• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on dual-command operation path optimization based on Flying-V warehouse layout①

    2023-12-15 10:43:28LIUJiansheng劉建勝YUANBinYANGZanZHONGRAY
    High Technology Letters 2023年4期

    LIU Jiansheng(劉建勝),YUAN Bin,YANG Zan②,ZHONG RAY Y

    (?School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R.China)

    (?Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Hong Kong 999077, P.R.China)

    Abstract

    Key words: Flying-V, access collaboration, path optimization, dynamic decoding, genetic algorithm

    0 Introduction

    Logistics optimization in warehouse management can effectively reduce the operating costs for enterprises.Among all logistics processes, access operation is the most labor-intensive and costly, with costs accounting for up to 55% of the total operating expenses of a warehouse[1].Previous studies have indicated that optimizing access operation is crucial for improving warehousing efficiency[2].The time spent on access operation is a key indicator for measuring operational efficiency, and it is closely associated with the selection of access operation path.Therefore, reducing the travel distance of access operation is capable of enhancing the efficiency of warehousing management operations.

    In recent years, researchers have studied access operation paths in warehouse by taking into account different warehouse layouts and order distributions under the assistance of heuristic algorithms such as genetic algorithms[3-4], ant colony algorithms[5-8], and particle swarm algorithms[9-12].To reduce the access cost of goods, Ref.[13] proposed the Flying-V layout mode as an innovative warehouse layout, proving that this non-traditional layout can shorten travel distance by 10% - 20% compared with traditional layout in terms of picking efficiency.However, most current studies focus on single-command operation mode[14-19]by maximizing their respective operational efficiency without considering the association of access operations,where only deposit or picking operations are conducted during a single operation trip.Although this single-command operation mode is simple and easy to execute, it leads to problems such as idle trips and resource waste, indicating the need for improving overall operation efficiency.Therefore, this paper focuses on optimizing the dual-command operation path of Flying-V layout warehouse.

    1 Problem description and mathematical model

    1.1 Problem description

    In this study, a batch of ordered goods required depositing while another batch required picking, and the objective is to complete the order operations with the shortest total operation path.The warehouse layout adopted Flying-V type layout, and the plane layout of the entire warehouse is shown in Fig.1.The P&D(pick and deposit) point is the entrance and exit of the warehouse.To facilitate the study of warehouse management path optimization, certain assumptions have been made.

    (1) During the operation, the freight vehicle has a load limit ofQ,allowing for multiple operations to be carried out.

    (2) It is assumed that walking distance on both the left and right sides of the passage are negligible.

    (3) In addition, turning back and walking in the passage is permitted.

    (4) The demand for goods in every order is less than that of the freight vehicle’s load capacity, and the freight vehicle can only access each location once.

    Fig.1 Flying-V warehouse layout

    1.2 Parameter design

    Fig.1 shows the picking area number and cargo space number.The cargo space number ranges from 1 to 260, from left to right and bottom to top, with the P&D point number being 0.The warehouse layout is divided into four picking areas, starting clockwise from the lower left corner of the warehouse, and is divided into Zone 1, Zone 2, Zone 3 and Zone 4.Regardless of the height of the cargo space, the length and width of the shelf arel, the width of the picking channel isl, and the width of the diagonal main channel is 2l.

    To represent the corresponding cargo space number, a virtual coordinate system is utilized in the plane layout.The array {k,x,y,z} is employed, wherek(k= 1,2,3,4) indicates the cargo area number,x(x=1,2,3,...,11) represents the number of channels,y(y= 1,2,3,...,ymax) depicts the number of rows of shelves starting from the diagonal main channel, andz(z= 1,2) indicates the left and right sides of the channel; specifically,z= 1 denotes the left side of the channel, andz= 2 represents the right side of the channel.For example, {2,5,10,1} represents Zone 2, the 5 th channel, the 10 th space from the diagonal main channel upward, the shelf on the left, i.e., cargo space number 102 in Fig.1.

    1.3 Distance matrix calculation

    To optimize the distance to complete the order access operation, it is necessary to calculate the distances between any two points, including the distance between the P&D point and the cargo space point, as well as the distance between two cargo space points.

    (1) Distance between the P&D point and the cargo space pointi.

    1) When the cargo space is located in Zone 1 (the same for Zone 4), that is,ki= 1 :

    2) When the cargo space point is located in Zone 2 (the same for Zone 3), that is,ki= 2 :

    (2) Distance between any two cargo space points:

    1) When two cargo space points are in Zone 1 (the same for Zone 4),ki=kj= 1 :

    2) When two cargo space points are in Zone 2 (the same for Zone 3),ki=kj= 2 :

    3) When two cargo space points are located in Zone 1 and Zone 2 respectively (the same for Zone 3 and Zone 4),ki= 1,kj= 2 :

    4) When two cargo space points are located in Zone 1 and Zone 3, respectively (the same for Zone 2 and Zone 4),ki= 1,kj= 3 :

    5) When two cargo space points are located in Zone 1 and Zone 4, respectively,ki= 1,kj= 4 :

    6) When two cargo space points are located in Zone 2 and Zone 3, respectively,ki= 2,kj= 3 :

    1.4 Modeling

    The goal of optimization is to minimize the distance to complete the order access process while returning to the entrance for multiple operations.The mathematical model for the path problem can be designed as follows.

    Objective function is

    Constraints:

    Decision variables:

    where,

    S: total traveling distance when all order operations are completed;

    i,j∈Ω: all cargo spaces to be picked and the starting point; andi= 0 indicates the P&D point;

    dij: the shortest distance between cargo spaceiand cargo spacej, calculated according to Eqs (1)–(8);

    Qi: load when starting from pointi;

    Q0: initial load from P&D point;

    Q: maximum load;

    qi: required weight at cargo space pointi;

    The objective Eq.(9) seeks to minimize the distance required to complete all orders; Eq.(10) and Eq.(11) guarantee that each picking point has one and only one previous and subsequent task; Eq.(12)defines the range of values for the decision variables;Eq.(13) and Eq.(14) prohibit overloading during the operation.

    2 Algorithm solution

    To solve the aforementioned model,a dynamic decoding genetic algorithm is implemented.Algorithm 1 provides the corresponding pseudo-code, and the corresponding elaboration for the following steps are shown in subsections 2.1 -2.6.

    Algorithm 1 The dynamic decoding-based genetic algorithm Input:Population size:N, Crossover probability: Pc,Mutation probability: Pm, Number of orders:Num_orders, Required weight at each point:q, Operation type:label, Maximum load:Q Output: Optimal individual:xbest 1.Initialize population with random candidate solutions, shown in subsection 2.1.2.Decode (using Algorithm 2) and evaluate each candidate solution shown in subsection 2.2.3.g = 0 4.While terminate condition is not satisfied do 5.Select parents shown in subsection 2.3.6.Crossover operation shown in subsection 2.4.7.Mutation operation shown in subsection 2.5.8.Decode (using Algorithm 2) and evaluate new candidate solution shown in subsection 2.2.9.Select individuals for the next generation shown in subsection 2.3.10.g = g +1 11.End while

    2.1 Initialization

    To initiate the optimization process, the value for the population sizeN, cross probabilityPc and mutation probabilityPm are defined.The chromosome code is randomly generated as 1×No,whereNo refers to the order quantity.This process is repeatedNtimes to generate anN×No population.

    2.2 Decoding

    The natural number code is used, with numbers ranging from 1 toNo and 0 for the P&D point number.The sequence of codes indicate the access sequence of the cargo space points.

    If there is no load limit, the problem could be simplified into a standard TSP problem, which only requires visiting each cargo space point in sequence and returning to the starting P&D point without the need for additional decoding.However, due to the load limit, it is necessary to go back and forth to the starting point during the access operation.Therefore,0 is inserted into the code sequence and the load is dynamically calculated to determine the position where 0 is inserted.The dynamic decoding steps are as follows.

    (1)Considering the limit state, at a certain time during the access operation, all goods ordered in all cycles are on the freight vehicle and are decoded according to the load limit of the freight vehicle.If the freight vehicle carrying 1-iorders is not overweight,the first cycle of decoding is(0,p1,p2,...,pi,0).

    (2)Cargo space pointi+ 1 is added to the decoding cycle to simulate the load of the previousi+1 cargo space points.The order weight to be warehoused is taken as the initial load to simulate the access operation of each cargo space point and calculate the load of each cargo space point.If a middle point is overweight, it means that the decoding fails, and the first decoding cycle is still (0,p1,p2,...,pi,0).If no overweight occurs during the intermediate process, it means that the decoding is successful, and the decoding is(0,p1,p2,...,pi,pi+1,0).Then cargo space pointi+2 is added to the decoding cycle, and the above steps are repeated until pointi+nbecomes overweight in the simulation process.At this point, the decoding is considered as failure, and the next cycle of decoding starts.

    (3)Steps (1) and (2) are repeated until all order points are decoded successfully.

    Algorithm 2 presents the process of dynamic decoding.

    Algorithm 2 The dynamic decoding algorithm Input:Individual:x, Number of orders:Num_orders,Required weight at each point: q, Operation type:label, Maximum load:Q Output: Decoded individual:x_d 1.For i =1 to Num_orders 2.Calculate the initial load of the first i orders Q0.3.x_d =0 4.For j = 1 to i 5.x_d = [x_d,x(i)]6.If label(j) = = 1 7.Qi = Qi-1 + q(j)8.Else 9.Qi = Qi-1 –q(j)10.End if 11.If Qi < = Q 12.Continue 13.Else 14.x_d = [x_d,x(i -1)]15.save decode fragment x_d 16.break 17.End if 18.End for 19.End for 20.Restores the decoded fragment to a one-dimensional array x_d

    2.3 Selection operation

    The fitness value is the value of the objective function.To optimize the population and improve the fitness of individuals, the principles of ‘survival of the fittest’ in nature are followed.Inspired by the replication operation in bacterial foraging algorithms, half of the individuals with poor fitness value are directly eliminated, while the other half individuals with good fitness values are copied.To prevent the subsequent crossover and mutation operations from degrading the individuals with the best fitness value, an elite retention strategy is adopted.This strategy ensured that the fittest individuals are preserved in the population and not lost during the optimization process.

    2.4 Crossover operation

    To increase the diversity of the population and improve the global search ability, double-point crossover is adopted.This allows the same chromosome crossover operation to generate new chromosomes, which further enhances the optimization process.In double-point crossover, two crossing points are randomly selected on the two parent chromosomes.The chromosome between the two points is copied to the corresponding chromosome of the other parent, and the previous duplicated code is removed.This process increased the diversity of the population and allowed for a more efficient search for optimal solutions.

    2.5 Mutation operation

    The mutation operation uses double-point exchange mutation, which further increases the diversity of the population.In this operation, two point are randomly generated in the chromosome.The codes of the two points are then exchanged to complete the mutation operation.This approach allowes for the exploration of new solutions and prevents the population from getting trapped in a local optimum.By introducing random changes to the chromosomes, the algorithm is able to search for more optimal solutions across the solution space.

    3 Simulation experiment

    Experimental environment: Windows 10 operating system, Intel (R) Core (TM) i5-10400 CPU @2.9 GHz processor, 32.0 GB RAM, developed with Matlab R2018a.

    To demonstrate the effectiveness of the proposed algorithm, a randomized example with 20 orders and their corresponding demands are created, which is shown in Table 1.The cargo space number is designed according to the model parameters, and the maximum load (Q) of the freight vehicle is set to 20 kg.For example, the second order requires picking 4 kg of goods from the No.32 cargo space.To ensure a sufficient population size to 200, which is 10 times the number of orders, set the evolution times to 500.The selection of crossover and mutation probability is determined through experiments.An orthogonal table is used to select the crossover probability ranging from 0.1 to 0.9 with an interval of 0.1 and the variation probability from 0.01 to 0.1 with an interval of 0.01.The optimal values are obtained by changing the parameters and running the process 20 times.Calculate the average value and find that the optimal crossover probability is 0.8,and the optimal mutation probability is 0.1.

    The reason for selecting a large probability of crossover and mutation is analyzed.Since the replication is used for selection, the average fitness value of the population, i.e., the objective value, would decrease rapidly, but at the same time, the diversity of the population and the global search ability decrease rapidly.Therefore, selecting a large probability of crossover and mutation can effectively increase the diversity of the population and the global search ability,leading to better optimization results.

    Table 1 Order demand

    Three different access operation schemes are adopted, and genetic algorithms are used to solve the optimal path.

    Mode 1: separated deposit and picking operations, with the deposit order operation and picking order operation conducted separately.The shortest operation distance calculated is 277.55.

    Mode 2: ‘deposit first and then pick’ operation.After all the goods on the freight vehicle are deposited,the freight vehicle does not return to the entrance and exit but continues with the picking operation.The shortest operation distance calculated is 234.68.

    Mode 3: the deposit and picking operations are completed simultaneously in an access collaboration operation.The shortest operation distance calculated is 190.40.

    Calculation results are presented in Table 2 and Figs 2 -4.

    Table 2 Optimization results of three different modes

    Fig.2 Optimization path of Mode 1

    Fig.3 Optimization path of Mode 2

    Note: in the table, the freight vehicle follows the path 0→34→22→127→0, starting from the entrance and carrying 13 kg of cargo.When arriving at cargo space No.34, 5 kg of cargo is deposited, and when reaching cargo space No.22, 2 kg of cargo is deposited.Finally,6 kg of cargo is deposited in cargo space No.127 before returning to the entrance and exit to load cargo.In the figures, the dotted line indicates picking cargo for stock out, while the solid line indicates depositing of cargo.

    The calculation results, Table 2, and the simulation path diagrams show that all three modes are operated with maximum load to reduce trips to and from the entrance and exit and shorten the operation path.Mode 1 has the longest path, while Mode 2 is slightly shorter with some optimization.Mode 3 has the shortest path,which is 31.4% shorter than Mode 1 and 18.8% shorter than Mode 2.The reason is that Mode 1 has noload when travelling to and from the entrance and exit.After deposit, it returns to the entrance and exit without any load, and when picking the cargo, it also goes to the cargo spaces with no load.Although Mode 2 can avoid no-load at the entrance and exit, it is not optimized as a whole.Mode 3 is optimized as a whole while avoiding no-load, resulting in the most optimal outcome.

    Fig.4 Optimization path of Mode 3

    To prove the effectiveness of the algorithm for access cooperative operation, numerous experiments have been conducted.The orders between 20 and 100 are randomly generated for calculation.For each example of different order quantity, the calculation is repeated 100 times, and the average value is calculated, as shown in Table 3 and Fig.5.The experimental results show that in the non-traditional Flying-V warehouse layout mode,the operation in Mode 3 can be shortened by an average of 25% – 35% compared with the operation path in Mode 1,and 13%–23% on average compared with the operation path in Mode 2.With an increase in order size, the optimization effect of Mode 3 becomes better.

    4 Conclusion

    This paper establishes a Flying-V layout warehouse path optimization model for dual-command operation path optimization of Flying-V layout warehouse management and proposes a dynamic decoding genetic algorithm.The simulation optimization experiment is conducted by randomly generating orders,and the optimization paths of three solutions, namely, separated operation of deposit and picking, ‘deposit first and then pick’ operation, and access collaboration operation, are calculated.The experimental results show that the access collaboration of dual-command operation can effectively reduce no-load, shorten the path,and improve efficiency.

    Table 3 The average of 20 independent runs of three modes for different number of orders

    Fig.5 Average optimization results of three modes for different number of orders

    国产成人欧美| 天堂中文最新版在线下载| 久久久久久人人人人人| 老熟妇仑乱视频hdxx| 欧美亚洲日本最大视频资源| 亚洲中文字幕日韩| 91在线观看av| 老司机深夜福利视频在线观看| 亚洲欧美一区二区三区久久| 黑人欧美特级aaaaaa片| 在线观看日韩欧美| 两人在一起打扑克的视频| 少妇裸体淫交视频免费看高清 | 国内久久婷婷六月综合欲色啪| 精品熟女少妇八av免费久了| 嫁个100分男人电影在线观看| 69av精品久久久久久| 日韩欧美一区视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产高清视频在线播放一区| 激情在线观看视频在线高清| 亚洲男人的天堂狠狠| 美女 人体艺术 gogo| 亚洲精华国产精华精| 久久久精品欧美日韩精品| 亚洲精品美女久久av网站| 久久欧美精品欧美久久欧美| 欧美成人午夜精品| 伊人久久大香线蕉亚洲五| 久久精品91蜜桃| 亚洲成人久久性| 中文亚洲av片在线观看爽| 91在线观看av| 美女国产高潮福利片在线看| 欧美精品亚洲一区二区| 亚洲成人免费电影在线观看| 久久婷婷成人综合色麻豆| 国产精品一区二区精品视频观看| 国产无遮挡羞羞视频在线观看| 黄网站色视频无遮挡免费观看| 三上悠亚av全集在线观看| 国产精品98久久久久久宅男小说| 老司机亚洲免费影院| 色老头精品视频在线观看| 少妇 在线观看| 亚洲成人久久性| www.自偷自拍.com| 亚洲欧美日韩无卡精品| 久久人人精品亚洲av| 欧美黑人精品巨大| 成人免费观看视频高清| 满18在线观看网站| 欧美日韩福利视频一区二区| 操美女的视频在线观看| 成人三级做爰电影| 免费一级毛片在线播放高清视频 | 黄色a级毛片大全视频| 亚洲在线自拍视频| 国产精品野战在线观看 | 国产一区二区三区在线臀色熟女 | 可以在线观看毛片的网站| 丁香六月欧美| 中文字幕精品免费在线观看视频| 一级毛片女人18水好多| 国产亚洲精品综合一区在线观看 | 丝袜美足系列| 欧美人与性动交α欧美软件| 久久香蕉精品热| 波多野结衣av一区二区av| 亚洲,欧美精品.| 久久久水蜜桃国产精品网| 久久精品国产亚洲av香蕉五月| 久热这里只有精品99| 国产真人三级小视频在线观看| 精品人妻在线不人妻| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 日本黄色视频三级网站网址| 少妇被粗大的猛进出69影院| 亚洲一区二区三区欧美精品| 伦理电影免费视频| 一二三四在线观看免费中文在| 亚洲国产看品久久| 精品免费久久久久久久清纯| 亚洲av第一区精品v没综合| 亚洲av成人av| 黄色视频,在线免费观看| 久久中文字幕人妻熟女| 亚洲九九香蕉| 一区二区三区精品91| 色综合欧美亚洲国产小说| 免费在线观看日本一区| 久久精品国产综合久久久| 九色亚洲精品在线播放| 亚洲国产精品合色在线| 亚洲精品成人av观看孕妇| 欧美国产精品va在线观看不卡| 每晚都被弄得嗷嗷叫到高潮| 伊人久久大香线蕉亚洲五| 午夜免费观看网址| 精品一品国产午夜福利视频| 国产午夜精品久久久久久| 亚洲精品一二三| 性色av乱码一区二区三区2| 91国产中文字幕| 最新美女视频免费是黄的| 麻豆一二三区av精品| 国产成人精品久久二区二区免费| 757午夜福利合集在线观看| av免费在线观看网站| 热re99久久精品国产66热6| 精品久久久久久,| 亚洲片人在线观看| 国产黄a三级三级三级人| 精品久久久久久久毛片微露脸| 国产一区二区在线av高清观看| 99在线人妻在线中文字幕| 高清黄色对白视频在线免费看| 久久久国产成人精品二区 | 精品福利永久在线观看| 最新美女视频免费是黄的| 夜夜看夜夜爽夜夜摸 | 国产色视频综合| av国产精品久久久久影院| 三上悠亚av全集在线观看| 亚洲av日韩精品久久久久久密| 人人妻人人澡人人看| 国产亚洲精品综合一区在线观看 | 欧美另类亚洲清纯唯美| 久久国产精品影院| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品999在线| 亚洲激情在线av| 男女之事视频高清在线观看| 大陆偷拍与自拍| 免费搜索国产男女视频| 亚洲av日韩精品久久久久久密| 叶爱在线成人免费视频播放| cao死你这个sao货| 精品日产1卡2卡| 真人一进一出gif抽搐免费| 精品久久久久久,| 国产av精品麻豆| 国产av一区二区精品久久| 精品乱码久久久久久99久播| 亚洲五月天丁香| 两个人看的免费小视频| 国产精品乱码一区二三区的特点 | 99精品在免费线老司机午夜| 老司机在亚洲福利影院| 国产亚洲精品第一综合不卡| 露出奶头的视频| 97超级碰碰碰精品色视频在线观看| 美女扒开内裤让男人捅视频| 亚洲av片天天在线观看| 黄色 视频免费看| 久久精品国产清高在天天线| 久久人妻熟女aⅴ| 香蕉国产在线看| 天堂影院成人在线观看| 一本大道久久a久久精品| 国产高清视频在线播放一区| 长腿黑丝高跟| 超色免费av| 欧美久久黑人一区二区| 亚洲一区中文字幕在线| 久久久久久人人人人人| 亚洲成人免费av在线播放| 亚洲久久久国产精品| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频| 国产熟女xx| 亚洲av成人不卡在线观看播放网| 在线永久观看黄色视频| 国产亚洲精品久久久久5区| 别揉我奶头~嗯~啊~动态视频| 成人三级做爰电影| 国产熟女xx| 日本五十路高清| 久久久久久久午夜电影 | 亚洲一区二区三区不卡视频| 欧美亚洲日本最大视频资源| 日韩 欧美 亚洲 中文字幕| videosex国产| 国产熟女午夜一区二区三区| svipshipincom国产片| 久久这里只有精品19| 黄片播放在线免费| 在线观看66精品国产| 午夜影院日韩av| 亚洲精品国产精品久久久不卡| 人成视频在线观看免费观看| 日韩有码中文字幕| 中文字幕最新亚洲高清| 美国免费a级毛片| 婷婷精品国产亚洲av在线| 99热只有精品国产| 国产精品久久视频播放| 一区在线观看完整版| 色尼玛亚洲综合影院| 精品国内亚洲2022精品成人| 老司机在亚洲福利影院| 村上凉子中文字幕在线| 久久精品影院6| 国产精品成人在线| 9色porny在线观看| 一进一出抽搐gif免费好疼 | 欧美丝袜亚洲另类 | 男人舔女人的私密视频| 久久狼人影院| 1024香蕉在线观看| 精品免费久久久久久久清纯| 18禁黄网站禁片午夜丰满| 国产日韩一区二区三区精品不卡| 美国免费a级毛片| 午夜视频精品福利| 国产午夜精品久久久久久| 一级片免费观看大全| 日本wwww免费看| 9色porny在线观看| 国产成人欧美| 国产91精品成人一区二区三区| 精品福利永久在线观看| 可以免费在线观看a视频的电影网站| 免费观看精品视频网站| 在线观看免费视频日本深夜| 在线观看一区二区三区激情| 午夜福利免费观看在线| 久久午夜亚洲精品久久| 国产精品永久免费网站| 久久精品亚洲精品国产色婷小说| 欧美一区二区精品小视频在线| 久久狼人影院| cao死你这个sao货| 国产成人啪精品午夜网站| 久久精品亚洲精品国产色婷小说| 欧美+亚洲+日韩+国产| 自线自在国产av| 国产精品爽爽va在线观看网站 | 国产成+人综合+亚洲专区| 自线自在国产av| 嫩草影院精品99| 热99re8久久精品国产| 免费观看精品视频网站| 亚洲熟女毛片儿| 另类亚洲欧美激情| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| 欧美乱色亚洲激情| 村上凉子中文字幕在线| 嫩草影院精品99| 少妇的丰满在线观看| 美国免费a级毛片| 91成人精品电影| 国产亚洲精品久久久久5区| 在线观看免费午夜福利视频| 校园春色视频在线观看| 久久国产精品影院| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 国产精品电影一区二区三区| 国产亚洲av高清不卡| 国产高清激情床上av| 中文字幕人妻丝袜制服| 欧美日韩福利视频一区二区| 欧美最黄视频在线播放免费 | 日韩欧美三级三区| 69精品国产乱码久久久| 成人三级做爰电影| 国产熟女xx| 色在线成人网| 高清黄色对白视频在线免费看| 少妇的丰满在线观看| 色综合婷婷激情| 12—13女人毛片做爰片一| 久久精品国产清高在天天线| 国产黄色免费在线视频| 中文字幕色久视频| 欧美不卡视频在线免费观看 | 久久精品影院6| 精品无人区乱码1区二区| av天堂久久9| 黄色成人免费大全| 国产一区二区三区综合在线观看| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 村上凉子中文字幕在线| 中国美女看黄片| 窝窝影院91人妻| 免费少妇av软件| 中国美女看黄片| 日韩大尺度精品在线看网址 | 韩国精品一区二区三区| 久久久久久久午夜电影 | 午夜影院日韩av| 满18在线观看网站| 91大片在线观看| 大型黄色视频在线免费观看| 十八禁人妻一区二区| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| 一区二区三区精品91| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦 在线观看视频| 国产亚洲欧美精品永久| 成人国产一区最新在线观看| 18禁裸乳无遮挡免费网站照片 | 十分钟在线观看高清视频www| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯| 在线观看舔阴道视频| 80岁老熟妇乱子伦牲交| 老司机福利观看| 色在线成人网| 国产成人欧美在线观看| 嫩草影视91久久| 又大又爽又粗| 又紧又爽又黄一区二区| 人成视频在线观看免费观看| 国产熟女xx| 成人亚洲精品一区在线观看| 国产精品电影一区二区三区| 欧美黑人欧美精品刺激| 国产激情久久老熟女| 三上悠亚av全集在线观看| 18禁裸乳无遮挡免费网站照片 | 老司机福利观看| 无遮挡黄片免费观看| 久久香蕉激情| 少妇粗大呻吟视频| 日韩有码中文字幕| 一进一出抽搐gif免费好疼 | 亚洲成人免费av在线播放| 欧美人与性动交α欧美精品济南到| 老熟妇乱子伦视频在线观看| 黄频高清免费视频| 欧美国产精品va在线观看不卡| 90打野战视频偷拍视频| 国产1区2区3区精品| 88av欧美| 脱女人内裤的视频| 女性生殖器流出的白浆| 91老司机精品| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 夜夜夜夜夜久久久久| 丝袜在线中文字幕| 操出白浆在线播放| 亚洲专区中文字幕在线| 一级作爱视频免费观看| 欧美亚洲日本最大视频资源| 成年人黄色毛片网站| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 日韩精品中文字幕看吧| 久久99一区二区三区| 99久久99久久久精品蜜桃| 日韩三级视频一区二区三区| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 亚洲精品国产色婷婷电影| 日本欧美视频一区| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看 | 纯流量卡能插随身wifi吗| www.www免费av| 一二三四在线观看免费中文在| 高清黄色对白视频在线免费看| 国产亚洲精品一区二区www| 国产精品九九99| 国产1区2区3区精品| 日本黄色日本黄色录像| 午夜成年电影在线免费观看| 国产99白浆流出| 成人亚洲精品一区在线观看| 在线天堂中文资源库| 男女下面插进去视频免费观看| av天堂久久9| 亚洲国产精品sss在线观看 | 精品日产1卡2卡| 国产成人欧美| 久久久久久久久久久久大奶| 在线观看免费高清a一片| 天天影视国产精品| 麻豆av在线久日| 热re99久久国产66热| 日本欧美视频一区| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 久久精品aⅴ一区二区三区四区| 青草久久国产| 日韩精品中文字幕看吧| 国产精品二区激情视频| 色综合欧美亚洲国产小说| 亚洲国产毛片av蜜桃av| 久久草成人影院| 成人三级黄色视频| 国产精品永久免费网站| 1024香蕉在线观看| 可以在线观看毛片的网站| 亚洲久久久国产精品| 国产在线精品亚洲第一网站| 亚洲成av片中文字幕在线观看| 精品第一国产精品| 欧美日本中文国产一区发布| 久久 成人 亚洲| 嫩草影院精品99| 亚洲自偷自拍图片 自拍| 日韩视频一区二区在线观看| 黑人操中国人逼视频| 午夜福利在线免费观看网站| 精品国产国语对白av| 国产一区二区三区在线臀色熟女 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产精品一区二区三区在线| 免费久久久久久久精品成人欧美视频| aaaaa片日本免费| 一级a爱视频在线免费观看| 国产主播在线观看一区二区| 亚洲色图 男人天堂 中文字幕| 欧美激情久久久久久爽电影 | 久热这里只有精品99| 91av网站免费观看| 亚洲精品av麻豆狂野| 免费av毛片视频| 校园春色视频在线观看| 99国产极品粉嫩在线观看| 国产精品久久视频播放| 中文字幕精品免费在线观看视频| 在线天堂中文资源库| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看 | 天堂影院成人在线观看| 亚洲国产精品999在线| 大香蕉久久成人网| 久久精品亚洲熟妇少妇任你| 免费在线观看影片大全网站| 国产精品98久久久久久宅男小说| 欧美黑人欧美精品刺激| 亚洲第一欧美日韩一区二区三区| 黑人巨大精品欧美一区二区mp4| 久久久久久大精品| 91大片在线观看| 精品一区二区三卡| 中文字幕人妻熟女乱码| 久久精品亚洲熟妇少妇任你| av在线播放免费不卡| x7x7x7水蜜桃| 搡老岳熟女国产| 丰满人妻熟妇乱又伦精品不卡| 80岁老熟妇乱子伦牲交| 9色porny在线观看| 嫩草影院精品99| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 黑人巨大精品欧美一区二区mp4| 黄片大片在线免费观看| 欧美日韩亚洲高清精品| 性少妇av在线| 午夜福利一区二区在线看| www.熟女人妻精品国产| 黄片小视频在线播放| xxx96com| videosex国产| 激情在线观看视频在线高清| 99riav亚洲国产免费| 精品国产超薄肉色丝袜足j| 中亚洲国语对白在线视频| 一二三四在线观看免费中文在| 桃红色精品国产亚洲av| 色哟哟哟哟哟哟| 美女 人体艺术 gogo| 亚洲美女黄片视频| 国产成人欧美在线观看| 国产高清激情床上av| 欧美大码av| 久久久久久久午夜电影 | 国产免费现黄频在线看| 香蕉久久夜色| a在线观看视频网站| 黄色 视频免费看| 久久久久久亚洲精品国产蜜桃av| av在线播放免费不卡| 伦理电影免费视频| 久久久国产精品麻豆| 国产成+人综合+亚洲专区| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看黄色视频的| 午夜免费成人在线视频| 成人亚洲精品av一区二区 | 黑人操中国人逼视频| 日本a在线网址| 成人特级黄色片久久久久久久| 精品熟女少妇八av免费久了| 亚洲美女黄片视频| 最近最新中文字幕大全电影3 | 午夜视频精品福利| 婷婷丁香在线五月| 深夜精品福利| 亚洲一区二区三区不卡视频| av超薄肉色丝袜交足视频| 女性被躁到高潮视频| 免费高清在线观看日韩| 91大片在线观看| 亚洲人成网站在线播放欧美日韩| 国产在线观看jvid| 视频区图区小说| ponron亚洲| 欧美日韩视频精品一区| 欧美精品啪啪一区二区三区| 久久精品人人爽人人爽视色| 精品久久久久久久久久免费视频 | 久久影院123| 精品电影一区二区在线| 久久久久久久精品吃奶| 久久 成人 亚洲| 免费高清视频大片| 久久久久精品国产欧美久久久| 日本 av在线| 成人影院久久| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 校园春色视频在线观看| 国产真人三级小视频在线观看| 亚洲成国产人片在线观看| 无遮挡黄片免费观看| 性欧美人与动物交配| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线免费观看网站| 伦理电影免费视频| 午夜a级毛片| 少妇的丰满在线观看| 999精品在线视频| 色精品久久人妻99蜜桃| 亚洲午夜理论影院| 老汉色av国产亚洲站长工具| 高清在线国产一区| 精品人妻在线不人妻| 日本一区二区免费在线视频| 国产一区二区三区视频了| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 午夜视频精品福利| 久99久视频精品免费| 老熟妇仑乱视频hdxx| 少妇的丰满在线观看| 国产91精品成人一区二区三区| 麻豆一二三区av精品| 国产成人精品无人区| 身体一侧抽搐| 美女扒开内裤让男人捅视频| 免费高清视频大片| 久久精品亚洲熟妇少妇任你| 欧美乱妇无乱码| 在线视频色国产色| 人人妻人人添人人爽欧美一区卜| 亚洲九九香蕉| 欧美亚洲日本最大视频资源| 国产单亲对白刺激| 亚洲精品美女久久久久99蜜臀| 久久精品亚洲精品国产色婷小说| 亚洲人成电影观看| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3 | 男女午夜视频在线观看| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 水蜜桃什么品种好| aaaaa片日本免费| 深夜精品福利| 亚洲午夜精品一区,二区,三区| 亚洲色图 男人天堂 中文字幕| 亚洲自拍偷在线| 看免费av毛片| 亚洲精华国产精华精| 午夜激情av网站| 18禁裸乳无遮挡免费网站照片 | 少妇的丰满在线观看| 99国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 成人精品一区二区免费| 亚洲第一青青草原| 人人妻人人添人人爽欧美一区卜| 日本精品一区二区三区蜜桃| 天堂影院成人在线观看| 国产精品九九99| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 久久精品国产清高在天天线| 91精品国产国语对白视频| 国产成人精品在线电影| 欧美乱码精品一区二区三区| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 亚洲精品国产色婷婷电影| av在线播放免费不卡| 可以免费在线观看a视频的电影网站| 91成人精品电影| 国产成人啪精品午夜网站| 一区福利在线观看| 欧美久久黑人一区二区| 日本精品一区二区三区蜜桃| 久久青草综合色| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 日本a在线网址| 麻豆成人av在线观看| 这个男人来自地球电影免费观看| 亚洲欧美日韩另类电影网站| 午夜福利在线观看吧| 亚洲专区国产一区二区|