• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contraction of Heat Shock Protein 70 Genes Uncovers Heat Adaptability of Ostrea denselamellosa

    2023-12-21 08:09:08DONGZhenLIUShikaiYUHongKONGLingfengandLIQi
    Journal of Ocean University of China 2023年6期

    DONG Zhen, LIU Shikai, YU Hong, KONG Lingfeng, and LI Qi

    Contraction of Heat Shock Protein 70 Genes Uncovers Heat Adaptability of

    DONG Zhen, LIU Shikai, YU Hong, KONG Lingfeng, and LI Qi*

    ,,,266003,

    The milin oysteris a live-bearing species with a sharp decline in the natural population. Unlike other oysters,lives in the subtidal zone and its adaptability to heat, salinity,. is different from most other oysters. Heat shock proteins 70 (HSP70) are a family of conserved ubiquitously expressed heat shock proteins which are produced in re- sponse to stressful conditions, especially heat. In this study, we identifiedgenes through bioinformatic analysis in five species of oyster. Among them,holds the fewest number ofgenes, which may be one of the reasons whycannot tolerate high temperatures. The conserved motifs and gene structures ofsub-family and other types ofwere different from that ofsub-family, which may be due to performing necessary multiple phy- siological functions. Transcription profile analysis forgenes ofindicated that gills play an important role in responding to multiple external challenges. In addition, synteny analysis ofgenes among,andshowed thatgenes in genus ofgenome might have evolved from a common ancestor with genus of. In short, our results lay the foundation for further investigation of the evolution ofgenes and heat adaptability.

    ; oysters;; heat; adaptability

    1 Introduction

    Milin oysteris a potential econo- mically important species, which generally inhabits the sub- tidal zone with high salinity along the coasts of China, Ja- pan and Korea (Xu., 2008; Chen., 2011). How- ever, previous studies showed that oysters such asandhad a survival rate of more than 50% at 32℃ (Wang and Li, 2017; Hu., 2020), whilecouldn not survive at 32℃ (Yang., 2003), which means that milin oyster is relatively poorly adapted to high temperatures. Moreover,is a kind of live-bearing oyster, which differs sig- nificantly from oysters,and most other bivalves. During reproduction, the eggs are fertilized and grow to D-shaped larvae in the female mental cavity within 1-3 days (Buroker, 1985; Foighil and Taylor, 2000; Yang., 2001). Previous study showed that species are more likely to be ovoviviviparous when they live in lower- temperature environments, and the female keep the em- bryos in their body to make sure they can grow in a suit- able temperature (Webb., 2006). To date, previous studies onmainly focused on its mito-chondrial genome, seed production and biological charac- teristics (Insua and Thiriot-Quievreux, 1991; Chen., 2011; Yu., 2016; Han., 2022), while the geno- mic-level research on their ecological adaptation remains limited (Xu., 2008).

    , also known as, has functions in a wide range of housekeeping and stress-related activities (Rosenzweig., 2019). In previous studies, several members ofhave been cloned inand, and thesegenes were significantly up-regulated when the oysters were under heat stress (Nagata., 2017; Casas and La Peyre, 2020). In addition, with the quick development of genomesequencing, the genome-widegene family has beenstudied in oysters based on their genomes. These genes were found to be expanded in,and, which indicated thatgenes play important roles in adaptation to heat in dynamic environ- ments with a wide variety of stress factors (Zhang., 2012; Powell., 2018; Peng., 2020). Although we have generated the genome assembly of(Dong., 2023),no detailed analysis of thefamily has been performed in.

    In this study, in order to provide a comprehensive un- derstanding of thegene family in the,thenumber of gene copies, chromosomal locations, tissue specific expression pattern, structure and motifs were examined based on the genome ofand other oysters. We also analyzed the evolution ofgenes among oysters by performing phylogenetic trees and synteny analyses, and carried out a preliminary study on the ecological adaptability ofby com- parative genomics and gene family enrichment.

    2 Material and Methods

    2.1 Data Preparation

    The genomes, the longest peptides sequences and gff3files of(GCA_902806645.1) (Zhang., 2012),(GCA_002022765.4) (Gomez-Chiarri.,2015) and the genome of(GCA_003671525.1) (Powell., 2018) were downloaded from NCBI website. The longest peptides sequences and gff3 fileofwere obtained from http://soft.bioinfo-minzhao.org/srog/. All these three data sets of(CNA0022698) (Wu., 2022) were obtained from the China National GeneBank DataBase (CNGBdb). In addi- tion, we have generated the genomic data of(Dong., 2023) and(Li., 2023),which can be found in Figshare https://doi.org/10.6084/m9.figshare.19801705 and https://doi.org/10.6084/m9.figshare. 20013503, respectively. To identifygenes in oysters, HSP70 protein sequences fromwere download- ed from UniProt (https://www.uniprot.org/). The RNA-Seq data of.was derived from NCBI web- site with SRA numbers: SRR19238441, SRR19238440, SRR19238438 and SRR19238439.

    2.2 Identification of Hsp70 Genes

    To identifygenes in,,and,HSP70 protein sequences inwere used as query database. First, basic local alignment search tool algorithm program (BLASTP) (Al- tschul., 1990) was used to get the initial candidategenes ofe?5and iden- tity ≥30%. To make the results more accurate, these can- didate genes were then filtered by conserved domain. The hidden Markov model (HMM) (Eddy, 1996) profile of the HSP70 domain (PF00012) was downloaded from the Pfamprotein family database http://pfam-legacy.xfam.org/family/ HSP70. We filtered the candidate genes of the previous step by running ‘hmmsearch --cut_tc’ algorithm. Finally, we selected the candidate genes with corresponding amino acid length >300 asgenes.

    2.3 Sequence Alignment and Phylogenetic Analysis

    To investigate the evolutionary relationship offa- mily, thegenes of,andwere used to build a phylogenetic tree. First, the protein sequences of these genes were aligned using MU- SCLE (v3.6) (Edgar, 2004) and then the tree was con-structed using FASTTREE (Price., 2009). The tree was finally decorated and displayed with Interactive Tree of Life (ITOL, https://itol.embl.de/).

    2.4 Gene Structure and Conserved Motif

    PEPTIDES (2.4.4) (Osorio., 2015) was used to cal- culate the molecular weight and isoelectric point (PI). We used MEME (4.11.2) (Bailey., 2015) with parameters ‘-mod anr -protein -nmotifs 10 -minw 6 -maxw 200’ to de- tect the conserved motif. In addition, the structure of each gene was analyzed based on the coding sequence (CDS) and untranslated region (UTR) data from the gff3 file. Both the conserved motif and gene structure were visualized by TBtools (Chen., 2020).

    2.5 Chromosomal Distribution and Synteny Analysis

    genes of.were mapped to the chromosomes according to the gff3 file, and the results were processed and visualized by MAPCHART (Voorrips, 2002). To figure out what chromosomes-level changes occurred ingenes in oystersduring evolution, DIAMOND (Bu- chfink., 2015) was used to two-way align the protein sequences of.againstandwith parameters ‘--max-target-seqs 5 --evalue 1e-10’. Then the synteny of genes of these three species was identified based on MCscanX (Wang., 2012). Thecorresponding chromosome was determined by the frac- tion of genes in a block of approximately 25 genes. JCVI (Sleator, 2016) was used to visualize the final result andgenes were marked in red.

    2.6 Expression Profiles of OdeHsp70 Genes in Different Tissues

    We generated twelve sets of RNA-seq data for tissue specific expression analysis, including gonads, gills, adduc- tor and mantle from each of the three female.in stage of ovulation. These data have already been uploaded to NCBI with SRA numbers SRR19238441, SRR 19238440, SRR19238438 and SRR19238439. First, the RNA-Seq raw data was mapped toge- nome by HISAT2 (v2-2.2.1) (Kim., 2015). Then the quantity of transcriptomes was detected by FEATURE- COUNTS (v2.0.1) (Liao., 2014). The result was stan-dardized using TPM and TMM in order to balance the dif- ferences between tissues and individuals. Based on the stan-dardized quantification results, we plotted a heat map ofgenes ofusing PHEATMAP in R.

    3 Results and Discussion

    3.1 Identification of Hsp70 Genes

    With the strict filtering standard, a total of 401genes were identified, including 59 in, 84 in, 83 in, 84 inand 88 in(Table 1)Compared to other species of oys- ters and previous studies of bivalves, including 133genes in hard calm(Hu., 2022), 61genes in(Cheng., 2016) and 65genes in(Hu., 2019),holds the fewestgenes.

    The number ofgenes among bivalves varied great- ly, which might be a reflection of regulatory physiological variation that can help the bivalves adapt to the changing environment, especially temperature (Zhang., 2012).Therefore, the decrease in heat shock protein gene may af- fectto regulate heat-adaptability.

    Moreover, we found that thegenes included 6 Heat shock protein70 B2 () genes, which was the same as in, and one copy more than that in; 47 Heat Shock Protein Fa- mily A Member 12 () genes and 6 other types ofgenes. Compared togene family in other spe- cies of oysters and scallops (Cheng., 2016; Hu., 2019), the contraction of thegene family inwas mainly due to the decrease in the number ofgenes (Table 1).

    Table 1 Copy numbers of Hsp70 sub-families among mollusk genomes

    3.2 Phylogenetic Analysis of the Hsp70 Genes

    In order to figure out the evolutionary relationships ofgenes among oysters, four phylogenetic trees with maximum likelihood were constructed based on the long- est protein sequences. Because thegenes ofare well studied and examined, we used its protein se- quences as a reference. These four trees had similar topo- logical structures, and thegene family in the five species of oysters all mainly had two clusters, thesub-family (black branches) and other sub-families (red and green branches), as shown in Fig.1. Thegenes were first clustered together. The other sub-families likeandgene pairs were also clustered together. The other branch consisted of 47sub-family members. Compared with, the copy number ofis significantly reduced (Fig.1). This condition also occurred in a small subset of regions inandFor oysters, not only the total number ofgenes was changing, but the copy number ofsub-family genes was also different. These differences between species may be ex- plained by duplicated genes having independent origins orthere may have existed some genomic rearrangement in this region (Metzger., 2016). This situation inmay be due to the subtidal living environment which is different from the environments of other oysters.

    3.3 OdeHsp70 Gene Structure and Conserved Motifs

    The information aboutgenes’ location, amino acidlength and MolWts is summarized in https://doi.org/10. 6084/m9.figshare.24152763.v1. The predicted MolWts of theproteins varied from 46.04kDa (ode_0040 25-RB) to 171.14kDa (). In addition,encoded proteins varying from 421aa () to 1508aa (). Compared to other oysters (proteins from 384aa to 2290aa,proteins from 347aa to 2460aa andpro- teins from 316aa to 2595aa), the protein length range ofinwas relatively small. Thismay be due to the evolution ofgenes themselves and the different genome assembly-annotation methods of each species.

    A total of ten conserved motifs were detected ingenes. The conserved motifs and gene structures ofsub-family (red) and other types of(green) were different from that ofsub-family. This may be due to performing necessary multiple physiologi- cal functions, according to the conjecture that different mo-tifs may indicate different functions or functional diver- gence (Liu., 2016). Except, the con- served motifs and gene structures of the genes in each of the above three sub-families were highly similar (Fig.2).

    Fig.2 Architecture of conserved protein motifs and gene structure of Hsp70 genes in O. denselamellosa. Different branch colors represent different sub-families, red for Hsp70B2, green for other types, and black for Hspa12. (A) The motifs of Hsp70 proteins in O. denselamellosa. The ten motifs were displayed with different colors. The length of the protein can be estimated using the scale at the bottom. (B) Exons and introns of Hsp70 proteins in O. denselamellosa. Blue boxes in- dicated untranslated regions; orange boxes indicated exons.

    3.4 Chromosomal Distribution of OdeHsp70 Genes

    A total of 59genes were finally distributedamong 8chromosomes (Fig.3). Among all thesegenes, 28 (48.27%) were located on chromosome 4. The other chromosomes have fewer than 7 genes on each one. Only onegene was observed on chromosome 9. Similarly,genes were alsolocated on 8 chromosomes and 42 of 84 (50.00%) were distributed on chromosome 2 (https://doi.org/10.6084/m9.figshare.24152763.v1). Only onegene was ob- served on chromosome 1 and twogenes were observed on chromosome 6. Unlike the European oyster, in which onegene was distributed on a scaffold, thegenes ofwere all found on chromosomes. It might be a common phenome- non for members of large gene families to be unequally distributed on chromosomes. For example, only19 of 66 transient receptor potential channel genes were located on chromosome 2 in(Fu., 2021).

    3.5 Synteny Analysis of OdeHsp70 Genes Between O. edulis and C. ariakensis

    Synteny analysis of thegenes was performed among,and. There are many syntenic blocks between the genomes of these oysters, with 616 betweenand, 396 betweenand(Fig.4). Thegenes were mainly distributed on chro- mosome 4 of,chromosome 2 ofandchromosome 5 ofInterestingly, mostgenes located on chromosomes 10 weregenes. For, in addition to chromosomes Ode4 and Oed2,genes were also more or less distributed on other chromosomes, and eight out ten chromosomes of each species have the distribution of this gene family. But the situation was different in, only 6 chromo- somes have the distribution ofgenes, other than chro- mosomes Car3 and Car5. There are distributions on chro- mosomes Car6, Car7, Car8 and Car9, but just in small quan- tities. These results indicated that thegene family may be more conserved and that thegenes widely distributed on more chromosomes ofgenome might have evolved from those of a common an- cestor with.

    3.6 Expression Patterns of OdeHsp70 Genes in Different Tissues

    RNA-seq data of four tissues, including mantle, gill, ad- ductor muscle and gonad, from an ovulating femalewere used to characterize the expression pro- files ofs. Based on TPM+TMM values, a heat- map ofgenes in various tissues was created(Fig.5).genes were highly expressed in gills and re- latively lowly expressed in mantle and adductor muscle. The same expression pattern has also been reported in hard clamandManila clam(Liu., 2015; Nie., 2017; Hu., 2022). In Bivalve, gills are considered to be sensitive to environ- mental changes, and high expression ofgenes will promote the regulation of the environmental changes re- sponse (Cheng., 2019). Interestingly, somegenes showed highly tissue-specific expression. For exam- ple, fourgenes, including,,and, had high expression in the gills. Genesandshowed high expression levels in the gonad. Genes,were highly ex- pressed in the mantle. Genes,had higher expression in adductor muscle. In addition to a small part of genes like,,and, mostgenes were highly expressed in only one tissue.

    Fig.4 Synteny analyses between the Hsp70 genes of the C. ariakensis (C. ar), O. denselamellosa (O. de), and O. edu- lis (O. ed). Grey lines in the background indicated Syn- teny blocks among these genomes, while red lines high- light syntenic Hsp70 gene pairs.

    Fig.5 Expression pattern analysis of Hsp70 genes in four tissues of ovulating female O. denselamellosa based on TPM and TMM analyses. G, gill; X, gonad; MA, mantle; RM, muscle. The labels of Hsp70B2 genesare highlighted with green, the labels of Hspa12 genes are not highlighted and the labels of other types genes are highlighted with yellow. The color scale represents Z-score.

    4 Conclusions

    In summary, a genome-wide analysis ofgene fa- mily in 5 oyster species identified 401 genes including 59 in, 84 in, 83 in, 84 inand 88 in. The fewest num- ber ofgenes inis mainly due to the decrease in the number ofgenes, possibly ex- plaining whycannot tolerate high tem- perature. The gene structure and conserved motif investi- gation revealed that the conserved motifs and gene struc- tures ofgenes and other types ofwere different from that of, which may be due to performing necessary multiple physiological functions. Tran- scription profile analysis forgenes ofsupport that gills play an important role in re- sponding to multiple external challenges. In addition, syn- teny analysis ofgenes betweenanddemonstrated thatgenes inge- nome might have evolved from those of a common an-cestor with. Taken together, the informationobtained in this study lay the foundation for further invest- tigation of the evolution ofgenes and heat adaptability of.

    Acknowledgements

    This work was supported by grants from the National Key R&D Program of China (No. 2022YFD2400305), the China Agriculture Research System Project (No. CARS-49), and the Key R&DProject of Shandong Province (Nos. 2021ZLGX03, 2021LZGC027).

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., 1990. Basic local alignment search tool., 215 (3): 403-410, DOI: 10.1016/S0022-2836(05) 80360-2.

    Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S., 2015. The MEME Suite., 43 (W1): W39- W49, DOI: 10.1093/nar/gkv416.

    Buchfink, B., Xie, C., and Huson, D., 2015. Fast and sensitive protein alignment using DIAMOND., 12 (1): 59-60, DOI: 10.1038/nmeth.3176.

    Buroker, N. E., 1985. Evolutionary patterns in the family Ostrei- dae: Larviparity. Oviparity., 90 (3): 233-247, DOI: 10.1016/0022- 0981(85)90169-8.

    Casas, S. M., and La Peyre, J. F., 2020. Heat shock protein 70 levels and post-harvest survival of eastern oysters following sublethal heat shock in the laboratory or conditioning in the field., 25 (2): 369-378, DOI: 10.1007/ s12192-019-01056-1.

    Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y.,., 2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data., 13 (8): 1194-1202, DOI: 10.1016/j.molp.2020.06.009.

    Chen, L., Li, Q., Wang, Q., Kong, L., and Zheng, X., 2011. Tech- niques of artificial breeding of the oyster., 41 (3): 43-46 (in Chinese with English abstract).

    Cheng, D., Liu, H., Zhang, H., Soon, T. K., Ye, T., Li, S.,., 2019. Differential expressions ofgene between golden and brown noble scallopsunder heat stress and bacterial challenge., 94: 924- 933, DOI: 10.1016/j.fsi.2019.10.018.

    Cheng, J., Xun, X., Kong, Y., Wang, S., Yang, Z., Li, Y.,., 2016.gene expansions in the scallopand their expression regulation after exposure to the toxic dinoflagellate., 58: 266-273, DOI: 10.1016/j.fsi.2016.09.009.

    Dong, Z., Bai, Y., Liu, S., Yu, H., Kong, L., Du, S.,., 2023. Achromosome-level genome assembly ofprovides initial insights into its evolution., 115 (2): 110582, DOI: 10.1016/j.ygeno.2023.110582.

    Eddy, S. R., 1996. Hidden Markov models., 6 (3): 361-365, DOI: 10.1016/S0959-440X (96)80056-X.

    Edgar, R. C., 2004. MUSCLE: Multiple sequence alignment withhigh accuracy and high throughput., 32 (5): 1792-1797, DOI: 10.1093/nar/gkh340.

    Foighil, D. O., and Taylor, D. J., 2000. Evolution of parental careand ovulation behavior in oysters., 15 (2): 301-313, DOI: 10.1006/mpev.1999.0755.

    Fu, H., Jiao, Z., Li, Y., Tian, J., Ren, L., Zhang, F.,., 2021. Transient receptor potential (TRP) channels in the Pacific oys- ter (): Genome-wide identification and ex- pression profiling after heat stress betweenand., 22 (6): 3222, DOI: 10.3390/ijms22063222.

    Gomez-Chiarri, M., Warren, W., Guo, X., and Proestou, D., 2015. Developing tools for the study of molluscan immunity: The se- quencing of the genome of the eastern oyster,., 46 (1): 2-4, DOI: 10.1016/ j.fsi.2015.05.004.

    Han, J., Kim, H. J., Oh, S. Y., and Choi, Y. U., 2022. Reproductive characteristics of the flat oyster(Bival- via, Ostreidae) found on the southern coast of South Korea., 10: 1326, DOI: 10.3390/jmse10091326.

    Hu, B., Li, M., Yu, X., Xun, X., Lu, W., Li, X.,., 2019. Di- verse expression regulation ofgenes in scallops after exposure to toxicdinoflagellates., 234: 62-69, DOI: 10.1016/j.chemosphere.2019.06.034.

    Hu, Y. M., Li, Q., Liu, S. K., and Kong, L. F., 2020. Effects of acute temperature and salinity stress on the survival and im- mune indexes of Iwagaki oysters,., 27 (3): 286-294 (in Chinese with English abstract).

    Hu, Z., Song, H., Feng, J., Zhou, C., Yang, M, J., Shi, P.,., 2022. Massive heat shock protein 70 genes expansion and trans-criptional signatures uncover hard clam adaptations to heat and hypoxia., 9: 898669, DOI: 10. 3389/fmars.2022.898669.

    Insua, A., and Thiriot-Quievreux, C., 1991. The characterization of(Mollusca, Bivalvia) chromosomes: Karyotype, constitutive heterochromatin and nucleolus orga- nizer regions., 97 (4): 317-325, DOI: 10.1016/ 0044-8486(91)90324-z.

    Kim, D., Landmead, B., and Salzberg, S. L., 2015. HISAT: A fast spliced aligner with low memory requirements., 12 (4): 357-360, DOI: 10.1038/nmeth.3317.

    Kumar, S., Stecher, G., Suleski, M., and Hedges, S. B., 2017. Time tree: A resource for timelines, timetrees, and divergence times., 34 (7): 1812-1819, DOI: 10.1093/molbev/msx116.

    Li, X., Bai, Y., Dong, Z., Xu, C., Liu, S., Yu, H.,., 2023. Chro- mosome-level genome assembly of the European flat oyster () provides insights into its evolution and adap- tation.–, 45 (1): 101045, DOI: 10.1016/j.cbd. 2022.101045.

    Liao, Y., Smyth, G. K., and Shi, W., 2014. featureCounts: An ef- ficient general purpose program for assigning sequence reads to genomic features., 30 (7): 923-930, DOI: 10. 1093/bioinformatics/btt656.

    Liu, T., Pan, L., Cai, Y., and Miao, J., 2015. Molecular cloning and sequence analysis of heat shock proteins 70 () and 90 () and their expression analysis when exposed to benzo (a) pyrene in the clam., 555 (2): 108-118, DOI: 10.1016/j.gene.2014.10.051.

    Liu, X., Tang, S., Jia, G., Schnable, J. C., Su, H., Tang, C.,., 2016. The C-terminal motif of SiAGO1b is required for theregulation of growth, development and stress responses in fox- tail millet ((L.) P. Beauv)., 67 (11): 3237-3249, DOI: 10.1093/jxb/erw135.

    Metzger, D. C., Hemmer-Hansen, J., and Schulte, P. M., 2016. Conserved structure and expression ofparalogs in te- leost fishes., 18: 10-20, DOI: 10.1016/j.cbd.2016. 01.007.

    Nagata, T., Sameshima, M., Uchikawa, T., Osafune, N., and Ki- tano, T., 2017. Molecular cloning and expression of the heat shock protein 70 gene in the Kumamoto oyster., 83: 273-281, DOI: 10.1007/s12562- 017-1064-6.

    Nie, H., Liu, L., Huo, Z., Chen, P., Ding, J., Yang, F.,., 2017. Thegene expression responses to thermal and salinity stress in wild and cultivated Manila clam., 470: 149-156, DOI: 10.1016/j.aquaculture. 2016.12.016.

    Osorio, D., Rondon-Villarreal, P., and Torres, R., 2015. Peptides: A package for data mining of antimicrobial peptides., 7 (1): 4-14, DOI: 10.32614/RJ-2015-001.

    Peng, J., Li, Q., Xu, L., Wei, P., He, P., Zhang, X.,., 2020. Chromosome-level analysis ofge-nome reveals extensive duplication of immune-related genes in bivalves., 20 (4): 980-994, DOI: 10.1111/1755-0998.13157.

    Powell, D., Subramanian, S., Suwansaard, S., Zhao, M., O’Con- nor, W., Raftos, D.,., 2018. The genome of the oysteroffers insight into the environmental resilience of bi- valves., 25 (6): 655-665, DOI: 10.1093/dnares/ dsy032.

    Price, M. N., Dehal, P. S., and Arkin, A. P., 2009. FastTree: Com- puting large minimum evolution trees with profiles instead of a distance matrix., 26 (7): 1641-1650, DOI: 10.1093/molbev/msp077.

    Rosenzweig, R., Nillegoda, N. B., Mayer, M. P., and Bukau, B., 2019. The Hsp70 chaperone network., 20 (11): 665-680, DOI: 10.1038/s41580- 019-0133-3.

    Sleator, R. D., 2016. JCVI-syn3.0–A synthetic genome stripped bare., 7 (2): 53-56, DOI: 10.1080/21655979.2016. 1175847.

    Voorrips, R. E., 2002. MapChart: Software for the graphical pre- sentation of linkage maps and QTLs., 93 (1): 77-78, DOI: 10.1093/jhered/93.1.77.

    Wang, T., and Li, Q., 2017. Effects of salinity and temperature on growth and survival of juvenile of kumamoto oyster ()., 48 (2): 297-302 (in Chinese with English abstract).

    Wang, Y., Tang, H., Debarry, J. D., Tan, X., Li, J., Wang, X.,.,2012. MCScanX: A toolkit for detection and evolutionary ana- lysis of gene synteny and collinearity., 40 (7): e49, DOI: 10.1093/nar/gkr1293.

    Webb, J. K., Shine, R., and Christian, K. A., 2006. The adaptive significance of reptilian viviparity in the tropics: Testing the maternal manipulation hypothesis., 60 (1): 115-122, DOI: 10.1111/j.0014-3820.2006.tb01087.x.

    Wu, B., Chen, X., Yu, M., Ren, J., Hu, J., Shao, C.,., 2022. Chromosome-level genome and population genomic analysis provide insights into the evolution and environmental adapta- tion of Jinjiang oyster.,22 (4): 1529-1544, DOI: 10.1111/1755-0998. 13556.

    Xu, F., and Zhang, S., 2008.. Science Press, Beijing, 336pp (in Chinese).

    Yang, M. H., Bong, S. H., and Han, C. H., 2003. Growth and sur- vival rates of flat oyster larvae,, by con- dition of larvae cultivation., 19(2): 133-142.

    Yang, M. H., Kim, H. S., Lee, J. Y., and Han, C. H., 2001. Artifi- cial mass culture of flat oyster larvae,, and collection rates according to various spat collection methods., 17 (1): 35-44.

    Yu, H., Kong, L., and Li, Q., 2016. Complete mitochondrial ge- nome of(Bivalvia, Ostreidae)., 27 (1): 711-712, DOI: 10.3109/19401 736.2014.913154.

    Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, F.,., 2012. The oyster genome reveals stress adaptation and complexity of shell formation., 490 (7418): 49-54, DOI: 10.1038/ nature11413.

    (January 6, 2023;

    March 17, 2023;

    May 23, 2023)

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2023

    Tel: 0086-532-82031622

    E-mail: qili66@ouc.edu.cn

    (Edited by Qiu Yantao)

    搞女人的毛片| 91久久精品国产一区二区成人 | 成人av在线播放网站| 色尼玛亚洲综合影院| 日本熟妇午夜| 日韩欧美精品v在线| 成人特级av手机在线观看| 亚洲五月婷婷丁香| 高清在线国产一区| 国产精品国产高清国产av| 又粗又爽又猛毛片免费看| 中文字幕人妻丝袜一区二区| 18禁裸乳无遮挡免费网站照片| 欧美中文综合在线视频| 国语自产精品视频在线第100页| 97碰自拍视频| 亚洲中文av在线| 一本一本综合久久| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 国产男靠女视频免费网站| 国产午夜精品久久久久久| a在线观看视频网站| 日韩欧美在线二视频| 亚洲最大成人中文| 国内揄拍国产精品人妻在线| 国产精品久久视频播放| 成人亚洲精品av一区二区| 久久久久久久久中文| 国产高清视频在线播放一区| 90打野战视频偷拍视频| 国产亚洲精品久久久com| 一卡2卡三卡四卡精品乱码亚洲| 搞女人的毛片| 九九久久精品国产亚洲av麻豆 | 亚洲中文日韩欧美视频| 国产精品影院久久| 18禁美女被吸乳视频| 首页视频小说图片口味搜索| 又黄又爽又免费观看的视频| 他把我摸到了高潮在线观看| 母亲3免费完整高清在线观看| 少妇的丰满在线观看| 看黄色毛片网站| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 国产aⅴ精品一区二区三区波| 欧美日韩精品网址| 国产精品一及| 真人一进一出gif抽搐免费| 中文在线观看免费www的网站| 又紧又爽又黄一区二区| 天堂动漫精品| 国产成人aa在线观看| 脱女人内裤的视频| 精品人妻1区二区| 90打野战视频偷拍视频| 日本黄色片子视频| 欧美绝顶高潮抽搐喷水| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 最近最新中文字幕大全电影3| 免费av不卡在线播放| 亚洲片人在线观看| 亚洲五月婷婷丁香| 色综合婷婷激情| 午夜免费成人在线视频| а√天堂www在线а√下载| 91麻豆av在线| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 俺也久久电影网| 亚洲在线观看片| 动漫黄色视频在线观看| 欧美性猛交黑人性爽| 久久这里只有精品19| 成人精品一区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜人妻中文字幕| 99热这里只有是精品50| 波多野结衣高清无吗| 听说在线观看完整版免费高清| 国产成人一区二区三区免费视频网站| 成人高潮视频无遮挡免费网站| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 制服人妻中文乱码| 日本免费一区二区三区高清不卡| 精品国产乱码久久久久久男人| 女人被狂操c到高潮| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人精品中文字幕电影| 国产精品 国内视频| 欧美大码av| 999久久久精品免费观看国产| 免费高清视频大片| 亚洲人成伊人成综合网2020| 婷婷亚洲欧美| 99精品欧美一区二区三区四区| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 人人妻人人澡欧美一区二区| 国产精品久久久久久人妻精品电影| 99热这里只有精品一区 | 我要搜黄色片| 中文在线观看免费www的网站| 不卡一级毛片| 日本免费a在线| 精品日产1卡2卡| 网址你懂的国产日韩在线| 全区人妻精品视频| 久久久久久国产a免费观看| 免费在线观看成人毛片| 一个人看的www免费观看视频| 国产伦精品一区二区三区视频9 | 国产精品亚洲av一区麻豆| 久久久久国产精品人妻aⅴ院| 男女做爰动态图高潮gif福利片| 久久精品91无色码中文字幕| 欧美大码av| 三级国产精品欧美在线观看 | 超碰成人久久| 香蕉av资源在线| 欧美乱妇无乱码| 麻豆一二三区av精品| 午夜免费成人在线视频| 免费看十八禁软件| 99久久99久久久精品蜜桃| 美女大奶头视频| 嫩草影院入口| 中文字幕av在线有码专区| 亚洲美女黄片视频| 欧美成狂野欧美在线观看| 美女被艹到高潮喷水动态| 人人妻人人澡欧美一区二区| 天天躁日日操中文字幕| 午夜日韩欧美国产| 亚洲国产看品久久| 欧美日韩福利视频一区二区| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 在线观看免费午夜福利视频| 色老头精品视频在线观看| 国产精品,欧美在线| 久久久色成人| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 精品久久久久久成人av| 久久久久久人人人人人| 欧美激情在线99| 日韩欧美国产在线观看| 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看 | 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 国产麻豆成人av免费视频| 亚洲专区字幕在线| 天堂动漫精品| 成人三级做爰电影| 精品电影一区二区在线| 精品久久久久久久末码| 小蜜桃在线观看免费完整版高清| 国产主播在线观看一区二区| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 天堂动漫精品| 一卡2卡三卡四卡精品乱码亚洲| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 国产又黄又爽又无遮挡在线| 神马国产精品三级电影在线观看| a在线观看视频网站| 少妇的逼水好多| 巨乳人妻的诱惑在线观看| 午夜免费激情av| 麻豆一二三区av精品| 美女午夜性视频免费| 男人的好看免费观看在线视频| 免费一级毛片在线播放高清视频| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 曰老女人黄片| 成在线人永久免费视频| 国产单亲对白刺激| 国内精品一区二区在线观看| 国产亚洲欧美在线一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲av成人一区二区三| 97碰自拍视频| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 禁无遮挡网站| 一进一出抽搐动态| 亚洲中文日韩欧美视频| 欧美在线黄色| 一边摸一边抽搐一进一小说| av黄色大香蕉| 亚洲自偷自拍图片 自拍| 无遮挡黄片免费观看| 亚洲国产欧美人成| 美女 人体艺术 gogo| 国产成人一区二区三区免费视频网站| 精品久久久久久久久久久久久| 淫妇啪啪啪对白视频| 一个人看视频在线观看www免费 | 亚洲专区中文字幕在线| 麻豆国产97在线/欧美| 青草久久国产| xxx96com| 国内精品一区二区在线观看| 免费在线观看影片大全网站| 免费高清视频大片| 免费观看的影片在线观看| 国产精品久久电影中文字幕| 脱女人内裤的视频| 亚洲成人免费电影在线观看| 亚洲片人在线观看| 黄色视频,在线免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 小说图片视频综合网站| 男人舔女人下体高潮全视频| 欧美在线一区亚洲| 婷婷丁香在线五月| www日本在线高清视频| 色在线成人网| 色综合站精品国产| 桃红色精品国产亚洲av| 国产69精品久久久久777片 | 女人被狂操c到高潮| 精品国产超薄肉色丝袜足j| 搡老妇女老女人老熟妇| 在线国产一区二区在线| АⅤ资源中文在线天堂| 国产av一区在线观看免费| 此物有八面人人有两片| 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 99热只有精品国产| 亚洲国产精品久久男人天堂| 男女午夜视频在线观看| 熟女人妻精品中文字幕| 国产99白浆流出| cao死你这个sao货| 两性午夜刺激爽爽歪歪视频在线观看| 琪琪午夜伦伦电影理论片6080| 丰满人妻熟妇乱又伦精品不卡| 午夜免费成人在线视频| 操出白浆在线播放| 不卡一级毛片| 黄片大片在线免费观看| 在线a可以看的网站| 无遮挡黄片免费观看| cao死你这个sao货| 日本熟妇午夜| 91av网站免费观看| 丁香六月欧美| 久久精品影院6| svipshipincom国产片| 日本与韩国留学比较| 最近在线观看免费完整版| 国产精品国产高清国产av| 精品久久久久久久毛片微露脸| 欧美大码av| 中文字幕人成人乱码亚洲影| 国产精品亚洲av一区麻豆| 欧美一区二区精品小视频在线| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影| 免费看美女性在线毛片视频| 亚洲av成人一区二区三| 视频区欧美日本亚洲| 国产 一区 欧美 日韩| 日韩 欧美 亚洲 中文字幕| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 亚洲七黄色美女视频| 少妇的逼水好多| 国产成年人精品一区二区| 精品99又大又爽又粗少妇毛片 | 国产精品 欧美亚洲| 亚洲美女黄片视频| 两人在一起打扑克的视频| 国产一区二区三区视频了| 日本 欧美在线| 一本综合久久免费| 久久久久久久午夜电影| 免费在线观看日本一区| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 18禁国产床啪视频网站| 久久久久精品国产欧美久久久| 午夜影院日韩av| 可以在线观看的亚洲视频| 亚洲中文字幕日韩| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 亚洲狠狠婷婷综合久久图片| 少妇的逼水好多| 一二三四社区在线视频社区8| av黄色大香蕉| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 老熟妇仑乱视频hdxx| 免费观看的影片在线观看| av天堂中文字幕网| 精品久久久久久久末码| 国产精品国产高清国产av| 我要搜黄色片| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| 黑人欧美特级aaaaaa片| 深夜精品福利| 久久热在线av| 久久中文看片网| 国产精品永久免费网站| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| 男女下面进入的视频免费午夜| www国产在线视频色| 久久精品人妻少妇| x7x7x7水蜜桃| 男人舔女人的私密视频| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文日韩欧美视频| 90打野战视频偷拍视频| 91在线观看av| 国产精品av久久久久免费| 国产伦精品一区二区三区四那| 国产精品一区二区三区四区久久| 91老司机精品| 国产欧美日韩精品亚洲av| 国产精品一区二区免费欧美| 97超视频在线观看视频| 精品一区二区三区av网在线观看| 亚洲av免费在线观看| 国产精品 欧美亚洲| 男女下面进入的视频免费午夜| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 国产美女午夜福利| 精品电影一区二区在线| 久久这里只有精品19| 成人国产一区最新在线观看| 亚洲欧美激情综合另类| 国产av在哪里看| 一进一出抽搐动态| 亚洲真实伦在线观看| 可以在线观看的亚洲视频| 一进一出抽搐gif免费好疼| 国产亚洲av嫩草精品影院| 熟女电影av网| 国产精华一区二区三区| 国产99白浆流出| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 色老头精品视频在线观看| 日日干狠狠操夜夜爽| 亚洲一区二区三区不卡视频| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 51午夜福利影视在线观看| 日韩国内少妇激情av| 国产黄色小视频在线观看| 国产精品亚洲美女久久久| 久久中文字幕一级| 免费在线观看视频国产中文字幕亚洲| 一个人免费在线观看电影 | 日韩高清综合在线| 成年女人看的毛片在线观看| 一级作爱视频免费观看| 久久久久亚洲av毛片大全| 午夜激情福利司机影院| 国产乱人视频| 美女高潮的动态| 久久国产乱子伦精品免费另类| 国产亚洲欧美98| 国产av在哪里看| 两人在一起打扑克的视频| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 99久久精品热视频| 淫妇啪啪啪对白视频| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 久久久水蜜桃国产精品网| 天堂av国产一区二区熟女人妻| 九色成人免费人妻av| 国产激情偷乱视频一区二区| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 亚洲一区二区三区色噜噜| 久久午夜亚洲精品久久| 日韩欧美 国产精品| bbb黄色大片| 18禁观看日本| e午夜精品久久久久久久| 在线视频色国产色| 国产精品 欧美亚洲| 久久精品国产清高在天天线| 淫妇啪啪啪对白视频| 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 少妇裸体淫交视频免费看高清| 欧美乱色亚洲激情| 国产精品 国内视频| 九九在线视频观看精品| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站 | 香蕉av资源在线| 精品一区二区三区av网在线观看| 国产亚洲欧美在线一区二区| 欧美乱色亚洲激情| 最近最新免费中文字幕在线| 国产99白浆流出| 国产精品美女特级片免费视频播放器 | 免费看十八禁软件| 1000部很黄的大片| 久久这里只有精品19| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品永久免费网站| 长腿黑丝高跟| 搡老熟女国产l中国老女人| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 悠悠久久av| 免费在线观看成人毛片| 男人舔女人下体高潮全视频| 男女那种视频在线观看| 成年女人永久免费观看视频| 亚洲专区字幕在线| 18美女黄网站色大片免费观看| 亚洲电影在线观看av| 亚洲人成电影免费在线| 亚洲成人精品中文字幕电影| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久久黄片| 天堂av国产一区二区熟女人妻| 亚洲九九香蕉| 国产乱人伦免费视频| 国产精华一区二区三区| 久久久久亚洲av毛片大全| 久久久久国产一级毛片高清牌| 九九久久精品国产亚洲av麻豆 | 首页视频小说图片口味搜索| 国产成人系列免费观看| 天堂影院成人在线观看| 亚洲国产欧美人成| 不卡av一区二区三区| 麻豆av在线久日| 悠悠久久av| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| 国产亚洲精品久久久久久毛片| 欧美在线一区亚洲| 国产亚洲精品一区二区www| 亚洲av美国av| 99久久综合精品五月天人人| 最好的美女福利视频网| 成人性生交大片免费视频hd| 精品国产超薄肉色丝袜足j| 国产精品久久视频播放| 日韩国内少妇激情av| 淫秽高清视频在线观看| 国内精品久久久久精免费| 午夜免费观看网址| 国产成人啪精品午夜网站| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 久久久成人免费电影| 欧美日韩亚洲国产一区二区在线观看| 久久人人精品亚洲av| 欧美日韩福利视频一区二区| 亚洲 欧美 日韩 在线 免费| 亚洲七黄色美女视频| 好看av亚洲va欧美ⅴa在| 变态另类丝袜制服| 久久久久久久久免费视频了| 午夜免费观看网址| 国产精品 欧美亚洲| 国产精品久久久人人做人人爽| 亚洲国产精品久久男人天堂| 国产伦精品一区二区三区视频9 | 午夜久久久久精精品| 亚洲精品粉嫩美女一区| 757午夜福利合集在线观看| 禁无遮挡网站| 村上凉子中文字幕在线| 制服人妻中文乱码| 极品教师在线免费播放| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 色在线成人网| 国产在线精品亚洲第一网站| 天天添夜夜摸| 99视频精品全部免费 在线 | 一进一出好大好爽视频| 久久久久久久久中文| 免费搜索国产男女视频| 国产爱豆传媒在线观看| 欧美另类亚洲清纯唯美| 亚洲精品国产精品久久久不卡| 亚洲va日本ⅴa欧美va伊人久久| 日本一二三区视频观看| 最好的美女福利视频网| 国产又黄又爽又无遮挡在线| 99国产综合亚洲精品| 在线十欧美十亚洲十日本专区| 毛片女人毛片| 91av网一区二区| 亚洲在线观看片| 欧美日韩乱码在线| 亚洲熟女毛片儿| 桃色一区二区三区在线观看| 久久中文看片网| 中文资源天堂在线| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久亚洲av鲁大| 午夜成年电影在线免费观看| 欧美日韩中文字幕国产精品一区二区三区| 国产乱人伦免费视频| 国产成人aa在线观看| 一区福利在线观看| 成人精品一区二区免费| 欧美xxxx黑人xx丫x性爽| 久久精品人妻少妇| www.熟女人妻精品国产| 一个人免费在线观看的高清视频| 精品福利观看| 99热6这里只有精品| 九九久久精品国产亚洲av麻豆 | www.999成人在线观看| 欧美日韩国产亚洲二区| 日韩高清综合在线| 亚洲乱码一区二区免费版| 九色国产91popny在线| 我要搜黄色片| 人妻夜夜爽99麻豆av| 成人三级做爰电影| 成年女人永久免费观看视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜激情欧美在线| 色综合亚洲欧美另类图片| 黑人操中国人逼视频| 性色avwww在线观看| 神马国产精品三级电影在线观看| 一本精品99久久精品77| 制服丝袜大香蕉在线| 亚洲一区二区三区色噜噜| 精品午夜福利视频在线观看一区| 亚洲精品粉嫩美女一区| 国产精品99久久99久久久不卡| 99热6这里只有精品| 宅男免费午夜| 天天一区二区日本电影三级| 在线观看日韩欧美| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区免费| 99riav亚洲国产免费| 久久国产乱子伦精品免费另类| 夜夜躁狠狠躁天天躁| 亚洲av熟女| 成人国产一区最新在线观看| 一本精品99久久精品77| 性色av乱码一区二区三区2| av在线蜜桃| 色综合欧美亚洲国产小说| 国产精品日韩av在线免费观看| 又紧又爽又黄一区二区| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| h日本视频在线播放| 在线看三级毛片| 亚洲精品色激情综合| 搞女人的毛片| 成人av在线播放网站| 国产精品久久久人人做人人爽| 国产午夜精品论理片| 欧美色视频一区免费| av欧美777| 中文字幕高清在线视频| 这个男人来自地球电影免费观看| 少妇人妻一区二区三区视频| 国产欧美日韩精品一区二区| 天天躁日日操中文字幕| 久久人人精品亚洲av| 99精品在免费线老司机午夜| 夜夜爽天天搞| 男人舔奶头视频| 国产高清三级在线| 99国产精品一区二区蜜桃av| 亚洲精品在线观看二区| 高潮久久久久久久久久久不卡| 男女视频在线观看网站免费| 久久久久亚洲av毛片大全| 亚洲人成网站高清观看| 免费搜索国产男女视频| 国产野战对白在线观看| 日日夜夜操网爽| 最近最新免费中文字幕在线| 精品久久久久久,| 免费观看精品视频网站| 精品久久久久久久末码| 日韩欧美精品v在线| 免费一级毛片在线播放高清视频| 十八禁人妻一区二区| 色噜噜av男人的天堂激情| 国产亚洲精品av在线| 麻豆国产av国片精品|