乱来视频区| 久久久久久九九精品二区国产| 国产黄片美女视频| 国产精品人妻久久久影院| 99热这里只有精品一区| 免费看a级黄色片| 国产淫片久久久久久久久| 亚洲中文字幕日韩| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 超碰av人人做人人爽久久| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看 | 菩萨蛮人人尽说江南好唐韦庄 | 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 国产精品不卡视频一区二区| 成年女人永久免费观看视频| 国产色婷婷99| 国产高清视频在线观看网站| 天堂网av新在线| 久久精品影院6| 欧美潮喷喷水| 变态另类丝袜制服| 一级毛片aaaaaa免费看小| 国产成人福利小说| 可以在线观看毛片的网站| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 日本午夜av视频| 免费在线观看成人毛片| 久久热精品热| 男人和女人高潮做爰伦理| 国产熟女欧美一区二区| 丰满少妇做爰视频| 精品不卡国产一区二区三区| 一区二区三区免费毛片| 亚洲成色77777| 国产黄片视频在线免费观看| 日本熟妇午夜| 男女国产视频网站| 久久亚洲国产成人精品v| 欧美性感艳星| 特级一级黄色大片| 嫩草影院新地址| 久久久久国产网址| 卡戴珊不雅视频在线播放| 99久久九九国产精品国产免费| 亚洲精品影视一区二区三区av| 在线观看66精品国产| 成人无遮挡网站| 99视频精品全部免费 在线| 久久久久九九精品影院| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 午夜福利在线观看免费完整高清在| 亚洲av免费高清在线观看| 国产免费福利视频在线观看| 好男人在线观看高清免费视频| 又粗又爽又猛毛片免费看| 亚洲成人久久爱视频| 国产精品国产三级专区第一集| 免费看av在线观看网站| 哪个播放器可以免费观看大片| 欧美成人免费av一区二区三区| 亚洲精品成人久久久久久| 精品久久久久久成人av| 亚洲av中文av极速乱| 精品久久久久久久末码| 国产色婷婷99| 亚洲欧美精品专区久久| 一本久久精品| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 免费播放大片免费观看视频在线观看 | 白带黄色成豆腐渣| 国产欧美另类精品又又久久亚洲欧美| 精品无人区乱码1区二区| 色网站视频免费| 亚洲在线观看片| av国产免费在线观看| 桃色一区二区三区在线观看| 精品一区二区三区人妻视频| 好男人视频免费观看在线| 高清视频免费观看一区二区 | 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app| 在线观看一区二区三区| 国产精品永久免费网站| 最近最新中文字幕免费大全7| 亚洲av成人精品一区久久| 中文精品一卡2卡3卡4更新| 久久精品熟女亚洲av麻豆精品 | 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 大话2 男鬼变身卡|