• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RotatS:temporal knowledge graph completion based on rotation and scaling in 3D space①

    2023-12-15 10:43:52YUYongCHENShudongTONGDaQIDonglinPENGFeiZHAOHua
    High Technology Letters 2023年4期

    YU Yong (余 泳),CHEN Shudong②,TONG Da,QI Donglin,PENG Fei,ZHAO Hua

    (?Institute of Microelectronics, Chinese Academy of Sciences,Beijing 100191,P.R.China)

    (??University of Chinese Academy of Sciences,Beijing 100191,P.R.China)

    (???Beijing Institute of Tracking and Telecommunications Technology,Beijing 100191,P.R.China)

    Abstract

    Key words:knowledge graph(KG),temporal knowledge graph(TKG),knowledge graph completion(KGC),rotation and scaling (RotatS)

    0 Introduction

    With the increasing application of knowledge graphs(KGs),a large number of knowledge graphs have been constructed.KG consists of entities,relationships,attributes,and attribute values.Generally speaking,KG can be represented by a set of triples.The representation of triples is (H,R,T),whereH(Head)andT(Tail) are a group of head entities and tail entities,respectively,andR( Relation) is a set of relationships between them.Existing KGs include YAGO[1],Freebase[2],Wikidata[3],and WordNet[4],etc.,which are used for intelligent search,social networks,deep question answering,etc.However,many KGs usually suffer from incompletion,and the purpose of knowledge graph completion (KGC) is to add new triples in KGs,such as obtaining a new triple (COVID-19,belongs to,Class B infectious diseases) from existing knowledge graphs related to contagious diseases.The task makes KG more complete.Therefore,KGC has drawn widespread attention.

    At present,many KGC models do not take temporal information into account.However,in many KGs,the occurrence of many events is related to time.This type of knowledge graph is called temporal knowledge graph (TKG).Typically,TKGs are represented by a quadruple (H,R,T,Γ),whereHandTare a set of head entities and tail entities respectively,Ris a set of relationships between them,andΓis a set of time when the event occurs.For instance,There are many answers to the question (Obama,visit,?),if the time factor is not taken into account.But if the time factor is considered, the answer to this question is specific, as(Obama,visit,China) took place on November 15,2009,and (Obama,visit,Thailand) took place on November 18,2012.Ignoring temporal information can create significant uncertainty to KGC and negatively affect downstream tasks.

    Traditional KGC models,such as TransE[5],Dist-Mult[6],RotatE[7], ComplEx[8],etc.,learn the low-dimensional embedding of entities and relations, and model the relationships between entities to perform KG completion.None of these models has a way to model temporal information,thereby ignoring the time when the fact occurs.To address this problem,several researchers have proposed related models, including TTransE[9],HyTE[10],TA-TransE[11],ATiSE[12],Te-Ro[13],TempCaps[14],TKGC[15], HTKE[16],etc.These models obtain the time factor by encoding temporal information and integrating this information with entities and relationships respectively,so that the event is timedependent.

    However,the above mentioned models are merely extensions of traditional KGC methods,and lack the ability to extract the semantic information of time.As an example,the TeRo model defines the temporal evolution of entity embedding as the rotation of the entity in two-dimensional space from the initial time to the current time[13],and then uses the TransE method to obtain the relationship between the head entity and the tail entity after the rotation.Like other TKG completion methods,this model only considers the evolution of the entity itself in two-dimensional space with respect to time,and the semantic association between entities,relations and time is not better obtained.

    This paper proposes a new method based on rotation and scaling (RotatS) for temporal knowledge graph completion.The model maps entities,relations,and time into three-dimensional space,and defines the evolution of head entities through a combination of time and relations to obtain tail entities.

    Through the mapping of three-dimensional space,entities,relations and time can obtain richer semantic information.Furthermore,this paper defines the temporal and relational evolution of entity embedding as the rotation and scaling of head entity to the tail entity in the 3D space,and the model defines the relationship between head entity and tail entity in 3D space relative to relations and time,and obtains rich semantic association among entities,relations and time.

    The advantages of the proposed model includes:

    (1)It solves the problem that entity cannot be well combined with relations and time in traditional methods.A general approach to solving TKG completion is proposed in this paper.For events of either timestamps or time intervals,different rotation axes are used respectively,and the relationship between head entities and tail entities in different types of events are defined.

    (2)The model considers the roles of time and relation in evolution at the same time.The rotation can help to make the direction between the head entity and the tail entity closer.Similarly,the scaling can help to make the size between the head entity and the tail entity closer.Through this method,entities,relations,and time are hopefully better associated.

    (3)The performance of the proposed method is evaluated on four public datasets.Experimental results show that this paper's approach has certain advantages compared with several existing methods.

    (4)The paper also conducts a comparison experiment between rotation and scaling in 3D space and 4D space.The experimental results show that the RotatS model performs better in these cases.

    1 Related work

    1.1 Static graph completion

    Static KGC models can be divided into translationbased models,tensor decomposition-based models and neural network-based models.

    1.1.1 Translation based models

    KGC is performed by learning low-dimensional embedding representations of entities and relations in the knowledge graph.These models are mainly based on TransE for transformations of spatial mappings.TransE[5]defines relations as the transformation from head entity to tail entity,but can only handle one-toone relationships.For relations such as one-to-many,TransH[17]establishes a plane and projects entities and relationships onto the plane.TransR[18]uses the projection matrix of a particular relation to project entities into the relation space.sTransE[19]operates different transformations for head entity and tail entity,and projects head entity and tail entity into separate spaces.TransD[20]sparses the relational mapping matrix,therefore reducing the amount of parameters.TranSparse[21]solves the problem of unbalanced distribution of relations in triples.The relations that occur infrequently only need to train the matrix with low sparsity, and the relations that occur infrequently need to train the matrix with dense sparsity.TransM[22]focuses on the structure of the knowledge graph and constructs the model by pre-counting the weights of each relation in the training set.RotatE[7]introduces the complex domain on top of TransE,which maps entities and relations into a complex space,and defines each relation as a rotation from head entity to tail entity.

    1.1.2 Tensor decomposition based models

    These models decompose the score of the triples into a tensor product.RESCAL[23]expresses the relations with a full-ranking matrix,calculating the product between entity embeddings and relation matrices.This model is simple and effective,but the parameters are increased.Relations in DistMult[6]use diagonal matrices to reduce the number of parameters but cannot model the directionality of relationships.Complex[8]introduces the complex domain and considers that head entity embedding of the given entity and tail entity embedding are conjugate relationships.Among them,RESCAL and DistMult cannot obtain asymmetric relationships, for instance,triples(h,r,t)and(t,r,h)always have equal scores.

    1.1.3 Neural network based models

    Neural network-based models perform KGC variously: ProjE[24]model uses the feed-forward network to model the KG.ConvE[25]first splices the embedding of head entities and the embedding of relations,then performs a multi-layer convolution operation,and finally scores all candidate sets.ConvKB[26]modifies the form of the input data of ConvE,then obtains the feature layer by convolution,and finally splices and scores it.ConvR[27]performs the convolution operation by using relations directly as convolution kernels.

    1.2 Temporal graph completion

    Recently,some researchers have found that adding temporal information to the knowledge graph can further improve the performance of KGC.Some models are derived from TransE,such as TTransE[9],embedding time information into the score function.TA-TransE and TA-DistMult[11]obtained the temporal evolution of relations by stitching the embedding of predicates and the temporal embedding using long short term memory(LSTM).HyTE[10]treats timestamps as hyperplanes and projects entity and relation embeddings onto the hyperplane to obtain new representations.This model is the expansion of TransH with respect to time by adding temporal information to head entity,relation and tail entity respectively.TempCaps[14]proposes a capsule network-based model to construct entity embeddings by dynamically routing the retrieved temporal relations and neighbor information.TKGC[15]models global trends and local fluctuations by mapping entities and relations in TKG to approximations of multivariate Gaussian processes (MGPs).HTKE[16]proposes a new hyperplane-based temporal-aware KG embedding model that incorporates temporal information into the entity-relation space to more effectively predict missing elements in KGs.

    2 Methods

    In this section,the TKG completion problem is defined and the method RotatS is introduced in detail.This method integrates entities,relationships,and temporal information to solve the TKG completion problem better.

    TKG completion is also called link prediction task.The goal of this task is to predict hidden quaternions using observable quaternions[28].This task can be divided into two parts: given a quaternion representation of the TKG as (h,r,?,Γ),predicts the tail entity,and predicts the head entity given a quaternion representation of the TKG as (?,r,t,Γ).

    Quaternions have been used for static knowledge graph embeddings[29].The definition and basic mathematical properties of quaternions are presented for a better introduction to the method proposed in this paper.

    2.1 Quaternions

    Quaternion[30]is the result of the expansion of the imaginary part of a complex number.Usually the quaternionqis represented by (w,x,y,z),wherewis the real part;x,yandzare the imaginary parts,or it can also be expressed asq= [w,v] =w+xi+yj+zk(i,j, andkare imaginary units).Some of the rules and operations for quaternions are as follows.

    Basic rules and derivatives are

    The inner product of quaternions: the inner product betweenq1=w1+x1i+y1j+z1kandq2=w2+x2i+y2j+z2kis the sum of the products of the corresponding real and imaginary parts.

    Quaternion Hamilton product:

    Quaternion conjugates:

    The conjugate ofqis

    Quaternion inverse:

    The inverse ofqis

    Unit quaternion:

    The norm of a quaternionqis

    Rotation of quaternions[29]:

    In 3D spatial rotation,the rotation axis is assumed to be the unit vector.

    whereu=xi+yj+zkis the unit quaternion.

    The vectorv(the real part is 0) is rotated by 2θaround the axis of rotationuto obtainv?as

    2.2 RotatS

    When the real part of the quaternion is 0,the quaternion can be expressed asv=xi+yj+zk.Such quaternion can be represented as a 3D vectorv= (x,y,z).

    Similar to the rotation of TeRo[13]in 2D space,this paper uses the rotation and scaling of the quaternion with real part 0 in 3D space which are used to complete the TKG completion task.This paper proposes a general model RotatS for TKG completion,which learns the embedding representation of entities,relations,and time in TKG and continuously optimizes the score function,so that correct quaternions receive a higher score and erroneous quaternions have a lower score.In 3D space,the model uses a rotation and scaling based approach where the head entity is rotated and scaled to obtain the tail entity using a combination of time and relations.The general form of the model is as follows.

    RotSR,Γ(H) =T(11)whereHandTrepresent the embedding of head entity and tail entity in 3D space respectively,RandΓrepresent the embedding of relation and time in 3D space respectively,and RotS represents the rotation and scaling from head entityHto tail entityTin 3D space.All embeddings are represented in 3D space,that is

    Through the embedding of entities,relations,and time in 3D space,vector representations of different dimensions can be obtained,thereby obtaining richer semantic information than TeRo.The evolution of head entity to tail entity is performed based on both the representation of relation and time to obtain the semantic association between entity,relation,and time.

    It is possible for an event to occur at a timestamp or continuously over a time interval.Rotation axis should be varied to better model different kind of events.Subsections 2.3 and 2.4 present model details for rotating and scaling around the time axis and relational axis,respectively,to address the problem of link prediction for timestamp and time interval events,respectively.

    2.3 Rotation and scaling around the time axis

    The proposed model uses time as the axis of rotation when solving the timestamp problems.The score function of the model is

    whereHandTare the embedding of the head entity and tail entity in 3D space respectively; ☉represents the rotation in 3D space.This paper definesQΓ=,whereuΓ=Γxi+Γyj+Γzk(Γx,Γy,Γzare the three representations of time in 3D space, and) is the time axis of the rotation ofHin 3D space;2θΓis the rotation angle associated with the time embedding.

    Because the number of events occurring at a timestamp is limited,this paper uses time as the rotation axis,which can fix the timestamp for inference to narrow the target range of tail entities and thus improve the accuracy of inference.The role of the scoring function is to evolve the head entityHto get the tail entityTusingQΓ,which defines a new type of entity relationship and obtains richer semantic association between entities.The goal of this model is that through training,the evolvedHandTof the correct quadruple are getting closer and closer,i.e.,the value ofFis getting closer to 0.

    However,in the above approach,the effect of relations is not considered.Relations are important and can provide a wealth of information.In static knowledge graphs,the knowledge graph can be complemented by relations alone.Therefore,the paper introduces relation to improve the performance of the model.R?is the unitization of relational embedding,which can be represented in 3D space as

    whereα,βare the angles of the relational embedding and are uniformly initialized between - π and π[29].This paper uses°to define Hadmard product between head entities and relations:H°R?= (Hx,Hy,Hz)°(R′x,R′y,R′z)= (Hx R′x,Hy R′y,Hz R′z).With Hadmard product,this paper incorporates relational information into head entity,thus enriching semantic information.The improved score function abtained in this paper is as follows.

    Using the above model,the head entity incorporating relational information is rotated in 3D space to obtain tail entity,and the direction of the entity vector changes after the rotation.In order to make the entity vector obtained after evolutions more approximate to the tail entity,this paper performs both the rotation and scaling evolution of the entity,so that the size and direction of the evolved vector are closer to the tail entity vector,and defineu′Γ=WH WR(Γxi+Γyj+Γzk)=WH WR uΓ,whereWHandWRare head entity-specific and relation-specific weights respectively.At this time,the value ofQΓis as follows.

    The multiplication with relation-specificity biasWRin Ref.[29] is also used to improve performance.At this point,the score function is

    Therefore,the rotation axis of the model isuΓ;the rotation angle is 2φ; and the scaling factor is

    2.4 Rotation and scaling around relational axes

    In subsection 2.3,this paper discusses the score function when solving the time interval problem.When solving the time interval problem,the relation is used as the rotation axis.The score function is as follows.

    whereQR= cosθΓ+uRsinθΓ;uR=WH WR(Rxi+Ryj

    An event occurs within a time interval.Here time is a range.It is not reasonable to take a random timestamp from the time interval.Relation is used as the axis of rotation and the head entity incorporating relational information is evolved around the relation axis to obtain the tail entity.The model has the same rotation angle and scaling as the model dealing with timestamp events,and the rotation axis is(Rxi,Ryj,Rzk).

    2.5 Loss function

    This paper uses the same loss function as in Te-Ro[13]to optimize the RotatS model,with self-adversarial negative sampling in the loss function:

    whereσis the sigmoid function,yis the score of the correct quadruple (H,R,T,Γ),yˊis the score of the negative sample (Hˊ,Rˊ,Tˊ,Γˊ),gammais a fixed margin,pis the ratio of negative training samples to positive training samples.The overall training algorithm is shown in Algorithm 1.

    Algorithm 1 Training of RotatS}; the number of epoch n;the negative sample rate p.{Input:The train set TKG = H,R,T,Γ Output:The minimum loss on the train set.1: s,r,o,t ←Xavier_uniform(),lossmin = 0 //Initialize the embedding vector in 3D space 2: For each i ∈[1,n] do 3: for(s,r,o,t) ∈TKG do 4: Constructing negative samples D-5: If t is time point then calculate score function F by((H·R?)☉QΓ)·WR - T 6: end if If t is time period then discretize t as t2,t1,…,tm;calculate score function F by((H·R?)☉QR)·WR - T 8: end if 9: Loss= lossD+ + lossD-10: end for 11: lossmin = min(lossmin,loss)12: Update parameters s,r,o,t with Adagrad optimizer 13: end for 14: Return lossmin 7:

    3 Experiments

    In experiments,this paper evaluates the performance of the model RotatS on four standard datasets and compared it with some baselines.

    3.1 Datasets

    Frequently used TKGs include ICEWS14,ICEWS05-15, YAGO11k and Wikidata12k.Among them, ICEWS14 and ICEWS05-15 are event-based datasets,both derived from ICEWS[31],corresponding to events in 2014 and events from 2005 to 2015,respectively,both of which record are the timestamps when each event occurs; YAGO11k and Wikidata12k are derived from YAGO[1]and Wikidata[3],respectively,and these two datasets record the the time interval in which each event occurs.

    3.2 Baselines

    This paper compares the RotatS model with baselines,including static KGC models and temporal KGC models.

    The static KGC models compared in this paper are translation based models and tensor decomposition based models,including TransE[5],DistMult[6],ComplEX[8],RotatE[7]and QuatE[32].These models ignore temporal information when performing KGC.

    The temporal KGC models compared in this paper include TTransE[9], TA-TransE[11], TA-DistMult[11],HyTE[10],DE-SimplE[33],ATiSE[12],TeRo[13],Temp-Caps[14],TKGC[15]and HTKE[16].These models incorporate temporal information to improve the accuracy of KGC.

    3.3 Evaluation methodology

    This paper evaluates the RotatS model by testing the task on link prediction.The goal of the task is to reason about missing values in (?,R,T,Γ) and (H,R,?,Γ),where ?represents the missing element.For a test quadruple,by substituting eitherHorT,this paper generates candidate quadruplets, calculates scores for all possible quadruplets,and finally ranks these quadruplets in ascending order.

    In this experiment,two common evaluation metrics are used: mean reciprocal rank (MRR) and Hits@k.MRR refers to the average reciprocal rank of all correctly predicted entities.Hits@krefers to the proportion of correctly predicted entities among the topkentities.

    3.4 Experimental setup

    This paper evaluates the RotatS model on TITAN Xp,and refers to the experimental setup described in TeRo[13].The model is implemented using Pytorch,and the best model is selected by early stopping on the validation set according to MRR.The experiment chooses embedding sizekas 500,batch sizebas 512,and uses Adagrad as the optimizer.Both real part and imaginary parts of the entity embedding are initialized using uniform initialization.

    The time granularity parametersuandthreare assigned different values in different datasets.This paper lists the parameters in different datasets[13]:lr= 0.1,gamma= 60,thre= 10 on YAGO11k;lr= 0.3,gamma= 20,thre= 200 on Wikidata12k;lr= 0.1,gamma= 110,u= 1 on ICEWS14;lr= 0.1,gamma= 120,u= 2 on ICEWS05-15.

    3.5 Complexity

    As shown in Table 1,the space complexity and scoring functions between the porposed model and several baselines are compared.In scoring function[13],Proj(·) represents the temporal projection of the embedding[11]; LSTM(long short-term memory) is a neural network model[10]that deals with time series problems;→and ←represent a time-specific temporal and non-temporal parts of diachronic entity embedding,r-1 represents the inverse relationship ofr[11];DKL()represents theKLdivergence between two Gaussian distributions[33];Ps,t,Po,tandPr,trepresent the Gaussian embeddings ofs,r, andoat timet[12];standotrepresent entity embedding at a specific time.In Space Complexity[13],me,mr,mτandmtokenrepresent the number of entities,relations,timestamps,and temporal tokens,respectively;dis the dimension of the embedding.

    Table 1 Comparison of space complexity

    4 Results

    4.1 Main results

    As shown in Table 2 and Table 3,KGC experiments on the facts at a timestamp are conducted.The prediction accuracy of the performance of RotatS model is listed in table 2 and the benchmark model on the two datasets ICEWS14 and ICEWS05-15 are listed in the table.The results of HTKE,TempCaps,and TKGC are derived from Refs[16],[14] and [15],respectively; the results of other models in the table are derived from Te-Ro[13].In the experimental results,the RotatS model outperforms all baseline models.It can be seen that the effectiveness of the RotatS model in handling timestamp events.Compared with TeRo,the performance of RotatS model is improves by 2.3% and 4.5% on ICEWS14 and ICEWS05-15,respectively.

    Table 2 Performance on the ICEWS14 dataset

    Table 3 Performance on the ICEWS05-15 dataset

    As shown in Table 4 and Table 5,KGC experiments on the facts in a certain time interval are conducted,and the results of all models on both the YAGO11k and Wikidata12k datasets are listed in the table.In the experiments,the dataset used for validation has few kinds of relations,which affects the identification of different quadruplets.To increase the variety of relations,this paper extends the relation set to a pair-dual relation set[13].In YAGO11k dataset, tail entity embedding with relation embedding is integrated,the model outperforms the TeRo model in MRR,Hit@1 and Hit@3; on the Wikidata12k dataset, the performance of RotatS model also improves over the TERO model on Hit@3 and Hit@10.

    Table 4 Performance on the YAGO11K dataset

    Table 5 Performance on the Wikidata12k dataset

    In terms of efficiency,RotatS has the same space complexity as TeRo,TTransE and HyTE.Regarding the consumption of video memory,this paper conducts comparative experiments on the ICEWS14 dataset for several recent models.RotatS with an embedding dimensionality of 500 has a storage size of 1886MiB,whereas TeRo and ATiSE with the same embedding dimensionlity have storage sizes of 1026MiB and 1350MiB.Meanwhile,on TITAN Xp device,RotatS with an embedding dimensionality of 500 is trained on ICEWS14, ICEWS05-15, YAGO11k and Wikidata12k,and each epoch takes 9.1, 49.7 s, 4.2 s and 8.1 s,respectively,however,ATiSE with the same embedding dimensionlity takes 7.8 s, 43.0 s, 29.1 s,and 33.7 s on the four datasets,respectively.

    4.2 Parameter analysis and model analysis

    In this work,the effects of scaling and embedding size on the RotatS model are analyzed.

    Fig.1 shows the link prediction performance on ICEWS14 for different embedding dimensions.As the embedding dimension increases,the prediction performance gradually improves.When the embedding dimension is set to 500,the performance is better and the embedding dimension is not high.A lower embedding dimension can reduce storage space and improve training speed; at the same time,it can also enable the model to be applied on large-scale knowledge graphs.

    To analyze the effect of scaling in the RotatS model,this paper compares the link prediction performance of RotatS and RotatS without scaling on ICEWS14.

    Fig.1 Effect of dimensionality of embeddings

    Fig.2 shows that scaling can significantly improve the link prediction performance of RotatS.Because scaling can make the size of the head entity vector and the tail entity vector more similar,enhancing the training effect.

    4.3 Comparative study

    To further test the performance of the proposed TKG completion model in different dimensional spaces,this paper also conducts a series of experiments on rotation and scaling in four dimensional space,and compares this method with the rotation method RotatS in 3D spaces.The model in 4D space is as follows.

    Fig.2 Effect of scaling

    whereHandTrepresent the embedding of head entity and tail entity in the 4D space,respectively;Rrepresents the embedding of relation in 4D space;R?andΓ?are the unitization of relation embedding and temporal embedding,respectively.The head entityHcan be represented as (H1,H2,H3,H4) in 4D space; the tail entityTcan be represented as (T1,T2,T3,T4) in 4D space; the relationRcan be represented as (R1,R2,R3,R4) in the 4D space; and timeΓcan be represented as(Γ1,Γ2,Γ3,Γ4) in 4D space.

    The ?denotes the Hamilton product.4D rotation can be modeled by the Hamilton product[32].WhenR?is used,modulus length ofR?is 1,and only rotation is performed in 4D space and no scaling is done;whenRis used,the modulus length ofRis not 1, and not only rotation but also scaling is performed in 4D space.In the paper,the time information is incorporated into the head entity and the tail entity by unitizing the Hadmard product between the temporal embeddingΓand the entity embedding.Then the entity quaternions after incorporating the time information are rotated.There are scaled rotations and unscaled rotations.The following are the experimental results of the two methods.

    Experiments are performed on two datasets,YAGO11k and ICEWS14,respectively,using the rotation model in 4D space.Under the same experimental conditions as the RotatS model,this paper obtained the results in Table 6.By comparing the experimental results,it can be seen that the rotation model RotatS of quaternion in three-dimensional space performs better in all test cases than that in the 4D space.

    5 Conclusion

    This paper has presented a new TKG completion model named RotatS,which can integrate the semantic relationship between entities,relations,and time.In the experiments,the rotation and scaling of the head entity to the tail entity is modeled.Compared with previous approaches,the RotatS model has a significant improvement over the baseline model in solving the TKG completion task in sense of prediction accuracy including MRR,Hit@1,Hit@3 and Hit@10,under similar experimental conditions and space complexity.In the near future,the following research directions will continue to be explored: improving the model by combining different rotation and stretching methods.

    Table 6 Rotation in 4D

    亚洲激情在线av| 亚洲第一电影网av| 非洲黑人性xxxx精品又粗又长| 欧美成狂野欧美在线观看| 嫁个100分男人电影在线观看| 日韩有码中文字幕| www.精华液| 国产免费男女视频| 大型黄色视频在线免费观看| 在线天堂中文资源库| 国产成人影院久久av| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 成人国产一区最新在线观看| 91成年电影在线观看| 国产熟女午夜一区二区三区| 啦啦啦观看免费观看视频高清 | 桃红色精品国产亚洲av| 9色porny在线观看| 亚洲五月色婷婷综合| 国产不卡一卡二| 制服丝袜大香蕉在线| 免费不卡黄色视频| 超碰成人久久| 成人三级黄色视频| 最近最新中文字幕大全免费视频| 校园春色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产真人三级小视频在线观看| 久久久久久国产a免费观看| 久久午夜亚洲精品久久| 亚洲第一电影网av| 国产熟女xx| 午夜福利影视在线免费观看| 国产av精品麻豆| 成人免费观看视频高清| 久久久久久国产a免费观看| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全免费视频| 久久久久九九精品影院| 欧美中文日本在线观看视频| 9色porny在线观看| 亚洲国产欧美网| 亚洲色图av天堂| 亚洲精品在线美女| 最好的美女福利视频网| 精品人妻在线不人妻| 变态另类丝袜制服| 中文字幕另类日韩欧美亚洲嫩草| 久久久久九九精品影院| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区高清视频在线| 精品人妻1区二区| 久久久国产精品麻豆| 可以在线观看的亚洲视频| 啦啦啦韩国在线观看视频| 欧美亚洲日本最大视频资源| 在线天堂中文资源库| 一区在线观看完整版| 夜夜躁狠狠躁天天躁| 精品国产亚洲在线| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 51午夜福利影视在线观看| 精品久久蜜臀av无| 精品不卡国产一区二区三区| 久久精品影院6| 制服诱惑二区| 色综合婷婷激情| 亚洲伊人色综图| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| netflix在线观看网站| 亚洲伊人色综图| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| 亚洲成av片中文字幕在线观看| 香蕉国产在线看| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 日韩三级视频一区二区三区| 成人国语在线视频| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 满18在线观看网站| 天堂影院成人在线观看| 夜夜看夜夜爽夜夜摸| 99国产精品免费福利视频| 久久精品国产亚洲av高清一级| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频 | 熟女少妇亚洲综合色aaa.| 9热在线视频观看99| 色综合亚洲欧美另类图片| 日韩高清综合在线| 免费一级毛片在线播放高清视频 | 国产精品 欧美亚洲| 黄色成人免费大全| 在线免费观看的www视频| 国产欧美日韩一区二区精品| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 免费搜索国产男女视频| 黄片播放在线免费| 亚洲三区欧美一区| 露出奶头的视频| 亚洲免费av在线视频| 国产日韩一区二区三区精品不卡| 亚洲专区字幕在线| 女人被躁到高潮嗷嗷叫费观| 亚洲中文字幕一区二区三区有码在线看 | 美女国产高潮福利片在线看| 久久久久亚洲av毛片大全| 精品乱码久久久久久99久播| 日本a在线网址| 三级毛片av免费| 久久人妻av系列| 欧美日韩瑟瑟在线播放| 日韩欧美国产一区二区入口| 亚洲男人天堂网一区| 啪啪无遮挡十八禁网站| 很黄的视频免费| 精品一区二区三区av网在线观看| 国产视频一区二区在线看| 久久人人精品亚洲av| 欧美精品啪啪一区二区三区| √禁漫天堂资源中文www| 老司机福利观看| 夜夜躁狠狠躁天天躁| 成人国产综合亚洲| 国产男靠女视频免费网站| 99国产精品免费福利视频| 欧美成人一区二区免费高清观看 | 黄色丝袜av网址大全| 中文字幕精品免费在线观看视频| 少妇粗大呻吟视频| 亚洲第一青青草原| 啪啪无遮挡十八禁网站| 亚洲av电影不卡..在线观看| 亚洲va日本ⅴa欧美va伊人久久| 男女午夜视频在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜福利成人在线免费观看| 精品久久久精品久久久| 日韩精品青青久久久久久| 欧美黑人欧美精品刺激| 午夜福利18| 欧美一级a爱片免费观看看 | 亚洲精品美女久久av网站| 亚洲精华国产精华精| 久久久久国产一级毛片高清牌| 黑人操中国人逼视频| 国产片内射在线| 美女午夜性视频免费| 亚洲中文av在线| 91大片在线观看| 亚洲无线在线观看| 精品日产1卡2卡| 国产成人影院久久av| 在线观看66精品国产| 少妇的丰满在线观看| 免费高清视频大片| 亚洲全国av大片| 精品一区二区三区av网在线观看| av视频在线观看入口| 美女免费视频网站| 1024视频免费在线观看| 在线视频色国产色| 自线自在国产av| 久久国产乱子伦精品免费另类| 韩国精品一区二区三区| 精品高清国产在线一区| 国产97色在线日韩免费| 国产精品久久视频播放| 天天躁夜夜躁狠狠躁躁| 人妻丰满熟妇av一区二区三区| 男人的好看免费观看在线视频 | 99国产精品99久久久久| 三级毛片av免费| 亚洲精品美女久久av网站| 电影成人av| 国产成人啪精品午夜网站| 国产精品一区二区免费欧美| 国产精品一区二区免费欧美| 人人澡人人妻人| 好看av亚洲va欧美ⅴa在| 好男人电影高清在线观看| 日本欧美视频一区| 亚洲av第一区精品v没综合| 国产极品粉嫩免费观看在线| 欧美成人免费av一区二区三区| 一级毛片女人18水好多| 侵犯人妻中文字幕一二三四区| 99久久久亚洲精品蜜臀av| 亚洲少妇的诱惑av| 午夜a级毛片| 成人亚洲精品一区在线观看| 搡老妇女老女人老熟妇| 免费人成视频x8x8入口观看| 十八禁人妻一区二区| 在线观看日韩欧美| 亚洲免费av在线视频| 日本在线视频免费播放| 香蕉久久夜色| 国产精品亚洲一级av第二区| 99久久久亚洲精品蜜臀av| 无遮挡黄片免费观看| 午夜日韩欧美国产| 一级毛片女人18水好多| 亚洲国产精品久久男人天堂| 亚洲在线自拍视频| 婷婷丁香在线五月| 在线播放国产精品三级| 午夜免费鲁丝| 好看av亚洲va欧美ⅴa在| 成人18禁高潮啪啪吃奶动态图| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 大型av网站在线播放| 中文字幕最新亚洲高清| 国产高清视频在线播放一区| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 曰老女人黄片| 一a级毛片在线观看| 中亚洲国语对白在线视频| 欧洲精品卡2卡3卡4卡5卡区| 国语自产精品视频在线第100页| 久久天堂一区二区三区四区| 国产av又大| 国产伦一二天堂av在线观看| 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| 免费一级毛片在线播放高清视频 | 亚洲aⅴ乱码一区二区在线播放 | 香蕉丝袜av| 成人亚洲精品av一区二区| 久久国产精品影院| 天堂动漫精品| 99久久精品国产亚洲精品| 亚洲一区中文字幕在线| 亚洲视频免费观看视频| 亚洲九九香蕉| 色av中文字幕| 国产精品亚洲一级av第二区| 女性生殖器流出的白浆| 十分钟在线观看高清视频www| 中文字幕高清在线视频| 巨乳人妻的诱惑在线观看| 母亲3免费完整高清在线观看| 一级毛片女人18水好多| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久大精品| 亚洲一区高清亚洲精品| 亚洲欧美精品综合一区二区三区| 亚洲成av片中文字幕在线观看| 国产97色在线日韩免费| 超碰成人久久| 一区二区日韩欧美中文字幕| 欧美人与性动交α欧美精品济南到| 国产成人精品久久二区二区免费| 国产xxxxx性猛交| 亚洲国产欧美一区二区综合| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃| av视频在线观看入口| 很黄的视频免费| 亚洲色图综合在线观看| 亚洲国产精品sss在线观看| 久久精品成人免费网站| 搡老岳熟女国产| av福利片在线| 波多野结衣巨乳人妻| 亚洲少妇的诱惑av| 变态另类成人亚洲欧美熟女 | 妹子高潮喷水视频| 老熟妇乱子伦视频在线观看| 91在线观看av| 国产精品免费视频内射| 悠悠久久av| 亚洲av成人不卡在线观看播放网| 亚洲欧美日韩无卡精品| 亚洲国产欧美日韩在线播放| 18禁观看日本| 久久久久久免费高清国产稀缺| 一级a爱视频在线免费观看| 黄网站色视频无遮挡免费观看| 熟妇人妻久久中文字幕3abv| 咕卡用的链子| 久久国产精品影院| 国产亚洲精品久久久久久毛片| 国产亚洲精品久久久久久毛片| 女性被躁到高潮视频| 午夜福利影视在线免费观看| 一边摸一边抽搐一进一出视频| 精品国产超薄肉色丝袜足j| 老司机靠b影院| 乱人伦中国视频| 啦啦啦免费观看视频1| 亚洲精品久久成人aⅴ小说| 国产一区在线观看成人免费| 男人舔女人下体高潮全视频| 国产又色又爽无遮挡免费看| 12—13女人毛片做爰片一| 亚洲专区中文字幕在线| 国产一级毛片七仙女欲春2 | 电影成人av| 亚洲av电影在线进入| 久久精品人人爽人人爽视色| 久久久久久久午夜电影| 男女之事视频高清在线观看| 国产亚洲精品久久久久5区| 亚洲五月天丁香| 日日干狠狠操夜夜爽| 制服丝袜大香蕉在线| 免费女性裸体啪啪无遮挡网站| 这个男人来自地球电影免费观看| 在线天堂中文资源库| 日本 av在线| www.自偷自拍.com| 成人av一区二区三区在线看| 国产精品一区二区精品视频观看| 欧美日本视频| 久久精品国产综合久久久| 亚洲av成人一区二区三| 亚洲色图综合在线观看| 欧美成人免费av一区二区三区| bbb黄色大片| 久久草成人影院| av片东京热男人的天堂| 婷婷丁香在线五月| 一级毛片女人18水好多| 欧美性长视频在线观看| 亚洲精品中文字幕在线视频| 国产私拍福利视频在线观看| АⅤ资源中文在线天堂| 久久人妻福利社区极品人妻图片| 日韩av在线大香蕉| or卡值多少钱| 18禁裸乳无遮挡免费网站照片 | 亚洲精品中文字幕在线视频| 久久人人精品亚洲av| 欧美激情 高清一区二区三区| 亚洲九九香蕉| 制服诱惑二区| 国产av一区在线观看免费| 久久精品国产综合久久久| 久久久久久人人人人人| 久久亚洲精品不卡| 成人免费观看视频高清| 亚洲精品久久国产高清桃花| 亚洲欧美精品综合久久99| 亚洲欧美精品综合久久99| 日本在线视频免费播放| 日日夜夜操网爽| 亚洲欧美激情在线| 亚洲国产精品999在线| 欧美黄色片欧美黄色片| 国产成人精品无人区| 久久久久久久精品吃奶| 欧美成人性av电影在线观看| 一区在线观看完整版| 大码成人一级视频| 91九色精品人成在线观看| 色老头精品视频在线观看| 夜夜看夜夜爽夜夜摸| 中文字幕人成人乱码亚洲影| 亚洲熟妇熟女久久| 成人免费观看视频高清| 性色av乱码一区二区三区2| 久久精品国产亚洲av高清一级| 高清毛片免费观看视频网站| 18禁裸乳无遮挡免费网站照片 | 不卡av一区二区三区| 亚洲自偷自拍图片 自拍| 久久久久国产精品人妻aⅴ院| 午夜两性在线视频| 18禁观看日本| 日韩 欧美 亚洲 中文字幕| 在线观看免费视频网站a站| 亚洲精品国产精品久久久不卡| 久久人妻熟女aⅴ| 国内毛片毛片毛片毛片毛片| 淫秽高清视频在线观看| 香蕉丝袜av| 久久精品国产亚洲av高清一级| 国产成人精品无人区| av在线天堂中文字幕| 看片在线看免费视频| 午夜免费成人在线视频| av视频免费观看在线观看| 亚洲成av人片免费观看| 久久香蕉精品热| 日韩av在线大香蕉| 99国产精品免费福利视频| 欧美黑人欧美精品刺激| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 女人精品久久久久毛片| 欧美久久黑人一区二区| 天天一区二区日本电影三级 | 国产成人精品久久二区二区91| 久9热在线精品视频| 国产精品一区二区在线不卡| 美女国产高潮福利片在线看| 老司机靠b影院| 国产高清激情床上av| 久久久水蜜桃国产精品网| 99riav亚洲国产免费| 精品久久蜜臀av无| 亚洲自偷自拍图片 自拍| 99re在线观看精品视频| 男女之事视频高清在线观看| e午夜精品久久久久久久| 欧美最黄视频在线播放免费| 欧美日韩黄片免| 国产一区二区三区综合在线观看| av有码第一页| 禁无遮挡网站| 成人18禁在线播放| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 亚洲国产精品成人综合色| 免费在线观看黄色视频的| 成人精品一区二区免费| 亚洲自拍偷在线| 亚洲国产欧美一区二区综合| 在线播放国产精品三级| 亚洲va日本ⅴa欧美va伊人久久| av欧美777| 免费看十八禁软件| 欧美中文综合在线视频| 国产乱人伦免费视频| 久久天堂一区二区三区四区| 亚洲一码二码三码区别大吗| www.精华液| 亚洲成人免费电影在线观看| 99国产精品免费福利视频| 亚洲五月天丁香| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又爽又免费观看的视频| 亚洲成人国产一区在线观看| 麻豆av在线久日| 国产激情久久老熟女| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品综合一区在线观看 | 亚洲自拍偷在线| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 韩国av一区二区三区四区| 成人三级黄色视频| 51午夜福利影视在线观看| 老司机午夜福利在线观看视频| 老熟妇乱子伦视频在线观看| 午夜免费观看网址| 欧美人与性动交α欧美精品济南到| 亚洲在线自拍视频| 久久精品91蜜桃| 老汉色av国产亚洲站长工具| 欧美日韩福利视频一区二区| 精品国内亚洲2022精品成人| 18禁观看日本| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 久热爱精品视频在线9| 久久精品国产亚洲av香蕉五月| 国产精品 国内视频| 精品国产国语对白av| 亚洲久久久国产精品| 欧美黄色淫秽网站| 亚洲国产欧美网| 亚洲成人久久性| 91成年电影在线观看| 女人被狂操c到高潮| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 欧美乱色亚洲激情| 国产一区二区三区综合在线观看| 亚洲avbb在线观看| 乱人伦中国视频| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 亚洲男人天堂网一区| 亚洲欧美精品综合久久99| 国产一级毛片七仙女欲春2 | 久久人妻福利社区极品人妻图片| 一级毛片女人18水好多| 婷婷六月久久综合丁香| 性欧美人与动物交配| 欧美一区二区精品小视频在线| www.www免费av| 欧美精品啪啪一区二区三区| 成人免费观看视频高清| 淫妇啪啪啪对白视频| 两个人免费观看高清视频| 欧美色欧美亚洲另类二区 | 一个人观看的视频www高清免费观看 | 亚洲精品一区av在线观看| 99香蕉大伊视频| 少妇 在线观看| 高清黄色对白视频在线免费看| 色播在线永久视频| 亚洲成人国产一区在线观看| 人妻久久中文字幕网| 99国产极品粉嫩在线观看| 一级作爱视频免费观看| 久久精品91蜜桃| 麻豆av在线久日| 曰老女人黄片| 亚洲av第一区精品v没综合| 亚洲国产欧美网| 午夜福利免费观看在线| 一级毛片女人18水好多| 亚洲男人天堂网一区| 成熟少妇高潮喷水视频| 亚洲美女黄片视频| 国产精品秋霞免费鲁丝片| 久久国产精品影院| 日本a在线网址| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久 | 欧美激情高清一区二区三区| 一级毛片精品| 88av欧美| xxx96com| av欧美777| 女人被狂操c到高潮| 乱人伦中国视频| 久99久视频精品免费| 亚洲av五月六月丁香网| 极品教师在线免费播放| 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| 九色国产91popny在线| 1024香蕉在线观看| 法律面前人人平等表现在哪些方面| 99re在线观看精品视频| 免费不卡黄色视频| 少妇粗大呻吟视频| 亚洲五月婷婷丁香| 国产精品亚洲一级av第二区| 免费搜索国产男女视频| 亚洲第一欧美日韩一区二区三区| 亚洲伊人色综图| 黄色片一级片一级黄色片| 久久久久久人人人人人| 久久久国产成人免费| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 久久精品91蜜桃| 亚洲色图 男人天堂 中文字幕| 国产午夜福利久久久久久| 久久久久国内视频| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 亚洲一区二区三区不卡视频| 欧美激情高清一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 免费高清在线观看日韩| 精品久久久精品久久久| 国内毛片毛片毛片毛片毛片| av电影中文网址| 性色av乱码一区二区三区2| 少妇熟女aⅴ在线视频| 18禁美女被吸乳视频| 老司机深夜福利视频在线观看| 两个人视频免费观看高清| 超碰成人久久| 欧美成人性av电影在线观看| 欧美不卡视频在线免费观看 | 又黄又爽又免费观看的视频| 免费人成视频x8x8入口观看| 亚洲欧美精品综合一区二区三区| 久久精品91无色码中文字幕| 在线观看66精品国产| 亚洲五月婷婷丁香| 国产一区二区三区视频了| 在线观看日韩欧美| 自线自在国产av| av片东京热男人的天堂| 午夜福利18| 成人三级做爰电影| 一区二区日韩欧美中文字幕| av天堂久久9| 男女床上黄色一级片免费看| 国产99久久九九免费精品| av有码第一页| 午夜福利影视在线免费观看| 两个人视频免费观看高清| 国产精品免费视频内射| 国产精华一区二区三区| 亚洲精品国产区一区二| 18禁黄网站禁片午夜丰满| 女人高潮潮喷娇喘18禁视频| 精品久久蜜臀av无| 一a级毛片在线观看| 国产av一区在线观看免费| 国产精品二区激情视频| 国产精品电影一区二区三区| 日韩视频一区二区在线观看| 91在线观看av| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 麻豆av在线久日| 悠悠久久av|