• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resolution-enhanced single-pixel imaging using the Hadamard transform matrix

    2023-12-15 11:48:26ShuHangBie別書航ChenHuiWang王晨暉RuiBingLv呂瑞兵QianQianBao鮑倩倩QiangFu付強ShaoYingMeng孟少英andXiHaoChen陳希浩
    Chinese Physics B 2023年12期
    關(guān)鍵詞:晨暉

    Shu-Hang Bie(別書航), Chen-Hui Wang(王晨暉), Rui-Bing Lv(呂瑞兵), Qian-Qian Bao(鮑倩倩),Qiang Fu(付強), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陳希浩)

    Key Laboratory of Optoelectronic Devices and Detection Technology,College of Physics,Liaoning University,Shenyang 110036,China

    Keywords: single-pixel imaging,Gaussian filtering,resolution enhancement

    1.Introduction

    Single-pixel imaging(SPI)is a newly developed computational imaging technique,[1-3]which can reconstruct a highdimensional image by various reconstruction algorithms including correlated imaging (also well known as ghost imaging (GI))[5,6]and compressed sensing (CS)[7]by only utilizing one-dimensional (1D) single-pixel signals with the help of the default synchronizing modulation patterns.Because of this special imaging mechanism, it can image a target object in harsh environments such as extremely weak light,[4]atmospheric turbulence[8]and scattering media[9]just as traditional GI can do.[10]Currently,besides performing in the visible spectrum,SPI has demonstrated its viability in exotic regions of the electromagnetic spectrum,such as infrared,[20,21]terahertz,[31-34]x-ray[22,29]and neutron,[23]where conventional imaging techniques face difficulties in both practicality and cost.In 2008, two different imaging schemes of passive and active (it is also well known as computational GI(CGI)) SPI systems were proposed by Duarte’s group and Shapiro,[1,2]respectively.Later, although the idea of active SPI, i.e., CGI comes from traditional GI, an agreement was gradually reached that they were equivalent in imaging principle, modulation strategy and reconstruction method except that the positions of the light source, the spatial light modulator(SLM),the object and so on are different in the imaging setup.

    Different modulation methods have been proposed and implemented for SPI schemes using both digital micromirror devices (DMDs) and SLM technologies.[11-43]Initially, nonorthogonal random patterns were used to modulate the optical field in SPI.[11-14]However, this approach was associated with issues such as long data acquisition time and low reconstruction quality.As SPI continued to develop, it was found that deterministic model-based techniques could effectively address these issues.The two representative modulation schemes are those based on the Hadamard bases[15-38]and Fourier bases,[39-43]respectively.They are able to achieve almost perfect reconstruction of the target scene by taking advantage of these basis patterns from a complete orthogonal set,[44]which effectively overcomes the problem of low reconstruction quality.In addition, they can also reconstruct clear images from the under-sampled data by utilizing the fact that the measurement basis is sparse in different representations.Over more than a decade,there have been many reports about the ordering of these basis patterns in SPI.[16-18,53-55]Besides various CS and CS-based SPI schemes,[24,25]SPI via deep learning[26-30]has been also proposed to not only improve the quality of reconstructed images but greatly reduce the sampling number.

    In the following study, except for the above basis patterns used in SPI, some schemes have been proposed to generate various customized speckle fields.[46-51]In 2014,Cao’s group proposed a versatile method for generating non-Rayleigh speckle patterns.The method involves encoding higher-order correlations into the optical by the phase-only SLM which results in a redistribution of light intensity among the speckle grains in the far field.[46]In recent work, they found that the non-local correlation introduced by tailoring the intensity probability spectral density of the speckle patterns can exceed the resolution limit.[47,48]Moreover, an approach of generating the speckle patterns by different noise modes was proposed in the perspective of power spectral density (PSD),[51,52]where a computational GI-like experiment was realized based on a binary-modulated DMD.It is found that there are special spatial intensity fluctuation correlations between adjacent pixels of these speckle patterns,which helps achieve better noise robustness or higher spatial resolution in CGI systems.[51,52]However, almost all of these schemes of generating customized speckle fields required a certain complicated transformation to obtain speckle patterns and then project these on the modulation device.This is greatly limited by the accuracy of a modulation device such as DMD when the modulation patterns have to be not binary.Therefore,although the transformation of some standardized modulation,patterns may theoretically make the performance of SPI improve,there is still a limitation of hardware in an actual experiment.

    In this paper we propose a novel SPI scheme to achieve a high-resolution image,which is based on the cross-correlation between the standard binary Hadamard modulation bases and their transformation patterns.Here, the DMD is modulated by standard binary Hadamard bases.Merely by a computational processing, each Hadamard transform pattern can be acquired by an inverse Fourier transform on a Gaussianfiltered Hadamard basis in the frequency domain.Based on the cross-correlation between the bucket signals acquired by actual modulated standard Hadamard bases and their corresponding synchronized transform patterns,a higher-resolution image could be restored just according to a traditional GI algorithm.

    2.Theory and method

    The principle of a passive SPI is shown in Fig.1,where an illuminating optical beam from a light-emitting diode (LED)passes through an object and enters a lens-imaging system,then an image of the object is imaged on a DMD.The light beam is reflected and converged into a single-pixel detector after it is modulated by the DMD.As we know,the key point of correlated SPI is the correlation between the modulation matrices and the single-pixel signals.Thus in this section we will start from the second-order correlation function of modulation matrices to study the correlation of Hadamard transformation matrices,the cross-correlation between the Hadamard bases and the corresponding transformation matrices,and enhanced resolution by using the latter.To simplify the calculation without loss of generality, only the 1D SPI is considered here,where the intensity correlation functionG(2)(?x)of modulation bases can be expressed as

    Here ?xis the relative distance inx.Currently,the DMD is the most commonly used SLM in SPI systems due to its superior modulation rate, and broadband wavelength response.Compared with the Fourier basis,the Hadamard basis is more suitable for loading on DMD without a quantization error because of its binary characteristics.[45]Here the correlation function of Hadamard-based matrices can be simplified as

    Fig.1.Diagram of experimental setup of SPI.

    Actually, the transformation of modulated matrix is a standard process of matrix computation.Firstly, each Hadamard matrixI(ω) in the frequency domain is obtained by a spatial Fourier transform ofI(x).And then the filtered matrixIF(ω) is acquired by Gaussian high-pass filtering for eachI(ω),i.e.,

    whereHHP(ω) is a Gaussian function likeHHP(ω) =A0-exp(-ω2/ω0).HereA0andω0are constants set in the function.Finally, eachIF(ω) would be converted intoIF(x) by an inverse Fourier transform, which will be used to correlate with the bucket signals.It is shown in Fig.2 that the correlation between the individual pixels in the filtered matrix is changed with the change of the low-frequency components of the Hadamard matrix.According to the Wiener-Khinchin theorem,the second-order correlation functionG(2)F (?x)after Gaussian filtering can be written as

    whereδ(ω)is the average PSD of Hadamard-based patterns.Based on this equation,the auto-correlation of transformation matrix is simulated, whereA0andω0are set to 3 and 8, respectively,and the simulation result is as shown in Fig.2(b).It can be seen that negative correlation dips come out around the correlation peak,which will lead to resolution improvement in SPI.

    Fig.2.Auto-correlation functions of(a)the Hadamard matrix and(b)transformation matrix;(c)cross-correlation function between Hadamard and their transformed matrix.

    In the proposed scheme, the image is reconstructed by the cross-correlation of the Hadamard transformation matrices and the bucket signals that are obtained by using the Hadamard matrices to encode and sample the object.Therefore,the correlation functionG(2)

    HF(?x)is accordingly modified by

    which is also used to simulate the correlation in Fig.2(c).It is similar to Fig.2(b)that significant spatial cross-correlation dips also exist around the correlation peak, which means that new background noise will be formed near the object when the object image is reconstructed.

    In an actual SPI system,thei-th modulated patternIi(x,y)(1≤x ≤M,1≤y ≤N)withM×Npixels is generally a twodimensional discrete matrix.Therefore,thei-th bucket signalBiacquired by the single-pixel detector can be expressed as

    3.Simulations and experiments

    3.1.Simulation results

    In order to demonstrate the effectiveness of the proposed method,an SPI simulation experiment is first performed based on the scheme in Fig.1.In the present simulation, a binary three-slit picture with a size of 64×64 pixels is selected as the imaged object shown in Fig.3(a).The image in Fig.3(b)is obtained by Gaussian low-pass filtering for Fig.3(a),which obviously became blurred because of the loss of spatial highfrequency components of light carrying the information of the object.It is noted that the low-pass filtering for Fig.3(a)should be regarded to mimic a diffraction-limited SPI system and the image of Fig.3(b)is equivalent to the one that is projected on the DMD in a passive diffraction-limited SPI experiment.In the simulation process of SPI,the bucket signals are simulated as follows.The fuzzy image of Fig.3(b) is convolved with each computer-generated Hadamard matrix, and then each convolution pattern is summed pixel by pixel to get a series of 1D bucket signals that are actually captured by a single-pixel detector in an experiment.The corresponding reconstructed images are shown in Figs.3(c)and 3(d)according to Eqs.(7) and (8), respectively.It can be seen that the image of Fig.3(c) recovered by Hadamard matrices is almost as blurred as Fig.3(b) while the image of Fig.3(d) is more resolved and distinguished, which is retrieved by the correlation between the Hadamard and their transformed matrices.It should be noted that the Hadamard matrix that we use is the optimized ordering of the Hadamard basis by using fast Walsh Hadamard transform.[16]To further verify the proposed scheme,an object with two Chinese characters in Fig.3(f)that is a shortened form of Liaoning University is substituted for Fig.3(a)to perform the same simulation experiment.The experimental results of simulations are shown in the second row of Fig.3,which are quite similar to the results of the first simulation as predicted.It is not a surprise that the blurred images can be resolved and distinguished more clearly by the proposed method.When the transfer function in the diffraction system is invertible and known,the higher-resolution image can be reconstructed by the deconvolution just shown in Fig.2.However, it is obvious in Figs.3(d) and 3(i) that additional background noise is also brought in the reconstructed images due to the negative correlation,which would form socalled “virtual” images near the real images that may lead to the image degradation and the decreasing of SNR.Therefore,a simple spatial high-pass filtering method is adopted to remove the background noise, where a properly chosen threshold that is determined by the direct current background of the recovered images is set to subtract the negative background.The background-subtracted images are shown in Figs.3(e)and 3(j), where they have been remapped to a grayscale range of 0-255.

    Fig.3.First column: digital-imaged objects of binary pictures with (a)three slits and (f) two Chinese characters.Second column: (b) and (g)are low-pass filtering of (a) and (f), respectively.Third column: reconstructed images of(c)and(h)for the images in the second column based on Eq.(7).Fourth column: reconstructed images of(d)and(i)based on Eq.(8).Fifth column: background-free images of(e)and(j).

    Fig.4.Cross-sectional images of Figs.3(a)-3(e).

    In addition, how much the proposed scheme can improve the image resolution is necessary to be much concerned.Therefore,the cross sections of the first row of Fig.3 are plotted in Fig.4 to further explain this problem, where they are represented by the black,red(covered by the blue line),blue,green and purple lines, respectively.Here, it can be more clearly seen that the proposed scheme can achieve a highresolution image with a better SNR, where the two slits on the left are just distinguished while the two slits on the right are completely discernible (see the green and purple lines).Honestly, the spacing distancesW1andW2of the three slits in Fig.3(a)are specially designed to talk about the diffraction limit and super-resolution.It is clear in Fig.4 that the two slits on the right of the blue line are just resolved whenW1=12 pixels,which can be considered as the diffraction limit according to the definition of Rayleigh diffraction bound for the case of Hadamard patterns.The left two slits with a spacing width ofW2=6 pixels are used to test the resolution limit in our scheme,where they are just resolved,too.Thus,it is estimated that the proposed method can exceed the resolution limit by a factor of about 2.

    3.2.Experimental results

    For the purpose of further verifying the feasibility and performance of our method, a typical diffraction-limited SPI experiment is demonstrated with respect to the configuration in Fig.1, where an object of a double-slit with a slit spacing ofW=2 mm illuminated by a white light LED is imaged on the DMD(V-7000/ViALUX)by an imaging lens with a focal length off= 100 mm.One of the reflected light beams by DMD is totally captured by a single-pixel detector(DET36A2/Thorlabs)with the help of a collecting lens.In addition, a slit with an adjustable widthlis co-axially inserted at the rear focal plane, which is used to form a diffractionlimited imaging system by blocking the spatial high-frequency components of light carrying the object information.The signal from the single-pixel detector is fed into an amplification circuit including a signal-amplifier and an analog-digital converter,and then the signal from the amplifier circuit is finally saved to a computer to be processed via a data acquisition card.Generally, Hadamard bases with a sampling number of the Nyquist limit are in advance stored in the memory of DMD, and the SPI experiment is also realized at a sampling rate of 100%.The results for different sampling rates(including under sample and 100%sample)of different methods are compared and discussed in data post-processing.Here, the sampling number of 32×32=1024 is chosen in the present experiment, which means the size of the modulation matrix is also 32×32 pixels.Notice that the ordering of Hadamard basis is the same with the above simulations.[16]

    Fig.5.The reconstructed images by Eq.(7) with different slit widths l=(a)30 mm, (b)0.3 mm; (c)the reconstructed image by Eq.(8), and(d)the background-free version of panel(c).

    Two different settings oflare studied here, i.e.,l=30 mm andl=0.3 mm,corresponding to the non-diffractionlimited and diffraction-limited systems, respectively.The reconstructed images by Eq.(7)are shown in Figs.5(a)and 5(b).Apparently, two slits in Fig.5(a) are quite clearly resolvable while those in Fig.5(b) are almost overlapped and become blurred.Figure 5(c) is the reconstructed image achieved by the proposed method based on Eq.(8).Though the image seems to have more noise caused by the decrease of optical intensity when smallerlis preferred,two slits can be perfectly distinguishable.Of course, negative background noise also exists inevitably due to the cross-correlation.However, the clearer background-free image is achieved by removing the background noise and shown in Fig.5(d).The experimental results are in good agreement with the simulations.

    4.Conclusion

    In conclusion,we have successfully performed a computational GI experiment by correlating a series of bucket signals obtained from a single-pixel detector with the synchronized transformed matrices of modulating DMD Hadamard bases.Our experiment revealed the observation of anticorrelation phenomena between the Hadamard bases and their transformed counterparts, as well as the bunching effect between them.Furthermore, we were able to improve the resolution of the reconstructed image.The proposed approach for achieving high-resolution imaging is solely based on a passive SPI setup and does not rely on the accuracy of the modulated device or complex imaging systems.The transformation of the matrix and image reconstruction are carried out by postprocessing of the computation, which makes this scheme applicable to various mature SPI systems that have been extensively studied.Despite the presence of additional background noise due to negative correlations,a clearer reconstructed image can be obtained through spatial filtering to remove most of the noise.This approach offers an SPI method for achieving high-resolution imaging without increasing the complexity of the SPI system, and may be suitable for use in combination with different imaging systems.

    Acknowledgments

    We thank Prof.L.A.Wu for helpful discussions.Project supported by the National Key Research and Development Program of China(Grant No.2018YFB0504302).

    猜你喜歡
    晨暉
    游崀山紫霞峒
    乘用車盤式制動creep groan噪音優(yōu)化
    不同類型水稻品種莖葉維管束與同化物運轉(zhuǎn)特征
    一類二元分式最小值問題的探究和推廣
    夏弟弟
    碧潭白鵝
    當代貴州(2018年24期)2018-08-06 10:39:00
    第二屆中國畫學(xué)會展·時代華章
    國畫家(2018年2期)2018-04-25 06:39:06
    覃琪、王詩曼、李明明、蔣晨暉作品
    The pursuit of love
    “冰棍”
    狠狠婷婷综合久久久久久88av| 国产无遮挡羞羞视频在线观看| 久久午夜综合久久蜜桃| 老司机影院毛片| 国产成人精品在线电影| 成年女人在线观看亚洲视频| 欧美3d第一页| 精品人妻熟女av久视频| 人妻少妇偷人精品九色| 国产精品人妻久久久影院| 亚洲图色成人| 在线观看免费高清a一片| 777米奇影视久久| 亚州av有码| 爱豆传媒免费全集在线观看| av有码第一页| 成年女人在线观看亚洲视频| 婷婷成人精品国产| 春色校园在线视频观看| 亚洲av福利一区| 国产av精品麻豆| 三上悠亚av全集在线观看| 中文字幕av电影在线播放| 一边亲一边摸免费视频| 日韩亚洲欧美综合| 国产亚洲最大av| 高清黄色对白视频在线免费看| 18+在线观看网站| 婷婷成人精品国产| 人妻人人澡人人爽人人| 又粗又硬又长又爽又黄的视频| 男女啪啪激烈高潮av片| 伦精品一区二区三区| 欧美成人午夜免费资源| 在线 av 中文字幕| 久久综合国产亚洲精品| 又大又黄又爽视频免费| 男的添女的下面高潮视频| 欧美+日韩+精品| 亚洲精品乱码久久久v下载方式| 久久韩国三级中文字幕| 国产国语露脸激情在线看| 国产高清不卡午夜福利| 97在线人人人人妻| 中文字幕精品免费在线观看视频 | 亚洲,欧美,日韩| 亚洲五月色婷婷综合| 九九久久精品国产亚洲av麻豆| 成人亚洲欧美一区二区av| 亚洲美女搞黄在线观看| 成人无遮挡网站| 国产伦精品一区二区三区视频9| videosex国产| 精品人妻一区二区三区麻豆| 热99国产精品久久久久久7| 九色成人免费人妻av| 伦精品一区二区三区| 午夜激情福利司机影院| 亚洲精品国产色婷婷电影| 亚洲内射少妇av| 亚洲怡红院男人天堂| 免费看不卡的av| 亚洲美女搞黄在线观看| 国产精品蜜桃在线观看| 国产精品99久久99久久久不卡 | 亚洲欧洲精品一区二区精品久久久 | 久久女婷五月综合色啪小说| 99re6热这里在线精品视频| 18禁观看日本| 国产 一区精品| 中文字幕免费在线视频6| 黄色视频在线播放观看不卡| 国产免费一区二区三区四区乱码| av免费在线看不卡| 欧美日韩精品成人综合77777| 街头女战士在线观看网站| a级片在线免费高清观看视频| 三上悠亚av全集在线观看| 精品一区二区三区视频在线| 日韩人妻高清精品专区| 一区在线观看完整版| 91久久精品电影网| 欧美老熟妇乱子伦牲交| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 欧美xxxx性猛交bbbb| 午夜激情av网站| 日韩成人av中文字幕在线观看| 久久久久久久亚洲中文字幕| 亚洲性久久影院| 国产精品一区二区在线观看99| 美女脱内裤让男人舔精品视频| 成人毛片60女人毛片免费| 日产精品乱码卡一卡2卡三| 亚洲欧洲国产日韩| 色吧在线观看| 亚洲av福利一区| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜爱| 简卡轻食公司| 久热久热在线精品观看| 国产色婷婷99| 亚洲精品美女久久av网站| 国产高清不卡午夜福利| 久久久亚洲精品成人影院| 国产一区二区三区av在线| 日韩精品有码人妻一区| 少妇猛男粗大的猛烈进出视频| 一级黄片播放器| 日韩一区二区视频免费看| 夜夜看夜夜爽夜夜摸| av福利片在线| 国产黄片视频在线免费观看| av在线app专区| .国产精品久久| av福利片在线| 亚洲婷婷狠狠爱综合网| 久久久a久久爽久久v久久| 夫妻性生交免费视频一级片| 亚洲av男天堂| 女性被躁到高潮视频| tube8黄色片| 夫妻性生交免费视频一级片| 日韩大片免费观看网站| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 久久久久久久久久人人人人人人| 如日韩欧美国产精品一区二区三区 | 多毛熟女@视频| 日韩免费高清中文字幕av| 亚洲精品一区蜜桃| 国产成人精品在线电影| 亚洲精品乱久久久久久| 国产成人aa在线观看| 一级毛片aaaaaa免费看小| 大话2 男鬼变身卡| 国产国语露脸激情在线看| 在线观看国产h片| 午夜激情福利司机影院| 久久久久国产网址| 大话2 男鬼变身卡| 久久久久久伊人网av| 亚洲av电影在线观看一区二区三区| 高清不卡的av网站| 久热久热在线精品观看| 国产有黄有色有爽视频| 多毛熟女@视频| 黄色视频在线播放观看不卡| 一个人看视频在线观看www免费| 国产午夜精品久久久久久一区二区三区| 青春草亚洲视频在线观看| 免费黄色在线免费观看| 亚洲国产精品999| 亚洲精品日韩av片在线观看| xxxhd国产人妻xxx| av黄色大香蕉| 欧美xxⅹ黑人| 搡老乐熟女国产| a级毛色黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美成人精品欧美一级黄| 91精品三级在线观看| 男女边摸边吃奶| 免费久久久久久久精品成人欧美视频 | 99九九线精品视频在线观看视频| 欧美日韩亚洲高清精品| 亚洲人成77777在线视频| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 国产色爽女视频免费观看| 高清黄色对白视频在线免费看| 国产亚洲午夜精品一区二区久久| 久热久热在线精品观看| 人人妻人人澡人人爽人人夜夜| 色婷婷av一区二区三区视频| 午夜激情av网站| 日韩欧美一区视频在线观看| 婷婷色综合大香蕉| 91精品国产国语对白视频| 另类精品久久| 免费av不卡在线播放| 精品一区二区免费观看| a 毛片基地| 欧美97在线视频| 交换朋友夫妻互换小说| 久久97久久精品| 99热这里只有精品一区| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| videosex国产| 男女边吃奶边做爰视频| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 天堂俺去俺来也www色官网| 亚洲精品一二三| 午夜日本视频在线| 啦啦啦视频在线资源免费观看| 中文字幕制服av| 精品国产一区二区三区久久久樱花| xxx大片免费视频| 国产黄色视频一区二区在线观看| 国产在线免费精品| 日韩中文字幕视频在线看片| 91精品国产九色| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 女的被弄到高潮叫床怎么办| 日本黄大片高清| 丰满乱子伦码专区| 18禁观看日本| 男女啪啪激烈高潮av片| 久久青草综合色| 乱码一卡2卡4卡精品| 高清黄色对白视频在线免费看| 精品国产露脸久久av麻豆| 人人妻人人澡人人看| 一区二区三区乱码不卡18| 91成人精品电影| 美女大奶头黄色视频| av天堂久久9| 国产精品蜜桃在线观看| 制服丝袜香蕉在线| 日本爱情动作片www.在线观看| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| √禁漫天堂资源中文www| 国产视频内射| 久久女婷五月综合色啪小说| 夫妻午夜视频| 久久精品国产鲁丝片午夜精品| 亚洲av日韩在线播放| 精品一区在线观看国产| 黑人巨大精品欧美一区二区蜜桃 | 少妇人妻久久综合中文| 欧美 亚洲 国产 日韩一| 亚洲人成网站在线观看播放| 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 日韩一本色道免费dvd| 91在线精品国自产拍蜜月| 一级爰片在线观看| 26uuu在线亚洲综合色| 一本一本综合久久| 在线精品无人区一区二区三| 免费不卡的大黄色大毛片视频在线观看| 高清欧美精品videossex| 一个人免费看片子| 69精品国产乱码久久久| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 一级二级三级毛片免费看| 精品亚洲成a人片在线观看| freevideosex欧美| 久久久久精品性色| 制服丝袜香蕉在线| 日韩免费高清中文字幕av| 久久久久久久久久成人| 亚洲精品乱久久久久久| 亚洲国产精品国产精品| 最黄视频免费看| 国产 精品1| 女人久久www免费人成看片| 亚洲欧洲精品一区二区精品久久久 | 精品人妻熟女毛片av久久网站| 日本vs欧美在线观看视频| 亚洲国产精品成人久久小说| 亚洲人成77777在线视频| av一本久久久久| 亚洲av在线观看美女高潮| 亚洲精品日韩在线中文字幕| 欧美日韩av久久| 国产探花极品一区二区| 男女国产视频网站| 欧美精品高潮呻吟av久久| 这个男人来自地球电影免费观看 | 亚洲av国产av综合av卡| 老司机影院成人| 人人妻人人爽人人添夜夜欢视频| xxx大片免费视频| 香蕉精品网在线| 亚洲精品aⅴ在线观看| 亚洲色图综合在线观看| 另类亚洲欧美激情| 又粗又硬又长又爽又黄的视频| 在线亚洲精品国产二区图片欧美 | 国产69精品久久久久777片| 日本免费在线观看一区| 国精品久久久久久国模美| 国产成人午夜福利电影在线观看| 国产亚洲欧美精品永久| 欧美精品高潮呻吟av久久| 搡女人真爽免费视频火全软件| 国产乱来视频区| av.在线天堂| 亚洲情色 制服丝袜| 久久久国产欧美日韩av| 亚洲国产精品专区欧美| 亚洲av不卡在线观看| 成人毛片a级毛片在线播放| 亚洲成人手机| 人妻制服诱惑在线中文字幕| 亚洲欧洲精品一区二区精品久久久 | av有码第一页| 天堂8中文在线网| 久久久久久久亚洲中文字幕| 各种免费的搞黄视频| 如何舔出高潮| 国产精品一国产av| 99热6这里只有精品| 人成视频在线观看免费观看| 久久国内精品自在自线图片| 99视频精品全部免费 在线| 欧美性感艳星| 亚洲三级黄色毛片| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 男女边摸边吃奶| 我要看黄色一级片免费的| 看十八女毛片水多多多| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 黑人高潮一二区| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 久久人人爽人人片av| 国产成人精品久久久久久| 午夜福利视频精品| 亚洲国产精品999| 18禁裸乳无遮挡动漫免费视频| 另类精品久久| 只有这里有精品99| 国产黄色视频一区二区在线观看| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| a级片在线免费高清观看视频| 一边亲一边摸免费视频| 男人添女人高潮全过程视频| 亚洲综合色网址| 亚洲av成人精品一区久久| 十分钟在线观看高清视频www| 久久久久久人妻| 免费观看a级毛片全部| 99热6这里只有精品| 天天操日日干夜夜撸| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜| 视频中文字幕在线观看| 亚洲性久久影院| 丰满乱子伦码专区| 91精品一卡2卡3卡4卡| 国产精品欧美亚洲77777| 久久国产精品男人的天堂亚洲 | 最近手机中文字幕大全| 成年美女黄网站色视频大全免费 | 国产极品天堂在线| 一边摸一边做爽爽视频免费| 蜜臀久久99精品久久宅男| 在现免费观看毛片| 日本黄大片高清| 日本欧美国产在线视频| 男女免费视频国产| 成年人午夜在线观看视频| 色网站视频免费| 亚洲国产最新在线播放| 免费观看av网站的网址| 五月天丁香电影| 满18在线观看网站| 久久久久网色| 男的添女的下面高潮视频| 女性被躁到高潮视频| 黑丝袜美女国产一区| 99久久综合免费| 国产欧美亚洲国产| 久久韩国三级中文字幕| 免费高清在线观看日韩| 久久国内精品自在自线图片| 天天操日日干夜夜撸| a 毛片基地| 国产精品 国内视频| 亚洲欧美一区二区三区国产| 只有这里有精品99| 成人18禁高潮啪啪吃奶动态图 | 国产国语露脸激情在线看| 久热久热在线精品观看| 亚洲天堂av无毛| 国产一级毛片在线| 少妇丰满av| 91精品国产九色| av福利片在线| av黄色大香蕉| 午夜激情久久久久久久| 精品人妻在线不人妻| 97在线视频观看| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 国产探花极品一区二区| 国精品久久久久久国模美| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区 | 亚洲人成网站在线播| 又大又黄又爽视频免费| 精品亚洲成国产av| 欧美精品国产亚洲| 蜜桃在线观看..| 搡老乐熟女国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 91午夜精品亚洲一区二区三区| 九色亚洲精品在线播放| 欧美日韩成人在线一区二区| 中文字幕亚洲精品专区| 一级毛片 在线播放| 一级爰片在线观看| 丰满乱子伦码专区| 不卡视频在线观看欧美| 精品国产国语对白av| 免费观看av网站的网址| 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 满18在线观看网站| a级毛色黄片| 一区在线观看完整版| 免费黄网站久久成人精品| 久久久久久伊人网av| 欧美一级a爱片免费观看看| 亚洲欧洲日产国产| 在线精品无人区一区二区三| 一区二区三区免费毛片| 边亲边吃奶的免费视频| 性色av一级| 欧美日韩精品成人综合77777| av线在线观看网站| 777米奇影视久久| 另类亚洲欧美激情| 久久97久久精品| 亚洲成人av在线免费| 夜夜骑夜夜射夜夜干| 成人毛片a级毛片在线播放| 少妇熟女欧美另类| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 欧美精品国产亚洲| 18+在线观看网站| 综合色丁香网| 国产成人精品在线电影| 中文乱码字字幕精品一区二区三区| 亚洲av国产av综合av卡| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 久久久亚洲精品成人影院| 热re99久久精品国产66热6| 成人国产麻豆网| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 成人免费观看视频高清| 一本一本综合久久| 在线观看免费日韩欧美大片 | 欧美精品国产亚洲| 久久av网站| 午夜福利视频精品| 国产免费一级a男人的天堂| 久久人人爽人人片av| 日韩中字成人| 天天影视国产精品| 9色porny在线观看| 欧美日韩综合久久久久久| 中文乱码字字幕精品一区二区三区| 超色免费av| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 在线观看免费视频网站a站| 成人18禁高潮啪啪吃奶动态图 | 综合色丁香网| 精品国产露脸久久av麻豆| 日韩 亚洲 欧美在线| av免费观看日本| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 亚洲在久久综合| 亚洲高清免费不卡视频| 国产永久视频网站| 亚洲国产欧美日韩在线播放| 日韩三级伦理在线观看| 国产精品人妻久久久久久| 一二三四中文在线观看免费高清| 满18在线观看网站| 999精品在线视频| 99久久中文字幕三级久久日本| 欧美变态另类bdsm刘玥| 91精品伊人久久大香线蕉| 我的老师免费观看完整版| 日韩一区二区三区影片| 久久精品国产亚洲av天美| 亚洲国产av新网站| 免费人成在线观看视频色| 日韩成人av中文字幕在线观看| 精品国产一区二区三区久久久樱花| 日韩 亚洲 欧美在线| 久久精品国产自在天天线| 午夜影院在线不卡| 黑人欧美特级aaaaaa片| 大陆偷拍与自拍| 在线免费观看不下载黄p国产| 国产极品粉嫩免费观看在线 | 草草在线视频免费看| 久久婷婷青草| 国产成人免费无遮挡视频| 午夜福利网站1000一区二区三区| 国产精品久久久久久久久免| 777米奇影视久久| 熟女av电影| 一区二区三区免费毛片| 18在线观看网站| 啦啦啦啦在线视频资源| 观看av在线不卡| 欧美成人午夜免费资源| 欧美少妇被猛烈插入视频| 十八禁网站网址无遮挡| 亚洲精品久久午夜乱码| 女人久久www免费人成看片| 在现免费观看毛片| 观看av在线不卡| 成人综合一区亚洲| 久久青草综合色| 日本黄大片高清| 亚洲国产欧美日韩在线播放| 久久久国产一区二区| 人妻制服诱惑在线中文字幕| a级毛片黄视频| 亚洲精品日韩av片在线观看| 中文字幕久久专区| 中文字幕av电影在线播放| 欧美精品一区二区大全| 晚上一个人看的免费电影| 啦啦啦在线观看免费高清www| 高清视频免费观看一区二区| 日本欧美国产在线视频| 精品久久久久久久久亚洲| 男女无遮挡免费网站观看| 亚洲色图综合在线观看| av网站免费在线观看视频| 久久久久久久国产电影| 黑人猛操日本美女一级片| 国产免费现黄频在线看| 在线免费观看不下载黄p国产| 亚洲伊人久久精品综合| 欧美激情 高清一区二区三区| 性色avwww在线观看| 亚洲精品,欧美精品| 亚洲少妇的诱惑av| 天堂8中文在线网| 亚洲av日韩在线播放| 三上悠亚av全集在线观看| 多毛熟女@视频| 免费高清在线观看日韩| 天堂俺去俺来也www色官网| 久久久久视频综合| 国产欧美亚洲国产| 国产精品99久久99久久久不卡 | 日韩熟女老妇一区二区性免费视频| 国产成人aa在线观看| 日韩制服骚丝袜av| 中国美白少妇内射xxxbb| 美女cb高潮喷水在线观看| 一区在线观看完整版| 亚洲丝袜综合中文字幕| 91精品国产国语对白视频| 亚洲av中文av极速乱| 老女人水多毛片| 日本爱情动作片www.在线观看| 成人毛片a级毛片在线播放| 国产深夜福利视频在线观看| 制服人妻中文乱码| 午夜福利在线观看免费完整高清在| 飞空精品影院首页| 黑人猛操日本美女一级片| 成人亚洲欧美一区二区av| a级毛色黄片| 精品午夜福利在线看| 亚洲性久久影院| 中文乱码字字幕精品一区二区三区| 成人国产麻豆网| 日韩成人伦理影院| 日本欧美国产在线视频| 免费播放大片免费观看视频在线观看| 国产不卡av网站在线观看| 亚洲综合精品二区| 午夜av观看不卡| 一区二区日韩欧美中文字幕 | 欧美日韩av久久| www.色视频.com| 99re6热这里在线精品视频| 丝袜脚勾引网站| 少妇被粗大猛烈的视频| 热99久久久久精品小说推荐| 99久久精品国产国产毛片| 日韩伦理黄色片| 91精品一卡2卡3卡4卡| 免费日韩欧美在线观看| 91aial.com中文字幕在线观看| 久久精品熟女亚洲av麻豆精品| 王馨瑶露胸无遮挡在线观看| 午夜av观看不卡| 80岁老熟妇乱子伦牲交| 婷婷色综合www| 国产极品粉嫩免费观看在线 | 国产精品免费大片| 色网站视频免费| 女的被弄到高潮叫床怎么办|