• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resolution-enhanced single-pixel imaging using the Hadamard transform matrix

    2023-12-15 11:48:26ShuHangBie別書航ChenHuiWang王晨暉RuiBingLv呂瑞兵QianQianBao鮑倩倩QiangFu付強ShaoYingMeng孟少英andXiHaoChen陳希浩
    Chinese Physics B 2023年12期
    關(guān)鍵詞:晨暉

    Shu-Hang Bie(別書航), Chen-Hui Wang(王晨暉), Rui-Bing Lv(呂瑞兵), Qian-Qian Bao(鮑倩倩),Qiang Fu(付強), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陳希浩)

    Key Laboratory of Optoelectronic Devices and Detection Technology,College of Physics,Liaoning University,Shenyang 110036,China

    Keywords: single-pixel imaging,Gaussian filtering,resolution enhancement

    1.Introduction

    Single-pixel imaging(SPI)is a newly developed computational imaging technique,[1-3]which can reconstruct a highdimensional image by various reconstruction algorithms including correlated imaging (also well known as ghost imaging (GI))[5,6]and compressed sensing (CS)[7]by only utilizing one-dimensional (1D) single-pixel signals with the help of the default synchronizing modulation patterns.Because of this special imaging mechanism, it can image a target object in harsh environments such as extremely weak light,[4]atmospheric turbulence[8]and scattering media[9]just as traditional GI can do.[10]Currently,besides performing in the visible spectrum,SPI has demonstrated its viability in exotic regions of the electromagnetic spectrum,such as infrared,[20,21]terahertz,[31-34]x-ray[22,29]and neutron,[23]where conventional imaging techniques face difficulties in both practicality and cost.In 2008, two different imaging schemes of passive and active (it is also well known as computational GI(CGI)) SPI systems were proposed by Duarte’s group and Shapiro,[1,2]respectively.Later, although the idea of active SPI, i.e., CGI comes from traditional GI, an agreement was gradually reached that they were equivalent in imaging principle, modulation strategy and reconstruction method except that the positions of the light source, the spatial light modulator(SLM),the object and so on are different in the imaging setup.

    Different modulation methods have been proposed and implemented for SPI schemes using both digital micromirror devices (DMDs) and SLM technologies.[11-43]Initially, nonorthogonal random patterns were used to modulate the optical field in SPI.[11-14]However, this approach was associated with issues such as long data acquisition time and low reconstruction quality.As SPI continued to develop, it was found that deterministic model-based techniques could effectively address these issues.The two representative modulation schemes are those based on the Hadamard bases[15-38]and Fourier bases,[39-43]respectively.They are able to achieve almost perfect reconstruction of the target scene by taking advantage of these basis patterns from a complete orthogonal set,[44]which effectively overcomes the problem of low reconstruction quality.In addition, they can also reconstruct clear images from the under-sampled data by utilizing the fact that the measurement basis is sparse in different representations.Over more than a decade,there have been many reports about the ordering of these basis patterns in SPI.[16-18,53-55]Besides various CS and CS-based SPI schemes,[24,25]SPI via deep learning[26-30]has been also proposed to not only improve the quality of reconstructed images but greatly reduce the sampling number.

    In the following study, except for the above basis patterns used in SPI, some schemes have been proposed to generate various customized speckle fields.[46-51]In 2014,Cao’s group proposed a versatile method for generating non-Rayleigh speckle patterns.The method involves encoding higher-order correlations into the optical by the phase-only SLM which results in a redistribution of light intensity among the speckle grains in the far field.[46]In recent work, they found that the non-local correlation introduced by tailoring the intensity probability spectral density of the speckle patterns can exceed the resolution limit.[47,48]Moreover, an approach of generating the speckle patterns by different noise modes was proposed in the perspective of power spectral density (PSD),[51,52]where a computational GI-like experiment was realized based on a binary-modulated DMD.It is found that there are special spatial intensity fluctuation correlations between adjacent pixels of these speckle patterns,which helps achieve better noise robustness or higher spatial resolution in CGI systems.[51,52]However, almost all of these schemes of generating customized speckle fields required a certain complicated transformation to obtain speckle patterns and then project these on the modulation device.This is greatly limited by the accuracy of a modulation device such as DMD when the modulation patterns have to be not binary.Therefore,although the transformation of some standardized modulation,patterns may theoretically make the performance of SPI improve,there is still a limitation of hardware in an actual experiment.

    In this paper we propose a novel SPI scheme to achieve a high-resolution image,which is based on the cross-correlation between the standard binary Hadamard modulation bases and their transformation patterns.Here, the DMD is modulated by standard binary Hadamard bases.Merely by a computational processing, each Hadamard transform pattern can be acquired by an inverse Fourier transform on a Gaussianfiltered Hadamard basis in the frequency domain.Based on the cross-correlation between the bucket signals acquired by actual modulated standard Hadamard bases and their corresponding synchronized transform patterns,a higher-resolution image could be restored just according to a traditional GI algorithm.

    2.Theory and method

    The principle of a passive SPI is shown in Fig.1,where an illuminating optical beam from a light-emitting diode (LED)passes through an object and enters a lens-imaging system,then an image of the object is imaged on a DMD.The light beam is reflected and converged into a single-pixel detector after it is modulated by the DMD.As we know,the key point of correlated SPI is the correlation between the modulation matrices and the single-pixel signals.Thus in this section we will start from the second-order correlation function of modulation matrices to study the correlation of Hadamard transformation matrices,the cross-correlation between the Hadamard bases and the corresponding transformation matrices,and enhanced resolution by using the latter.To simplify the calculation without loss of generality, only the 1D SPI is considered here,where the intensity correlation functionG(2)(?x)of modulation bases can be expressed as

    Here ?xis the relative distance inx.Currently,the DMD is the most commonly used SLM in SPI systems due to its superior modulation rate, and broadband wavelength response.Compared with the Fourier basis,the Hadamard basis is more suitable for loading on DMD without a quantization error because of its binary characteristics.[45]Here the correlation function of Hadamard-based matrices can be simplified as

    Fig.1.Diagram of experimental setup of SPI.

    Actually, the transformation of modulated matrix is a standard process of matrix computation.Firstly, each Hadamard matrixI(ω) in the frequency domain is obtained by a spatial Fourier transform ofI(x).And then the filtered matrixIF(ω) is acquired by Gaussian high-pass filtering for eachI(ω),i.e.,

    whereHHP(ω) is a Gaussian function likeHHP(ω) =A0-exp(-ω2/ω0).HereA0andω0are constants set in the function.Finally, eachIF(ω) would be converted intoIF(x) by an inverse Fourier transform, which will be used to correlate with the bucket signals.It is shown in Fig.2 that the correlation between the individual pixels in the filtered matrix is changed with the change of the low-frequency components of the Hadamard matrix.According to the Wiener-Khinchin theorem,the second-order correlation functionG(2)F (?x)after Gaussian filtering can be written as

    whereδ(ω)is the average PSD of Hadamard-based patterns.Based on this equation,the auto-correlation of transformation matrix is simulated, whereA0andω0are set to 3 and 8, respectively,and the simulation result is as shown in Fig.2(b).It can be seen that negative correlation dips come out around the correlation peak,which will lead to resolution improvement in SPI.

    Fig.2.Auto-correlation functions of(a)the Hadamard matrix and(b)transformation matrix;(c)cross-correlation function between Hadamard and their transformed matrix.

    In the proposed scheme, the image is reconstructed by the cross-correlation of the Hadamard transformation matrices and the bucket signals that are obtained by using the Hadamard matrices to encode and sample the object.Therefore,the correlation functionG(2)

    HF(?x)is accordingly modified by

    which is also used to simulate the correlation in Fig.2(c).It is similar to Fig.2(b)that significant spatial cross-correlation dips also exist around the correlation peak, which means that new background noise will be formed near the object when the object image is reconstructed.

    In an actual SPI system,thei-th modulated patternIi(x,y)(1≤x ≤M,1≤y ≤N)withM×Npixels is generally a twodimensional discrete matrix.Therefore,thei-th bucket signalBiacquired by the single-pixel detector can be expressed as

    3.Simulations and experiments

    3.1.Simulation results

    In order to demonstrate the effectiveness of the proposed method,an SPI simulation experiment is first performed based on the scheme in Fig.1.In the present simulation, a binary three-slit picture with a size of 64×64 pixels is selected as the imaged object shown in Fig.3(a).The image in Fig.3(b)is obtained by Gaussian low-pass filtering for Fig.3(a),which obviously became blurred because of the loss of spatial highfrequency components of light carrying the information of the object.It is noted that the low-pass filtering for Fig.3(a)should be regarded to mimic a diffraction-limited SPI system and the image of Fig.3(b)is equivalent to the one that is projected on the DMD in a passive diffraction-limited SPI experiment.In the simulation process of SPI,the bucket signals are simulated as follows.The fuzzy image of Fig.3(b) is convolved with each computer-generated Hadamard matrix, and then each convolution pattern is summed pixel by pixel to get a series of 1D bucket signals that are actually captured by a single-pixel detector in an experiment.The corresponding reconstructed images are shown in Figs.3(c)and 3(d)according to Eqs.(7) and (8), respectively.It can be seen that the image of Fig.3(c) recovered by Hadamard matrices is almost as blurred as Fig.3(b) while the image of Fig.3(d) is more resolved and distinguished, which is retrieved by the correlation between the Hadamard and their transformed matrices.It should be noted that the Hadamard matrix that we use is the optimized ordering of the Hadamard basis by using fast Walsh Hadamard transform.[16]To further verify the proposed scheme,an object with two Chinese characters in Fig.3(f)that is a shortened form of Liaoning University is substituted for Fig.3(a)to perform the same simulation experiment.The experimental results of simulations are shown in the second row of Fig.3,which are quite similar to the results of the first simulation as predicted.It is not a surprise that the blurred images can be resolved and distinguished more clearly by the proposed method.When the transfer function in the diffraction system is invertible and known,the higher-resolution image can be reconstructed by the deconvolution just shown in Fig.2.However, it is obvious in Figs.3(d) and 3(i) that additional background noise is also brought in the reconstructed images due to the negative correlation,which would form socalled “virtual” images near the real images that may lead to the image degradation and the decreasing of SNR.Therefore,a simple spatial high-pass filtering method is adopted to remove the background noise, where a properly chosen threshold that is determined by the direct current background of the recovered images is set to subtract the negative background.The background-subtracted images are shown in Figs.3(e)and 3(j), where they have been remapped to a grayscale range of 0-255.

    Fig.3.First column: digital-imaged objects of binary pictures with (a)three slits and (f) two Chinese characters.Second column: (b) and (g)are low-pass filtering of (a) and (f), respectively.Third column: reconstructed images of(c)and(h)for the images in the second column based on Eq.(7).Fourth column: reconstructed images of(d)and(i)based on Eq.(8).Fifth column: background-free images of(e)and(j).

    Fig.4.Cross-sectional images of Figs.3(a)-3(e).

    In addition, how much the proposed scheme can improve the image resolution is necessary to be much concerned.Therefore,the cross sections of the first row of Fig.3 are plotted in Fig.4 to further explain this problem, where they are represented by the black,red(covered by the blue line),blue,green and purple lines, respectively.Here, it can be more clearly seen that the proposed scheme can achieve a highresolution image with a better SNR, where the two slits on the left are just distinguished while the two slits on the right are completely discernible (see the green and purple lines).Honestly, the spacing distancesW1andW2of the three slits in Fig.3(a)are specially designed to talk about the diffraction limit and super-resolution.It is clear in Fig.4 that the two slits on the right of the blue line are just resolved whenW1=12 pixels,which can be considered as the diffraction limit according to the definition of Rayleigh diffraction bound for the case of Hadamard patterns.The left two slits with a spacing width ofW2=6 pixels are used to test the resolution limit in our scheme,where they are just resolved,too.Thus,it is estimated that the proposed method can exceed the resolution limit by a factor of about 2.

    3.2.Experimental results

    For the purpose of further verifying the feasibility and performance of our method, a typical diffraction-limited SPI experiment is demonstrated with respect to the configuration in Fig.1, where an object of a double-slit with a slit spacing ofW=2 mm illuminated by a white light LED is imaged on the DMD(V-7000/ViALUX)by an imaging lens with a focal length off= 100 mm.One of the reflected light beams by DMD is totally captured by a single-pixel detector(DET36A2/Thorlabs)with the help of a collecting lens.In addition, a slit with an adjustable widthlis co-axially inserted at the rear focal plane, which is used to form a diffractionlimited imaging system by blocking the spatial high-frequency components of light carrying the object information.The signal from the single-pixel detector is fed into an amplification circuit including a signal-amplifier and an analog-digital converter,and then the signal from the amplifier circuit is finally saved to a computer to be processed via a data acquisition card.Generally, Hadamard bases with a sampling number of the Nyquist limit are in advance stored in the memory of DMD, and the SPI experiment is also realized at a sampling rate of 100%.The results for different sampling rates(including under sample and 100%sample)of different methods are compared and discussed in data post-processing.Here, the sampling number of 32×32=1024 is chosen in the present experiment, which means the size of the modulation matrix is also 32×32 pixels.Notice that the ordering of Hadamard basis is the same with the above simulations.[16]

    Fig.5.The reconstructed images by Eq.(7) with different slit widths l=(a)30 mm, (b)0.3 mm; (c)the reconstructed image by Eq.(8), and(d)the background-free version of panel(c).

    Two different settings oflare studied here, i.e.,l=30 mm andl=0.3 mm,corresponding to the non-diffractionlimited and diffraction-limited systems, respectively.The reconstructed images by Eq.(7)are shown in Figs.5(a)and 5(b).Apparently, two slits in Fig.5(a) are quite clearly resolvable while those in Fig.5(b) are almost overlapped and become blurred.Figure 5(c) is the reconstructed image achieved by the proposed method based on Eq.(8).Though the image seems to have more noise caused by the decrease of optical intensity when smallerlis preferred,two slits can be perfectly distinguishable.Of course, negative background noise also exists inevitably due to the cross-correlation.However, the clearer background-free image is achieved by removing the background noise and shown in Fig.5(d).The experimental results are in good agreement with the simulations.

    4.Conclusion

    In conclusion,we have successfully performed a computational GI experiment by correlating a series of bucket signals obtained from a single-pixel detector with the synchronized transformed matrices of modulating DMD Hadamard bases.Our experiment revealed the observation of anticorrelation phenomena between the Hadamard bases and their transformed counterparts, as well as the bunching effect between them.Furthermore, we were able to improve the resolution of the reconstructed image.The proposed approach for achieving high-resolution imaging is solely based on a passive SPI setup and does not rely on the accuracy of the modulated device or complex imaging systems.The transformation of the matrix and image reconstruction are carried out by postprocessing of the computation, which makes this scheme applicable to various mature SPI systems that have been extensively studied.Despite the presence of additional background noise due to negative correlations,a clearer reconstructed image can be obtained through spatial filtering to remove most of the noise.This approach offers an SPI method for achieving high-resolution imaging without increasing the complexity of the SPI system, and may be suitable for use in combination with different imaging systems.

    Acknowledgments

    We thank Prof.L.A.Wu for helpful discussions.Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302).

    猜你喜歡
    晨暉
    游崀山紫霞峒
    乘用車盤式制動creep groan噪音優(yōu)化
    不同類型水稻品種莖葉維管束與同化物運轉(zhuǎn)特征
    一類二元分式最小值問題的探究和推廣
    夏弟弟
    碧潭白鵝
    當代貴州(2018年24期)2018-08-06 10:39:00
    第二屆中國畫學(xué)會展·時代華章
    國畫家(2018年2期)2018-04-25 06:39:06
    覃琪、王詩曼、李明明、蔣晨暉作品
    The pursuit of love
    “冰棍”
    男的添女的下面高潮视频| 成人亚洲欧美一区二区av| 亚洲久久久国产精品| 国产精品.久久久| 亚洲av中文av极速乱| 国产一区亚洲一区在线观看| 咕卡用的链子| 精品亚洲乱码少妇综合久久| 黄片小视频在线播放| 中文天堂在线官网| 国产极品粉嫩免费观看在线| 黄片播放在线免费| 日韩 亚洲 欧美在线| 国产精品久久久av美女十八| 美女脱内裤让男人舔精品视频| 少妇被粗大猛烈的视频| 亚洲 欧美一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲婷婷狠狠爱综合网| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| 香蕉国产在线看| 各种免费的搞黄视频| 王馨瑶露胸无遮挡在线观看| 国产精品嫩草影院av在线观看| 天天影视国产精品| 捣出白浆h1v1| 看非洲黑人一级黄片| 亚洲情色 制服丝袜| 久久人人爽人人片av| 午夜福利乱码中文字幕| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 亚洲精品成人av观看孕妇| 国产亚洲av片在线观看秒播厂| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 美女xxoo啪啪120秒动态图| 国产日韩欧美视频二区| 国产精品二区激情视频| 久久精品久久久久久噜噜老黄| 午夜免费鲁丝| 国产欧美日韩一区二区三区在线| 亚洲成色77777| 日韩伦理黄色片| 久久99热这里只频精品6学生| 激情视频va一区二区三区| 蜜桃在线观看..| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| 久久久精品区二区三区| 亚洲国产日韩一区二区| 国产一区二区在线观看av| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| 夫妻午夜视频| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av涩爱| 最新的欧美精品一区二区| 男女国产视频网站| 亚洲精品在线美女| 国产一区二区激情短视频 | 最近的中文字幕免费完整| 久久婷婷青草| 久久99蜜桃精品久久| 国产精品女同一区二区软件| 自线自在国产av| 久久久久久久久久久免费av| 桃花免费在线播放| 国产精品久久久久久精品电影小说| 男人添女人高潮全过程视频| 久久精品亚洲av国产电影网| av卡一久久| 亚洲少妇的诱惑av| 男女免费视频国产| 国产视频首页在线观看| 欧美亚洲日本最大视频资源| 亚洲人成77777在线视频| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 国产毛片在线视频| 少妇人妻 视频| 亚洲婷婷狠狠爱综合网| 欧美在线黄色| av在线观看视频网站免费| 人人澡人人妻人| 女的被弄到高潮叫床怎么办| 国产一级毛片在线| 国产男女超爽视频在线观看| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 秋霞伦理黄片| 一区在线观看完整版| 久久97久久精品| 免费黄网站久久成人精品| 国产av精品麻豆| xxx大片免费视频| 亚洲欧美精品综合一区二区三区 | 免费不卡的大黄色大毛片视频在线观看| 又黄又粗又硬又大视频| 国产精品国产av在线观看| 91国产中文字幕| 91在线精品国自产拍蜜月| 韩国精品一区二区三区| 国产女主播在线喷水免费视频网站| 国产亚洲午夜精品一区二区久久| 精品少妇一区二区三区视频日本电影 | 人人妻人人澡人人看| 国产免费一区二区三区四区乱码| 久久久a久久爽久久v久久| 国产免费福利视频在线观看| 亚洲精品国产色婷婷电影| 国产精品国产三级国产专区5o| 亚洲男人天堂网一区| 观看av在线不卡| 午夜福利视频精品| 美女中出高潮动态图| 久久久亚洲精品成人影院| 制服人妻中文乱码| 如何舔出高潮| 丝袜美腿诱惑在线| 97在线视频观看| 婷婷色av中文字幕| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区四区五区乱码 | 免费久久久久久久精品成人欧美视频| 亚洲欧美一区二区三区国产| 国产成人精品福利久久| 精品午夜福利在线看| 最近的中文字幕免费完整| 久久精品国产亚洲av涩爱| 日韩制服骚丝袜av| 韩国av在线不卡| 不卡视频在线观看欧美| 搡女人真爽免费视频火全软件| 色播在线永久视频| 赤兔流量卡办理| 久久99蜜桃精品久久| 国产成人免费无遮挡视频| 国产成人欧美| 亚洲一码二码三码区别大吗| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 久久久国产精品麻豆| 18禁裸乳无遮挡动漫免费视频| a级毛片黄视频| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 三级国产精品片| 黄色配什么色好看| 一边亲一边摸免费视频| 午夜精品国产一区二区电影| 伊人亚洲综合成人网| 精品第一国产精品| 伊人久久大香线蕉亚洲五| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区 视频在线| 999久久久国产精品视频| 成年美女黄网站色视频大全免费| 色视频在线一区二区三区| 乱人伦中国视频| 满18在线观看网站| 亚洲 欧美一区二区三区| 老女人水多毛片| 日本-黄色视频高清免费观看| 视频区图区小说| av在线播放精品| 成年av动漫网址| 欧美黄色片欧美黄色片| 成人国产av品久久久| 极品少妇高潮喷水抽搐| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 男人添女人高潮全过程视频| 亚洲美女视频黄频| 少妇熟女欧美另类| 精品国产乱码久久久久久男人| 男女国产视频网站| 一个人免费看片子| 观看av在线不卡| 国产精品熟女久久久久浪| 亚洲精品一二三| 观看av在线不卡| 热99国产精品久久久久久7| 尾随美女入室| 国产成人精品婷婷| 国产精品久久久久久久久免| 天天躁夜夜躁狠狠久久av| 最近中文字幕高清免费大全6| www.自偷自拍.com| 美女大奶头黄色视频| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| av免费观看日本| 国产精品嫩草影院av在线观看| 99国产精品免费福利视频| 日韩大片免费观看网站| 黄色 视频免费看| 亚洲第一区二区三区不卡| 久久午夜综合久久蜜桃| 国产又爽黄色视频| 亚洲国产av影院在线观看| 水蜜桃什么品种好| 叶爱在线成人免费视频播放| 日本爱情动作片www.在线观看| 免费黄频网站在线观看国产| 精品国产乱码久久久久久小说| 男人爽女人下面视频在线观看| 欧美+日韩+精品| 免费不卡的大黄色大毛片视频在线观看| 国产精品一二三区在线看| 久久久久久久久久人人人人人人| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 国产成人免费无遮挡视频| 一区二区日韩欧美中文字幕| 免费播放大片免费观看视频在线观看| 丰满饥渴人妻一区二区三| 夫妻性生交免费视频一级片| 91久久精品国产一区二区三区| 国产深夜福利视频在线观看| 黄片无遮挡物在线观看| 性色avwww在线观看| 蜜桃在线观看..| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 精品福利永久在线观看| 精品少妇内射三级| 国产在线视频一区二区| 亚洲精品国产色婷婷电影| 男女午夜视频在线观看| 26uuu在线亚洲综合色| 一级a爱视频在线免费观看| 波野结衣二区三区在线| 一级毛片电影观看| 久久精品国产亚洲av天美| 麻豆av在线久日| 9191精品国产免费久久| 美女高潮到喷水免费观看| 色哟哟·www| 久久人人97超碰香蕉20202| 电影成人av| 久久午夜福利片| 18+在线观看网站| 日韩大片免费观看网站| 老熟女久久久| 欧美日韩一级在线毛片| 一区二区三区激情视频| 亚洲精品自拍成人| 五月天丁香电影| 大香蕉久久网| 看免费av毛片| 欧美激情 高清一区二区三区| 日韩中文字幕视频在线看片| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 久久人人爽人人片av| 亚洲第一区二区三区不卡| 日日爽夜夜爽网站| 亚洲在久久综合| av片东京热男人的天堂| 久久精品国产a三级三级三级| 国产精品偷伦视频观看了| 免费日韩欧美在线观看| 在线天堂最新版资源| xxxhd国产人妻xxx| 成人午夜精彩视频在线观看| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 欧美激情高清一区二区三区 | 久久久久久人人人人人| 精品人妻偷拍中文字幕| 国产精品久久久久久精品电影小说| 波野结衣二区三区在线| 在线观看免费高清a一片| 国产不卡av网站在线观看| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美| 国产黄频视频在线观看| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 我要看黄色一级片免费的| 九草在线视频观看| 午夜免费鲁丝| 99re6热这里在线精品视频| 国产亚洲午夜精品一区二区久久| 精品一区二区三卡| 成人国语在线视频| 久久久国产欧美日韩av| 最新中文字幕久久久久| 韩国高清视频一区二区三区| 亚洲一区二区三区欧美精品| 国产 精品1| 美女脱内裤让男人舔精品视频| 久久97久久精品| 国产毛片在线视频| 亚洲情色 制服丝袜| 日韩欧美一区视频在线观看| www.精华液| 亚洲国产毛片av蜜桃av| 久久久久视频综合| 91成人精品电影| 久久久精品国产亚洲av高清涩受| 在线亚洲精品国产二区图片欧美| 亚洲天堂av无毛| 国产精品国产三级国产专区5o| 伊人亚洲综合成人网| 超碰成人久久| 久久精品国产亚洲av高清一级| 午夜老司机福利剧场| 岛国毛片在线播放| 亚洲色图综合在线观看| 国产探花极品一区二区| av国产精品久久久久影院| 宅男免费午夜| 制服人妻中文乱码| 国产毛片在线视频| 午夜免费鲁丝| 久久av网站| 免费av中文字幕在线| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 亚洲av免费高清在线观看| 国产成人精品在线电影| 国产精品女同一区二区软件| 久久久久久久亚洲中文字幕| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放| 婷婷色综合大香蕉| 999久久久国产精品视频| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 国产熟女欧美一区二区| 欧美人与性动交α欧美软件| 男女免费视频国产| 久久久久精品性色| 成人毛片a级毛片在线播放| 色婷婷久久久亚洲欧美| 国产成人精品无人区| 亚洲四区av| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 成年美女黄网站色视频大全免费| 久久久久网色| 精品福利永久在线观看| 97精品久久久久久久久久精品| 一级片免费观看大全| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看| 好男人视频免费观看在线| 成人亚洲精品一区在线观看| 欧美日韩国产mv在线观看视频| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 欧美激情高清一区二区三区 | 欧美在线黄色| 多毛熟女@视频| 国产淫语在线视频| 91久久精品国产一区二区三区| 少妇被粗大的猛进出69影院| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 免费久久久久久久精品成人欧美视频| 赤兔流量卡办理| 国产片内射在线| 赤兔流量卡办理| 国产片内射在线| 免费看不卡的av| 久久久久人妻精品一区果冻| 亚洲久久久国产精品| 午夜免费鲁丝| videosex国产| 性色avwww在线观看| 丝袜美腿诱惑在线| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 国产亚洲一区二区精品| 日韩中字成人| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频| 亚洲国产毛片av蜜桃av| 亚洲欧洲日产国产| 午夜福利,免费看| 午夜免费鲁丝| 国产精品一区二区在线观看99| av卡一久久| 99精国产麻豆久久婷婷| 五月天丁香电影| 久久久久久久久久久久大奶| 韩国高清视频一区二区三区| 久久精品国产自在天天线| 亚洲精品国产av蜜桃| 精品国产一区二区久久| 三上悠亚av全集在线观看| 日本wwww免费看| 纯流量卡能插随身wifi吗| 日韩中字成人| 极品少妇高潮喷水抽搐| 亚洲精品国产一区二区精华液| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 亚洲在久久综合| 久久精品久久精品一区二区三区| 日韩熟女老妇一区二区性免费视频| av国产久精品久网站免费入址| 欧美日韩综合久久久久久| 我要看黄色一级片免费的| 男女下面插进去视频免费观看| 最近2019中文字幕mv第一页| 亚洲色图 男人天堂 中文字幕| 纯流量卡能插随身wifi吗| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频在线观看免费| 高清av免费在线| 久久久欧美国产精品| 国产日韩一区二区三区精品不卡| 国产一区二区在线观看av| 国产亚洲精品第一综合不卡| 午夜久久久在线观看| 男人添女人高潮全过程视频| 亚洲av电影在线观看一区二区三区| 亚洲精华国产精华液的使用体验| 久久久久久久精品精品| 久久精品人人爽人人爽视色| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 天堂俺去俺来也www色官网| 91午夜精品亚洲一区二区三区| 国产日韩欧美视频二区| 久久久久精品久久久久真实原创| 丁香六月天网| 激情五月婷婷亚洲| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 精品国产乱码久久久久久男人| 国产精品久久久久久精品电影小说| 久久免费观看电影| 妹子高潮喷水视频| 少妇人妻久久综合中文| 免费少妇av软件| 黑人猛操日本美女一级片| 黄频高清免费视频| 一本久久精品| 纵有疾风起免费观看全集完整版| 国产精品一二三区在线看| 最新中文字幕久久久久| 巨乳人妻的诱惑在线观看| 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| 青青草视频在线视频观看| 黄色配什么色好看| 最近手机中文字幕大全| 麻豆av在线久日| 欧美 日韩 精品 国产| 亚洲av男天堂| 午夜福利乱码中文字幕| 最近中文字幕高清免费大全6| 老司机影院毛片| 中文乱码字字幕精品一区二区三区| 1024视频免费在线观看| 天天躁夜夜躁狠狠躁躁| 成年女人毛片免费观看观看9 | 欧美日韩精品网址| 香蕉国产在线看| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 午夜福利一区二区在线看| 亚洲国产欧美在线一区| 久久精品aⅴ一区二区三区四区 | 乱人伦中国视频| 在线观看三级黄色| 亚洲成av片中文字幕在线观看 | 亚洲精品中文字幕在线视频| 一级毛片 在线播放| h视频一区二区三区| 国产综合精华液| 成年人免费黄色播放视频| 一本久久精品| 亚洲人成电影观看| 高清在线视频一区二区三区| 亚洲精品乱久久久久久| 亚洲国产精品999| 午夜福利视频精品| 伊人亚洲综合成人网| 国产成人欧美| 久久久久国产一级毛片高清牌| 久久亚洲国产成人精品v| 国产免费视频播放在线视频| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 婷婷色综合大香蕉| 精品国产一区二区三区四区第35| 日韩成人av中文字幕在线观看| 久久久久久久久久人人人人人人| 少妇 在线观看| 日韩精品有码人妻一区| 国产成人精品一,二区| 制服人妻中文乱码| 免费高清在线观看日韩| 97精品久久久久久久久久精品| 男女边摸边吃奶| 亚洲欧美日韩另类电影网站| 日本色播在线视频| 欧美在线黄色| 成人漫画全彩无遮挡| 国产毛片在线视频| 亚洲色图综合在线观看| 寂寞人妻少妇视频99o| 啦啦啦啦在线视频资源| 十分钟在线观看高清视频www| 亚洲视频免费观看视频| 咕卡用的链子| 在线观看免费日韩欧美大片| 91成人精品电影| 成人18禁高潮啪啪吃奶动态图| 久久国产精品大桥未久av| 免费黄色在线免费观看| 亚洲综合色惰| 欧美黄色片欧美黄色片| 我要看黄色一级片免费的| 久久99蜜桃精品久久| 国产亚洲av片在线观看秒播厂| 亚洲国产精品一区三区| 肉色欧美久久久久久久蜜桃| 天堂俺去俺来也www色官网| 成人国产av品久久久| 国产精品 国内视频| 久久久久久久国产电影| 有码 亚洲区| 九草在线视频观看| 国产成人aa在线观看| 一区二区av电影网| 亚洲精华国产精华液的使用体验| 天天躁日日躁夜夜躁夜夜| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 青春草亚洲视频在线观看| 香蕉丝袜av| 青春草国产在线视频| 99热网站在线观看| 18禁国产床啪视频网站| 精品久久久精品久久久| 香蕉国产在线看| 久久国产精品男人的天堂亚洲| 黄色怎么调成土黄色| 亚洲欧美精品自产自拍| 黄色 视频免费看| 日韩av免费高清视频| 大香蕉久久网| 亚洲欧美日韩另类电影网站| 国产97色在线日韩免费| 精品少妇黑人巨大在线播放| 一本大道久久a久久精品| 男人操女人黄网站| 精品视频人人做人人爽| 99久久综合免费| 天天操日日干夜夜撸| 日韩制服丝袜自拍偷拍| 国产亚洲午夜精品一区二区久久| 日韩熟女老妇一区二区性免费视频| 午夜激情av网站| 亚洲伊人久久精品综合| 亚洲,欧美,日韩| 五月天丁香电影| 日韩精品有码人妻一区| 亚洲精华国产精华液的使用体验| 我要看黄色一级片免费的| 69精品国产乱码久久久| 精品人妻在线不人妻| 啦啦啦视频在线资源免费观看| 男女边摸边吃奶| 久久久国产欧美日韩av| 免费观看性生交大片5| 国产精品 国内视频| 国产日韩欧美亚洲二区| xxxhd国产人妻xxx| 一级,二级,三级黄色视频| 精品亚洲成国产av| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠久久av| 国产日韩欧美亚洲二区| 久久99热这里只频精品6学生| 老鸭窝网址在线观看| 高清在线视频一区二区三区| 我的亚洲天堂| 日韩人妻精品一区2区三区| 丁香六月天网| 亚洲,一卡二卡三卡| 亚洲精品日韩在线中文字幕| 亚洲欧美色中文字幕在线| 91精品国产国语对白视频| 国产福利在线免费观看视频| 久久精品国产a三级三级三级| 黑人欧美特级aaaaaa片| 欧美精品一区二区大全| 极品少妇高潮喷水抽搐| 啦啦啦中文免费视频观看日本| 一级,二级,三级黄色视频| 少妇精品久久久久久久| 免费观看无遮挡的男女| av在线观看视频网站免费| 久久狼人影院| 一级毛片我不卡| 欧美日韩视频精品一区| 人妻 亚洲 视频| 精品国产国语对白av| 欧美人与性动交α欧美精品济南到 | 电影成人av| 亚洲国产毛片av蜜桃av|