• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    P-type cold-source field-effect transistors with TcX2 and ReX2(X =S,Se)cold source electrodes: A computational study

    2023-12-15 11:48:20QianwenWang汪倩文JixuanWu武繼璇XuepengZhan詹學(xué)鵬PengpengSang桑鵬鵬andJiezhiChen陳杰智
    Chinese Physics B 2023年12期

    Qianwen Wang(汪倩文), Jixuan Wu(武繼璇), Xuepeng Zhan(詹學(xué)鵬),Pengpeng Sang(桑鵬鵬),?, and Jiezhi Chen(陳杰智),?

    1School of Information Science&Technology,Qingdao University of Science&Technology,Qingdao 266000,China

    2School of Information Science and Engineering,Shandong University,Qingdao 266000,China

    Keywords: cold metal,steep-slope transistor,subthreshold swing,quantum device simulations

    1.Introduction

    With the intensely increasing demands for miniaturization and integration of field-effect transistors (FETs), power dissipation has been one of the major challenges limiting the performance of modern nanoelectronics circuits.[1,2]Power consumption mainly includes dynamic switching dissipation and static leakage consumption.[3]Both dynamic and static power consumption are related to the supply voltage.[4,5]Consequently, reducing the supply voltage, while simultaneously ensuring a low off-state current(Ioff),is an effective way to relieve the consumption issue.Therefore, it is highly desired for the steep-slope from off-state to on-state.Researchers have made tremendous efforts on the aspects of materials and device principles.On the one hand, numerous twodimensional (2D) materials have emerged as promising candidates because of their atomically thin thickness and smooth surface, such as transition metal dichalcogenides (TMD),[6,7]group-VA semiconductors,[8,9]and recent emerging MA2Z4family.[10-13]On the other hand, many novel device models have been proposed to achieve steep-slope FETs with the ultra-steep subthreshold swing (SS).SS is the key parameter to evaluate the switching slope of devices and plays a crucial role in power optimization.However, there is a limitation for the SS in conventional MOSFETs, which cannot be lower than 60 mV/dec at room temperature because of the Boltzmann thermal distribution of carriers.Steep-slope devices with sub-60 mV/dec SS have attracted much attention.Tunneling FETs (T-FETs)[14-20]and negative capacitance FETs(NC-FETs)[21-24]have been proposed to break the SS limitation.However,T-FETs and NC-FETs usually suffer from some issues of small drive currents and large hysteresis,respectively.By modulating the density of states (DOS) of the source electrode, the recently proposed cold source FETs(CS-FETs) can realize the steep switching and high on-state current(Ion)simultaneously.[25-28]Structures including Dirac semimetals,[25]semiconductors,[29]isolated states,[30,31]and tunneling junctions[32]have been proposed as the source electrodes of CS-FETs.However,these structures have to be artificially doped,which is challenging for two-dimensional semiconductors.

    Recently, a type of cold metal material was discovered,[33,34]which is intrinsic metal but possesses a gap in the conduction band(CB)or valence band(VB)around the Fermi level(EF).It can effectively filter out the carriers’thermal tails(high-energy electrons or holes)and thereby achieve the sub-60 mV/dec SS.Cold metals can directly serve as injection electrodes without artificial doping.Typical cold metals NbX2and TaX2(X=S, Se, Te) feature an energy gap aboveEFdue to one fewer electron than semiconducting MoX2and WX2,and are similar to p-type doped semiconductors.Hence,NbX2and TaX2can filter the high-energy electrons aboveEFand are suited for n-type CS-FETs(CS-nFETs).[33]Our prior research has revealed that the energy gap belowEFor the decreasing DOS with lower energy is necessary to cut-off or suppress hole tails and realizes p-type CS-FETs(CS-pFETs).[29]Hence,it is important to explore and design the potential cold metals for CS-pFETs.

    In this work, regarding the CS-pFETs, we theoretically propose TcX2and ReX2(X=S,Se)as cold metals aiming at the steeper switching for hole transports.Different from prior NbX2(TaX2),TcX2and ReX2possess one more electron than that of the typical MoX2and WX2semiconductors.The desired energy gap for CS-pFETs can be expected in TcX2and ReX2, which can effectively filter out the high-energy holes and achieve sub-60 mV/dec SS.Based on the first-principles calculations, the electronic properties of TcX2and ReX2are systemically analyzed and their cold-metal characteristics are revealed.Moreover, taking WSe2pFET as an example, the steep switching performance is demonstrated by using TcX2and ReX2as injection sources,systemically verifying the coldmetal effects in device switching.Besides,the thickness influences of cold metals on the switching properties of CS-FETs are also discussed.

    2.Methodology

    The geometric and electronic properties were computed in the framework of density functional theory (DFT) implemented in the QuantumATK package.[35]The ion-electron interactions were treated by using the PseudoDojo normconserving pseudopotential.[36]The exchange-correlation functional was treated by the Perdew Burke Ernzerhof within generalized gradient approximation (GGA).[37]Geometric structures were fully relaxed with a force tolerance of less than 0.01 eV/?A.The Brillouin zone sampling of 12×12×1 Monkhorst-Packk-points was employed.The vacuum space was set to be 20 ?A to avoid the interactions between material and its periodic images.

    The device transport performance was simulated by using DFT coupled with the nonequilibrium Green’s function(NEGF)method.Thek-points were chosen as 1×1×150 for device self-consistent calculations.The current was calculated by using the Landauer-B¨uttiker formula[38]

    wheref(E) is the Fermi-Dirac distribution function;μs/dis the Fermi level of the source/drain electrode;andT(E)is the transmission coefficient from the source to drain.The electrode temperature was set to 300 K.

    3.Results and discussion

    Fig.1.Band structures and DOSs of monolayer TcX2 and ReX2 (X =S,Se,Te).The Fermi level is set to zero.

    As shown in Fig.1,the calculated band structures of TcX2and ReX2present similar shapes to those of NbX2and TaX2.However,the Fermi level crosses through the CB of TcX2and ReX2,which is different from NbX2and TaX2with the Fermi level crossing through the VB.This is related to the electron numbers in the outmost shells of transition metal atoms.In comparison to semiconducting MoX2and WX2, TcX2and ReX2can be seen as naturally n-doped semiconductors.There is an energy gap below the Fermi level,which is referred to as the sub-gap as marked in Fig.1.It is the sub-gap that breaks up the continuous DOS distributions aroundEFand can filter out the holes with energies in the sub-gap.The energy difference betweenEFand the conduction band minimum (CBM)is denoted by ?E.It should be pointed out that the ?Edetermines the number of carrier thermal tails involved in device transport,whereas the sub-gap determines the number of thermal tails that are cut off.Hence, the larger sub-gap and smaller ?Eare desired for effectively cut off thermal tails.As shown in Fig.1, the ?E(sub-gaps) are calculated to be 1.08(0.63 eV),0.79(0.68 eV),0.46(1.35 eV),0.59(1.01 eV),0.46(0.80 eV) and 0.55 (0.65 eV) for ReS2, TcS2, ReSe2, TcSe2,ReTe2and TcTe2, respectively.It is found that the Se- and Te-series possess smaller ?Ethan the S-series, besides, the Se-series possesses larger sub-gaps than the S-and Te-series.Hence, the Se-series exhibits more advantages in cutting off the hole tails.Although the ?Eof 0.79-1.08 eV is slightly too large for ReS2and TcS2to directly cut off thermal tails, the significantly decreasing DOS below the Fermi level can also effectively suppress the spread of hole tails.Given the coldmetal characteristics with a sub-gap or decreasing DOS below the Fermi level, TcX2and ReX2are expected to serve as the injection source of p-type FETs (pFETs)and realize the cold source effects.Moreover,the calculated band structures in the presence of spin-orbital coupling(SOC)are shown in Fig.S1 of the supporting information.The SOC impacts can be ignored for TcX2.Although the SOC induces obvious splitting at thek-point of valence bands for ReX2, the critical sub-gap and ?Eare slightly affected for ReS2and ReSe2.Hence, the SOC is predicted to be free of influence on transport properties when TcX2,ReS2,and ReSe2serve as the injection source.Although ?Eis going to vanish,ReTe2shows cold-metal characteristics with a decreasing DOS.

    Fig.2.(a)Schematic device structure of ReSe2-WSe2 heterojunction CSFETs with ReSe2 acting as injection source.(b) Comparisons of transfer characteristics between ReSe2-WSe2 CS-FET (red lines) and WSe2 MOSFET(black lines);the solid and open points represent the ReS2 electrode and WSe2 channel undergoing the mismatch strain,respectively.

    To verify the role of cold metals (TcX2and ReX2) for p-type CS-FETs, we construct heterojunction FETs with monolayer ReSe2acting as the injection source, as shown in Fig.2(a).The lateral heterostructures are experimentally feasible and can be obtained by edge-epitaxial growth in experiments.[39]The intrinsic and p-type doped WSe2monolayer serves as the channel and drain electrode, respectively.The intrinsic WSe2channel is sandwiched between two 0.41 nm SiO2(with a dielectric constant of 3.9) layers,with a gate length (Lg) of 6.6 nm.The drain electrode is doped with a hole concentration of 0.02 per atom to ensure the Fermi level aligns with or down to the valence band maximum(VBM) of WSe2.Due to the lattice mismatch, two different contact models are considered: (i) the biaxial compressive strain of-1.1% is applied on monolayer ReSe2, while the contacted WSe2is free of strain to preserve its intrinsic transport properties for comparison; (ii) the tensile strain of 1.1%is applied on WSe2channel, while the ReS2metal is free of strain to verify its intrinsic cold-metal characteristic.The ballistic transports of the ReSe2-WSe2FET are simulated under the drain-source voltageVdsof-0.5 V.The results are presented in Fig.2(b)(see the red lines).For comparisons,the conventional WSe2MOSFET is also simulated with the p-doped WSe2serving as the injection source, and the results are also listed in Fig.2(b) (see the black lines).The solid points represent the pristine WSe2channel (contacting the strained ReS2electrode), while the open points represent the strained WSe2channel(contacting the pristine ReS2electrode).It is found that the SS as steep as 32-44 mV/dec is achieved for ReSe2-WSe2FET with ReSe2cold source,which breaks the thermal limitation of 60 mV/dec and is much lower than the result of WSe2MOSFET with p-doped WSe2source(62-64 mV/dec).The sub-60 mV/dec SS is obtained over eight decades of currents from 10-6μA/μm to 102μA/μm.Moreover, the off-state currents (Ioff) are defined around 10-6μA/μm and extracted at the gate voltageVg=0 V, and then the on-state currents (Ion) are obtained atVon=Voff-Vds.By using the constant current definition, the steeper SS results in a largerIonat a finite gate voltage range.However, the largerIondoes not mean larger saturation currents.By employing the cold metal ReSe2as the injection source, theIonof the WSe2FET is improved by one order of magnitude from 3-6μA/μm to 32-75μA/μm.It is found that the tensile strain degenerates WSe2transport properties and the slight compressive strain can promote the cold-source effects of ReS2metal.

    To uncover the physical mechanism of cold metal injection,we further present the source DOS and calculate the corresponding hole densityn(h)distribution by using the Fermi-Dirac functionf(E),n(h)=f(E)×DOS(E).The spectrum currents dIand energy-resolved current density, are also calculated at the on-/off-state.The results are shown in Fig.3,where the source Fermi level (EFS) was set to 0 eV.Benefitting from the sub-gap belowEFin ReSe2, the hole tails with energy lower than 0.35 eV are effectively cut off (see Fig.3(a)).Consequently, the transmission currents from offstate to on-state are mainly from the holes located around theEFS.The thermal leakage currents are abruptly cut off at the energy range lower than 0.35 eV, which is the origin of the sub-60 mV/dec SS.While for the p-doped WSe2source, the continuous DOS belowEFresults in the continuous hole tails spreading to-0.75 eV and below(see Fig.3(b)).The spread tails usually lead to hole leakages from the source to the drain and are not conducive to gate modulation.As a result, the transmission currents from off-state to on-state possess a wide range spreading to-0.61 eV and below,which is quite different from the results of cold-metal sources.

    We proceed to study the other cold metals when applied to an injection source for WSe2pFETs.The ReTe2and TcTe2metals are not further considered as the source because of the large lattice mismatch of over 11% with the WSe2channel.The device structure shown in Fig.2(a)is employed with the ReSe2monolayer replaced by ReS2, TcS2, and TcSe2monolayers,respectively.To avoid the strain influences on the WSe2channel and facilitate direct comparison between the results,we mainly discuss the contact model where the lattice mismatch at the interface is entirely applied on cold metals with a biaxial strain of-0.3%, 0.4%, and-3.4%for ReS2, TcS2,and TcSe2monolayers,respectively.It notes that experimental measurements have shown that 2D TMDs can withstand very large deformations of about 10%effective in-plane strain.[40]The simulatedId-Vgcurves are shown in Fig.4(a).The studied ReX2and TcX2(X=S,Se)injection sources all enable steeper slopes than the p-doped WSe2source and lift the currents from~10-6μA/μm approaching 102μA/μm withinVgof-0.5 V.We further extract the current on/off ratio(Ion/Ioff)and the SS,as listed in Fig.4(b).It is found that the sub-thermal switches were all achieved with the SS of 38 mV/dec, 33 mV/dec,32 mV/dec,and 29 mV/dec for ReS2,TcS2,ReSe2,and TcSe2monolayer source, respectively.Benefitting from the steep slope, theIon/Ioffas large as 2.3×107, 2.5×107, 5.6×107,and 5.1×107are obtained for WSe2pFETs with ReS2,TcS2,ReSe2, and TcSe2monolayer source, respectively.The results are five or ten times higher than that of the normal WSe2MOSFET (4.1×106).Moreover, we also simulate the contact model where the interfacial mismatch is entirely applied on the WSe2channel,and the results can be found in Fig.S1 of the supporting information.The strain-free ReX2and TcX2both can break the thermal limitation and promote the steep SS with values of 33-44 mV/dec.The correspondingIon/Ioffis as high as(2-8)×107.

    Fig.3.Comparisons of injection mechanism between (a) ReSe2 coldsource and(b)p-type doped WSe2 source.The panels from left to right are respectively the DOS of the injection source,corresponding hole density n(h),and the spectral current dI at the on/off state.

    The DOSs and hole distributionsn(h) of the ReX2and TcX2monolayers are presented in Fig.4(c).The exponentially decaying hole density in traditional metals is plotted in blue lines for comparison.For TcSe2(ReSe2)monolayer,the hole tails with energy lower than 0.24(0.35)eV are effectively cut off by the sub-gap below the Fermi level,exhibiting a typical cold metal characteristic like the role of NbTe2in CSnFETs.[33]While for the TcS2(ReS2) monolayer, the overall decaying DOSs with energy result in the superexponentially decreasingn(h) and further the suppression of thermal tail contribution to the off-state, exhibiting a Dirac source characteristic similar to n-doped graphene.[25]It is the suppression or cut-off of the hole tails that breaks the SS limitation in traditional MOSFETs and obtains the sub-thermal switches in CSFETs.

    To benchmark the studied device performance against the international technology roadmap for semiconductors(ITRS),[41]we set off-state currents around 5×10-5μA/μm according to the low-power applications in ITRS requirements.We re-extracted the on-state currents and current on/off ratio.Moreover,we calculated the intrinsic delay time(τ), and power dissipation (PDP), which reflect the switching speed and energy consumption, respectively.τis calculated byτ=(Qon-Qoff)/Ion, and PDP is defined by PDP=(Qon-Qoff)·Vds/W,in whichQon/offis the charges at on/offstate andWis channel width.The calculated results are all listed in Table 1.When employing ReX2and TcX2as sources, the WSe2-CSFETs exhibit higherIon/Ioff, smallerτ,and lower PDP than the normal WSe2-FET.Although theIonof WSe2-CSFETs cannot reach the ITRS requirements, theτand PDP both can fulfill the ITRS standard, exhibiting fast speed and lower consumption.Besides, we further compare the WSe2-CSFETs with some other 2D p-type FETs reported in the paper,including silicane,[42]Bi2O2Se,[43]InSe,[44]and MoSi2N4[45]monolayers.It is found that the studied WSe2-CSFETs possess much higherIon, smallerτ, and lower PDP than the silicane- and Bi2O2Se-based pFETs.Although the ions of WSe2-CSFETs are smaller than the reported MoSi2N4-and InSe-based pFETs, theτand PDP are lower than the MoSi2N4FET and the PDP is comparable with the InSe FET.In conclusion, the ReX2and TcX2metals can effectively improve the WSe2FET performance and enhance the competitiveness of the emerging 2D FETs in future low-power transistor applications.

    Table 1.Performance comparisons of the WSe2 MOSFET and CS-FETs against ITRS requirements for the low-power transistors and with other 2D p-type FETs.

    Fig.4.Transfer characteristics of WSe2 FETs with different cold metals and p-doped WSe2 as the injection source.(b)Switching performance(Ion/Ioff and SS)comparisons of WSe2 FETs with different injection sources.(c)The cold metal DOS and corresponding hole density n(h),EF is set to 0 eV.The exponentially decaying hole distribution nexp is shown in the blue line.

    Fig.5.(a)and(b)Transfer characteristics of WSe2 FETs with different thicknesses ReS2 layers(1L-4L)as injection sources: (a)logarithm and(b)linear coordinates.Inset is the FET schematic structure.(c)DOS of ReS2 layers with different thicknesses(1L-4L).

    We have revealed the cold source effects of the monolayer ReX2and TcX2.However, accessing singlelayer TMDs remains challenging in practical 2D device fabrications.Taking ReS2as an example,we proceed to study the FET’s performance based on multilayer 2D cold metals.The single-layered(1L),bi-layered(2L),tri-layered(3L),and quad-layered(4L)ReS2are respectively used as the injection source of WSe2pFETs (see the inset of Fig.5(b)).The simulated switching performances are shown in Figs.5(a)-5(b).It is found that for the 1L-4L ReS2injection sources,the WSe2pFETs show similarId-Vgcurves, which all can break the thermal limitation and achieve the steep SS with values of 29-33 mV/dec.The correspondingIon/Ioffis as high as (4-5)×107.Besides,as shown in the linear coordinate(Fig.5(b)),theIonincreases gradually from 38 μA/μm to 60 μA/μm with the increasing layers of the ReS2source.This relates to the carrier concentration in the source electrode.Figure 5(c) further presents the calculated DOS of the 1L-4L ReS2injection sources.The DOS decreasing tendency is preserved for various ReS2layers,which leads to the localization of hole distribution around theEFand is conducive to obtaining the steep switches.Besides,we further analyze the DOS of the other three cold metals with different thicknesses (see Fig.S3 of the supporting information).The multilayer ReX2and TcX2all preserve their cold-metal characteristics,and are anticipated to break the SS limitations while serving as the injection source.

    4.Conclusion

    The TcX2and ReX2cold metals were proposed as the injection sources in p-type CS-FETs to achieve sub-thermal switches.First-principles calculations revealed the cold metal characteristics of TcX2and ReX2with a sub-gap below the Fermi level, which can effectively suppress or cut off the thermal tails of holes.Comprehensive transport simulations demonstrated that the steep SS (29-38 mV/dec) and highIon/Ioff((2.3-5.6)×107) were achieved in WSe2CS-pFETs with TcX2and ReX2injection sources, significantly super to those of WSe2MOSFET(64 mV/dec and 4.1×106).Depending on their DOS features,the super-exponential decay of hole tails and direct cutting-off occurred for TcS2(ReS2)and TcSe2(ReSe2)injection sources,respectively.Moreover,by varying the thickness of cold metal from 1L to 4L,the steep switching properties could be obtained in ReS2-WSe2FETs.

    Acknowledgments

    Project was supported by the National Natural Science Foundation of China (Grant Nos.62034006, 92264201, and 62104134) and the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2023QF076 and ZR2023QF054).

    亚洲国产成人一精品久久久| 最近最新中文字幕免费大全7| 亚洲av电影在线观看一区二区三区| 人妻人人澡人人爽人人| 精品99又大又爽又粗少妇毛片| 国产不卡av网站在线观看| 寂寞人妻少妇视频99o| 亚洲国产av新网站| 好男人视频免费观看在线| 久热久热在线精品观看| 不卡视频在线观看欧美| 精品一区二区三卡| 在线亚洲精品国产二区图片欧美| 久久亚洲国产成人精品v| 精品福利永久在线观看| 多毛熟女@视频| 精品卡一卡二卡四卡免费| 亚洲精品国产av成人精品| 欧美日韩av久久| 99久国产av精品国产电影| 精品一区二区三区视频在线| 建设人人有责人人尽责人人享有的| 国产欧美日韩一区二区三区在线| 日韩视频在线欧美| 九九在线视频观看精品| 1024视频免费在线观看| 婷婷色麻豆天堂久久| 亚洲欧美一区二区三区黑人 | 成人免费观看视频高清| 观看av在线不卡| 久久综合国产亚洲精品| 亚洲精品中文字幕在线视频| 亚洲精华国产精华液的使用体验| 国产黄色免费在线视频| 免费大片18禁| 久久久久久久大尺度免费视频| 午夜福利,免费看| 丝袜人妻中文字幕| 熟女电影av网| 免费黄频网站在线观看国产| 免费观看av网站的网址| 国产精品免费大片| 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 一级a做视频免费观看| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 纯流量卡能插随身wifi吗| 久久久久久久久久成人| 日本色播在线视频| 亚洲精品久久午夜乱码| 内地一区二区视频在线| 国产探花极品一区二区| 日韩精品有码人妻一区| 成人无遮挡网站| 精品亚洲乱码少妇综合久久| 日本黄大片高清| 777米奇影视久久| 亚洲精品国产av成人精品| 丝袜喷水一区| 美女大奶头黄色视频| 国产国拍精品亚洲av在线观看| 欧美国产精品va在线观看不卡| 少妇精品久久久久久久| av网站免费在线观看视频| 国产亚洲欧美精品永久| 侵犯人妻中文字幕一二三四区| 午夜福利乱码中文字幕| 男女边摸边吃奶| 日韩中字成人| 观看av在线不卡| 免费观看性生交大片5| 99热这里只有是精品在线观看| 久久久欧美国产精品| 亚洲精品自拍成人| 国产日韩一区二区三区精品不卡| 欧美成人精品欧美一级黄| 亚洲精品美女久久久久99蜜臀 | 乱人伦中国视频| 黑丝袜美女国产一区| 女人精品久久久久毛片| a 毛片基地| 国产又色又爽无遮挡免| 久久99蜜桃精品久久| 久久热在线av| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 欧美精品av麻豆av| 麻豆乱淫一区二区| 国产毛片在线视频| 日韩不卡一区二区三区视频在线| 99久久精品国产国产毛片| 午夜影院在线不卡| 只有这里有精品99| 91在线精品国自产拍蜜月| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 成人国产av品久久久| 777米奇影视久久| 久久久久精品性色| 亚洲欧美成人精品一区二区| 免费高清在线观看日韩| 欧美日韩一区二区视频在线观看视频在线| 2018国产大陆天天弄谢| 欧美xxxx性猛交bbbb| 80岁老熟妇乱子伦牲交| 日本与韩国留学比较| 校园人妻丝袜中文字幕| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 一二三四中文在线观看免费高清| 天天影视国产精品| 18在线观看网站| 在线观看美女被高潮喷水网站| 亚洲精品国产av蜜桃| 久久女婷五月综合色啪小说| 777米奇影视久久| 51国产日韩欧美| 熟女av电影| 美女主播在线视频| 久久国内精品自在自线图片| 亚洲人成网站在线观看播放| 日本色播在线视频| av不卡在线播放| 日韩电影二区| 观看av在线不卡| 丰满少妇做爰视频| 赤兔流量卡办理| 亚洲色图 男人天堂 中文字幕 | 热99久久久久精品小说推荐| 国产极品天堂在线| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 中文字幕最新亚洲高清| 欧美 日韩 精品 国产| 大陆偷拍与自拍| 777米奇影视久久| 亚洲五月色婷婷综合| 久久精品国产亚洲av涩爱| 尾随美女入室| 欧美日韩综合久久久久久| 爱豆传媒免费全集在线观看| 亚洲成人一二三区av| videosex国产| 一级毛片电影观看| 国产乱人偷精品视频| 男女下面插进去视频免费观看 | 欧美日本中文国产一区发布| 中国三级夫妇交换| 建设人人有责人人尽责人人享有的| 考比视频在线观看| 日韩精品有码人妻一区| a 毛片基地| 不卡视频在线观看欧美| 国产男人的电影天堂91| 三级国产精品片| 在线天堂中文资源库| 99热国产这里只有精品6| 性色avwww在线观看| 精品一品国产午夜福利视频| 国产 一区精品| 亚洲欧美日韩卡通动漫| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 99久久精品国产国产毛片| 97超碰精品成人国产| 国产一区二区在线观看日韩| 97人妻天天添夜夜摸| 免费看不卡的av| 美女主播在线视频| 狂野欧美激情性bbbbbb| 亚洲经典国产精华液单| 97在线视频观看| 国产 精品1| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品一区二区三区在线| 观看美女的网站| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| 午夜免费鲁丝| 日韩精品免费视频一区二区三区 | 久久久久网色| 在线精品无人区一区二区三| 亚洲国产欧美在线一区| 在现免费观看毛片| 十八禁网站网址无遮挡| 97在线视频观看| 国产成人欧美| 在线看a的网站| 丰满迷人的少妇在线观看| 内地一区二区视频在线| 午夜日本视频在线| 王馨瑶露胸无遮挡在线观看| 国产精品人妻久久久久久| 人人妻人人澡人人看| 在线 av 中文字幕| 岛国毛片在线播放| 欧美精品国产亚洲| 久久精品国产鲁丝片午夜精品| 男的添女的下面高潮视频| 天美传媒精品一区二区| 成年动漫av网址| 69精品国产乱码久久久| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 视频中文字幕在线观看| 欧美97在线视频| 日本色播在线视频| 国产黄色视频一区二区在线观看| 肉色欧美久久久久久久蜜桃| 亚洲精品av麻豆狂野| 亚洲第一av免费看| 最新中文字幕久久久久| 在线免费观看不下载黄p国产| 欧美97在线视频| 18+在线观看网站| 少妇人妻久久综合中文| 黄网站色视频无遮挡免费观看| 久久精品人人爽人人爽视色| 免费大片18禁| 少妇的逼水好多| 草草在线视频免费看| 少妇 在线观看| videosex国产| 校园人妻丝袜中文字幕| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 国产欧美日韩一区二区三区在线| 国产黄频视频在线观看| 国产 精品1| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 在线观看免费视频网站a站| 中文欧美无线码| 亚洲国产精品一区三区| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 只有这里有精品99| 97人妻天天添夜夜摸| 免费av不卡在线播放| 欧美精品av麻豆av| 日韩精品免费视频一区二区三区 | 最近的中文字幕免费完整| 日韩熟女老妇一区二区性免费视频| av一本久久久久| 三上悠亚av全集在线观看| 香蕉丝袜av| 国产一区二区在线观看日韩| 成人漫画全彩无遮挡| 99热6这里只有精品| 精品一区二区三区视频在线| 高清不卡的av网站| 亚洲三级黄色毛片| 国产精品国产三级国产av玫瑰| 另类精品久久| 超色免费av| 一本大道久久a久久精品| 欧美人与善性xxx| 亚洲综合色网址| 成年av动漫网址| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 亚洲经典国产精华液单| 日日摸夜夜添夜夜爱| 80岁老熟妇乱子伦牲交| 国产男人的电影天堂91| 国产高清三级在线| av片东京热男人的天堂| 老熟女久久久| 国产欧美日韩综合在线一区二区| 在线观看www视频免费| 男女免费视频国产| 成人无遮挡网站| 国产在线视频一区二区| 国产成人av激情在线播放| 精品一品国产午夜福利视频| 久久久久久伊人网av| 香蕉精品网在线| a级毛片在线看网站| 欧美人与性动交α欧美软件 | 丰满少妇做爰视频| 90打野战视频偷拍视频| 看免费av毛片| 国产又色又爽无遮挡免| 黑人猛操日本美女一级片| 久久久国产欧美日韩av| 我的女老师完整版在线观看| 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 国产69精品久久久久777片| 午夜福利,免费看| 午夜福利在线观看免费完整高清在| xxxhd国产人妻xxx| 久久精品国产亚洲av涩爱| 国产片内射在线| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 国产欧美日韩一区二区三区在线| 免费人妻精品一区二区三区视频| 最近2019中文字幕mv第一页| 国产成人精品在线电影| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 久久久国产欧美日韩av| 18禁裸乳无遮挡动漫免费视频| 18禁观看日本| 亚洲av国产av综合av卡| 亚洲人与动物交配视频| 亚洲激情五月婷婷啪啪| 97精品久久久久久久久久精品| 日本免费在线观看一区| 嫩草影院入口| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 99热国产这里只有精品6| 婷婷成人精品国产| 91aial.com中文字幕在线观看| 免费黄色在线免费观看| 男女啪啪激烈高潮av片| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 国产精品一区www在线观看| 免费女性裸体啪啪无遮挡网站| 18禁在线无遮挡免费观看视频| 国产一区二区激情短视频 | 日韩精品免费视频一区二区三区 | 男人舔女人的私密视频| 久久精品国产自在天天线| 在线观看www视频免费| 日韩av在线免费看完整版不卡| 亚洲av免费高清在线观看| 熟女电影av网| 欧美 亚洲 国产 日韩一| 国产av码专区亚洲av| 久久韩国三级中文字幕| 性高湖久久久久久久久免费观看| 99久久综合免费| 成人免费观看视频高清| 国产免费一区二区三区四区乱码| 久久久久久久久久人人人人人人| 精品少妇内射三级| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 免费女性裸体啪啪无遮挡网站| 最后的刺客免费高清国语| 国产成人精品在线电影| 性色avwww在线观看| 黑丝袜美女国产一区| videossex国产| 夫妻性生交免费视频一级片| 精品少妇内射三级| 人体艺术视频欧美日本| 美国免费a级毛片| 欧美最新免费一区二区三区| videossex国产| 成人亚洲欧美一区二区av| 在线观看免费高清a一片| 久久鲁丝午夜福利片| 青青草视频在线视频观看| 欧美老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人av激情在线播放| 人妻一区二区av| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 少妇的逼水好多| 亚洲精品国产色婷婷电影| 亚洲精华国产精华液的使用体验| 综合色丁香网| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩卡通动漫| 成人亚洲欧美一区二区av| 一级毛片我不卡| 美女脱内裤让男人舔精品视频| 日韩免费高清中文字幕av| 最近中文字幕2019免费版| 精品国产国语对白av| 国产男女超爽视频在线观看| 一本久久精品| 天天操日日干夜夜撸| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 少妇人妻精品综合一区二区| 午夜福利网站1000一区二区三区| 欧美精品亚洲一区二区| 国产黄频视频在线观看| 午夜精品国产一区二区电影| 日本wwww免费看| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站| 久久青草综合色| h视频一区二区三区| 我的女老师完整版在线观看| 高清在线视频一区二区三区| 亚洲一级一片aⅴ在线观看| 日本欧美视频一区| 男女边吃奶边做爰视频| 人人妻人人爽人人添夜夜欢视频| 亚洲 欧美一区二区三区| 岛国毛片在线播放| 美国免费a级毛片| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 日本av免费视频播放| 黄色 视频免费看| 亚洲欧洲国产日韩| 国产精品久久久av美女十八| 大码成人一级视频| 韩国精品一区二区三区 | 久久久久网色| 亚洲经典国产精华液单| 天堂8中文在线网| 亚洲av成人精品一二三区| 国产无遮挡羞羞视频在线观看| 一级片免费观看大全| 麻豆乱淫一区二区| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 色吧在线观看| h视频一区二区三区| 制服人妻中文乱码| 免费看光身美女| 黄色毛片三级朝国网站| 精品熟女少妇av免费看| 51国产日韩欧美| 91aial.com中文字幕在线观看| 午夜精品国产一区二区电影| 少妇的丰满在线观看| 日韩欧美一区视频在线观看| 成人漫画全彩无遮挡| 岛国毛片在线播放| 夜夜骑夜夜射夜夜干| av网站免费在线观看视频| 韩国高清视频一区二区三区| 日本wwww免费看| 日本欧美视频一区| 中国国产av一级| 免费大片黄手机在线观看| 亚洲国产最新在线播放| 母亲3免费完整高清在线观看 | 久久精品国产亚洲av天美| 成人国产av品久久久| 久久99热6这里只有精品| 中文字幕人妻熟女乱码| 涩涩av久久男人的天堂| videosex国产| 欧美人与性动交α欧美软件 | 中文字幕制服av| 一级毛片 在线播放| 男女无遮挡免费网站观看| 亚洲av电影在线观看一区二区三区| 黄色配什么色好看| 国产在视频线精品| 午夜日本视频在线| 精品99又大又爽又粗少妇毛片| 日韩大片免费观看网站| 国产成人午夜福利电影在线观看| 亚洲精品久久午夜乱码| 亚洲欧美一区二区三区国产| 日韩免费高清中文字幕av| 欧美国产精品va在线观看不卡| 色5月婷婷丁香| 国产精品一区二区在线不卡| 免费看不卡的av| 啦啦啦在线观看免费高清www| 国产精品久久久av美女十八| 啦啦啦在线观看免费高清www| 巨乳人妻的诱惑在线观看| 亚洲一级一片aⅴ在线观看| 老熟女久久久| 一区二区av电影网| 飞空精品影院首页| 黄片无遮挡物在线观看| 欧美成人午夜精品| 欧美bdsm另类| 美女中出高潮动态图| 人人澡人人妻人| 大陆偷拍与自拍| 久久久久国产精品人妻一区二区| 又大又黄又爽视频免费| 久久精品熟女亚洲av麻豆精品| 黄片播放在线免费| 黑丝袜美女国产一区| 日韩 亚洲 欧美在线| 国产 一区精品| 久久久国产欧美日韩av| 久久影院123| 免费高清在线观看日韩| 久久久久国产精品人妻一区二区| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 高清不卡的av网站| 亚洲精品aⅴ在线观看| 欧美3d第一页| 黑人高潮一二区| 日韩在线高清观看一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| 国产在线免费精品| 久久人人爽人人爽人人片va| 在线精品无人区一区二区三| 久久国内精品自在自线图片| 日本av免费视频播放| 久久久a久久爽久久v久久| 青春草亚洲视频在线观看| 亚洲av电影在线进入| 欧美xxxx性猛交bbbb| 久久热在线av| 久久 成人 亚洲| 看十八女毛片水多多多| 丰满少妇做爰视频| 精品酒店卫生间| 欧美日韩国产mv在线观看视频| 亚洲国产精品一区二区三区在线| 亚洲人与动物交配视频| 男女免费视频国产| 下体分泌物呈黄色| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美视频二区| 婷婷色麻豆天堂久久| 丰满饥渴人妻一区二区三| 免费人妻精品一区二区三区视频| a级毛色黄片| 午夜av观看不卡| 国产欧美日韩一区二区三区在线| 最新中文字幕久久久久| 日日啪夜夜爽| 亚洲精品色激情综合| 免费少妇av软件| 亚洲欧洲日产国产| 另类亚洲欧美激情| 在线观看美女被高潮喷水网站| 黄色配什么色好看| 美女内射精品一级片tv| 99精国产麻豆久久婷婷| www日本在线高清视频| 亚洲av中文av极速乱| 丝袜在线中文字幕| 免费久久久久久久精品成人欧美视频 | 久久毛片免费看一区二区三区| 9191精品国产免费久久| av在线观看视频网站免费| 国产成人欧美| 国产麻豆69| 免费少妇av软件| 激情五月婷婷亚洲| 中国美白少妇内射xxxbb| 高清不卡的av网站| 成年美女黄网站色视频大全免费| 亚洲精品中文字幕在线视频| 九色成人免费人妻av| 色94色欧美一区二区| 韩国av在线不卡| 爱豆传媒免费全集在线观看| 看免费成人av毛片| a 毛片基地| www.色视频.com| 人妻一区二区av| 五月天丁香电影| 国产日韩欧美亚洲二区| 国产精品久久久av美女十八| 成人国产麻豆网| 乱人伦中国视频| 亚洲av福利一区| 亚洲精华国产精华液的使用体验| av天堂久久9| 女人久久www免费人成看片| 99九九在线精品视频| 满18在线观看网站| 久久精品夜色国产| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 国产亚洲欧美精品永久| 秋霞伦理黄片| 亚洲精品久久午夜乱码| 90打野战视频偷拍视频| 国产精品熟女久久久久浪| 22中文网久久字幕| 麻豆精品久久久久久蜜桃| 26uuu在线亚洲综合色| 国产色爽女视频免费观看| 多毛熟女@视频| 亚洲国产日韩一区二区| 人妻人人澡人人爽人人| 母亲3免费完整高清在线观看 | 黄色毛片三级朝国网站| 成年美女黄网站色视频大全免费| 51国产日韩欧美| 少妇被粗大猛烈的视频| av在线老鸭窝| 国产亚洲最大av| 少妇高潮的动态图| 我要看黄色一级片免费的| 美女大奶头黄色视频| 成人二区视频| 桃花免费在线播放| 久久这里有精品视频免费| xxxhd国产人妻xxx| 精品熟女少妇av免费看| 久久久久久人妻|