• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material

    2023-12-15 11:48:20NaLiu柳娜
    Chinese Physics B 2023年12期

    Na Liu(柳娜)

    Contemporary Amperex Technology Co.,Limited,Ningde 352000,China

    Keywords: high voltage,Li-ion battery,phase transition,LiNixCoyMnzO2

    1.Introduction

    Since the development of LiCoO2for commercial applications, high energy density, high safety, long life and low cost are the demands for a new generation of lithiumion batteries.The LiNixCoyMnzO2(x+y+z= 1; NCM;280 mAh/g) has a higher theoretical specific capacity than LiFePO4(170 mAh/g)and LiMn2O4(150 mAh/g),which may become the most powerful competitor in the new generation of battery materials.[1-4]The safety and stability of NCM can be improved by adjusting the atomic ratio of transition metals(TMs), which has been successfully applied in mobile electronic devices and power vehicles.In order to improve the energy density,Ni-rich and Co-poor NCMs have been widely developed and applied,but the cycle performance is seriously affected due to a series of side reactions and irreversible phase transitions.Therefore,recent attention is focused on adjusting the charge cut-off voltage of NCM and optimizing the electrolyte composition to obtain higher energy density.However, at high operating voltage (> 4.4 V), the charge compensation process of NCM could be changed due to the deep lithium removal.At lower voltages (<4.4 V), TM participates in the charge compensation by valence change, while at higher voltages (>4.4 V), the anions participate in charge

    In this paper, the commercial single-crystal LiNi0.5Co0.2Mn0.3O2(NCM523) was used to investigate the cycle performance under different charging cut-off voltages.The crystal structure and surface phase transition process of NCM523 after high voltage cycling were investigated by means of x-ray diffraction (XRD), transmission electron microscope(TEM)and electron back scatter diffraction(EBSD),and the surface structure degradation under different cut-off voltages was understood for improving the performance of NCM materials under high voltages.compensation to form peroxide (Oσ-2 ) or oxygen.[5]In addition,Li+extraction will aggravate Li/Ni mixing and result in irreversible phase transition generating spinel phase and rocksalt phase.[6,7]The dissolution of transition metal[8]and particle cracking due to inhomogeneous stress distribution[9-13]also restrict the applications of high voltage NCM.

    2.Experimental materials and equipment

    The tested electrode was made of commercial single crystal NCM523 material, mixed with an appropriate amount of conductive carbon and binder(PVDF)dissolved in NMP,and coated on the surface of Al foil.The full battery used graphite as anode, NCM523 as cathode, 1 M LiPF6in EC/DMC(1:1 vol/vol) as electrolyte.The charging and discharging process was carried out at 0.33 C between 2.8-4.4 V, 2.8-4.5 V and 2.8-4.6 V.All cycling tests were performed on a NEWARE battery tester, and the EIS test was performed on an AutoLab electrochemical workstation (frequency range of 1 MHz to 1 mHz).The XRD test was conducted on Bruker D8, with CuKαas the radiation source, the scanning range was 15?-85?,and the scanning speed was 5?/min.the crosssections of the particles were polished using a cooling crosssection polisher(IB-19520CCP,JEOL).The TEM sample was fabricated by the focused ion beam(FIB)on Scios DualBeam double-beam electron microscope.All TEM tests were performed on the JEM2100 equipment produced by Nippon Electronics.Scanning electron microscope (SEM) test was performed on the field emission scanning electron microscope Zeiss Gemini360.EBSD was performed using the Oxford Nordly max3.

    3.Results

    3.1.Electrochemical performance

    Figure 1(a) shows the charge-discharge cycle curve of NCM523 half-cell at 0.05 C (1 C = 6.6 mA), the specific capacity of NCM523 at 4.55 V is 170 mAh/g for the initial cycle.The capaciy decays faster in the accelerated decaying test(45?C)as the charge cut-off voltage increases from 4.4 V to 4.6 V.Especially at 4.6 V, capacity fade to less than 80%around 150 cycles, as shown in Fig.1(b).To eliminate the influence of the dynamics factors,the half cell was further discharged to 2.85 V at very low rate of 0.04 C after discharging from 0.33 C to 2.85 V.After 150 cycles at the cut off voltages of 4.4/4.5/4.6 V,the half-cell was cycled at 0.33+0.04 C,and the power capacity loss was obtained (0.33 C), as shown in Fig.2(a).There is basically no irreversible capacity loss after 150 cycles at 2.8-4.4 V.For the 2.8-4.5 V cycle, the capacity loss is 12.9% at 150 cycles, most of which is caused by the reversible capacity loss (10.05%).The capacity loss is the largest after 150 cycles of 2.8-4.6 V cycle, reaching 29.2% (0.33 C+0.04 C), of which irreversible loss accounts for 14.24% and power loss accounts for 14.95%.It can be seen that the higher the cycle voltage results in the larger the capacity loss, and it mainly comes from the power loss.The reversible loss is mainly considered to be the slowing down of the kinetic process.The power loss is often considered to be the capacity attenuation caused by the loss of active materials.Figure 2(b)show the dissolved TMs ions on the negative electrode of samples after 150 cycles at different cut-off voltages detected by inductively coupled plasma-optical emission spectrometer(ICP-OES).The results show the sample at low cut-off voltage has much less TMs ions dissolution.Although the amount of Mn dissolved is the largest,the overall amount of TMs dissolved are relatively small.Therefore,the dissolution of TMs is not the main reason for capacity decay.

    Fig.1.NCM523 cycle performance.(a)0.05 C charge-discharge curve of NCM523 half-cells at different cut-off voltages.(b)The capacity retention curves with different cut-off voltages at 45 ?C(4.4 V,4.5 V,4.6 V).

    Fig.2.(a)Capacity loss of half-cells(Li||NCM)under different cut-voltages.(b)The dissolved TMs ions on the negative electrode after 150 cycles.(c)After the pole piece is disassembled,the positive pole piece is made into a symmetrical battery EIS curve.

    Electrochemical impedance spectroscopy (EIS) analysis was performed on the symmetrical battery made of the disassembled NCM523 electrode to study the interfacial impedance change.Figure 2(c) shows the relationship between the impedance change and the cut-off voltage.An obvious semicircle can be observed, corresponding to the electron transfer process (Rct).According to the results,Rctat 4.6 V is much larger than that at the lower charge cut-off voltages(4.4 V and 4.5 V) during cycling.The surface film impedanceRfvaries less with the cut-off voltages relative toRct,which can be ignored here.It can be seen that the capacity attenuation during cycling at high voltages may be related to the increase in the charge transfer impedance (Rct) of the electrodes.In the following discussion,we will focus on the origin of the increased charge transfer resistance of the samples cycled at high charge cut-off voltages by analyses that consider both the bulk and surface structure.

    3.2.Phase transition behavior

    In order to study the reason of capacity decay during high voltage cycling, the bulk structure of NCM523 after cycling was first examined using XRD.Each sample at the discharged state(2.8 V)after 150 cycles was collected and analyzed.By comparison,it is found that all the samples show the hexagonalα-NaFeO2structure of theR-3mspace group, and no significant structural degradation and new phase formation was observed (Fig.3).It is known that Ni2+(0.69 ?A) and Li+(0.76 ?A)are similar in the atomic radius.In the NCM,the Li vacancy (3bsite) left in the Li slab after Li+extraction is easily occupied by Ni2+,forming the“cationic mixed phase”or“cation disorder”.[14]The ratio of(003)diffraction peak intensity to (104) diffraction peak intensityI(003)/(104)is often used to analyze the degree of cation mixing in the XRD spectrum.The smaller is the value ofI(003)/(104), the more severe is the cation mixing.[15]A large number of studies have shown that the cation mixing facilitates the blocking of the Li+channel due to the larger diffusion barriers in the Li layers.It can be seen that a higher degree of cation mixing was observed for samples that were operated at higher voltages.This indicates that the electrode polarization becomes more severe when cycled at high voltages consistent with the larger resistance value(Fig.2(c)).[16,17]

    Fig.3.Comparison of XRD patterns before and after 150 cycles of high voltage cycling.

    Fig.4.SEM images before and after high voltage cycle.(a) The crosssectional SEM image of fresh electrode.(b)-(d) The cross-sectional SEM images after 150 cycles at different cut-off voltages.

    During the charging process, the NCM usually undergoes a series of phase change.For example, in the singlecrystal NCM811 system, the phase transition sequence between 2.8 V and 4.6 V is H1→M→H2→H3.[15]In addition,in the process of charging and discharging, the lattice expansion and contraction generate increased micro-stress,resulting in micro-cracks in the particle,and deteriorating the electronic conductivity.[11]The electrolyte enters the interior of the particle via these crack networks and decomposes to form CEI,which affects the transport of electrons and ions at the interface.The SEM was carried out to observe the cross-sections of the electrode at different cut-off voltages.Figure 4 shows the SEM images of the full-discharged NCM523(particle size is about 2-5μm)before and after the cycle.It can be observed that the particles remain intact even in the 2.8-4.6 V cycle,and there is no particle cracking,suggesting that the reason for the rapid attenuation of capacity at high voltage is not related to the micro-cracks of particles.

    Fig.5.Atomic resolution STEM images of NCM523 after different cut-off voltages.The HADDF-STEM images of(a),(b)2.8-4.5 V after 150 cycles.(b) The high-resolution STEM image indicated by yellow dotted rectangle in (a).(c), (d) STEM images after 150 cycles under 2.8-4.6 V conditions 150 cycles.(d)The high-resolution STEM image indicated by yellow dotted rectangle in(c).

    The above XRD data analysis indicates that theI(003)/(104)value decreases with the increase of the cut-off voltage,demonstrating that the cation mixing is more severe at high voltage.It was reported that the particle surface contact with the electrolyte is prone to the phase transition of the layered structure, from the layeredR-3mto the rock-salt phase NiOlike(Fm-3m)or the spinel-like phase, thereby destroying the active Li site, blocking the lithium intecalation channel, and decreasing the ionic conductivity.[17,18]In order to further explore the surface structure phase transition and cation mixing phase, the HADDF-STEM analyses were performed.After 150 cycles, the cation mixed phase with a thickness of about 2 nm appeared on the surface of NCM cycled between 2.8-4.5 V(Figs.5(a)and 5(b)).The thickness of the surface cation mixed phase is larger after 4.6 V cycling than 4.5 V cycling.Meanwhile,a reconstruction layer of 5-10 nm appears on the outermost surface and along the lithium diffusion channels.The high-resolution STEM can clearly recognize the reconstructed layer as a rock-salt phase(NiO) structure (Figs.5(c)and 5(d).Since the STEM imaging is located,in order to further count the distribution of salt rock phase, the argon ion beam was applied to polish the cathodes after the 2.8-4.6 V cycling,and the smooth and clean surface is obtained.EBSD test can observe a wide range of crystal structure phase transition(Fig.6).For the as-prepared cathodes, the EBSD results showed that the crystal plane orientation was relatively random, without obvious meritocratic orientation, and the particles were of single crystal type, with well-defined grains and agglomerates inside the particles.For the samples after 2.8-4.6 V cycling,the rock-salt phase(NiO)appears and has a special orientation relationship with the layered structure, which is consistent with the above STEM results.

    Fig.6.EBSD images of(a)fresh NCM523 electrode and(b)after 150 cycles under 2.8-4.6 V.The color represents crystal direction.As for fresh electrode,each particle contains only one color,which represents a single crystal particle.The particles contain other crystal orientations,indicating phase transformation after cycling.

    The formation of surface rock-salt phase is related to cation exchange and cation migration, which is attributed to the similar radius of Li+and Ni2+, and the low energy barrier of Li+/Ni2+exchange, which is easy to occur in NCM.The process of Li+/Ni2+cation mixing and Ni2+migration is related to the formation of Li vacancies after extracting lithium from NCM, and the above process occurs most obviously when more lithium is extracted at high voltage.[18]During the charging process, Li+is gradually removed from the particle surface.The Li-removed NCM is thermodynamically unstable, and the surface oxygen is active and is lost at high voltage.Since the formation energy of Li/Ni mixing in NCM is relatively lower than that of Li/Co or Li/Mn,a large amount of cation exchange between Li/Ni occurs in NCM, and then the Ni atoms that are located in Li layers,migrated to the particle surface,leading to the enrichment of Ni on the non-(001)surface and the growth of rock-salt phase in the reconstructed layer.[19-21]The formation of salt rock phase leads to the loss of active Li sites,and hinders the lithium diffusion.The variation of charge transfer resistance above 4.4 V can be attributed to the rock-salt or cation mixing phase that exist more profoundly on the surface of the 4.6 V charged samples than on the 4.4 V charged sample.[22,23]

    Elemental doping is feasible for preparing layered materials with high-voltage stability.Doping elements into the material lattice can enhance the O-TM bonding, improving the structural stability and suppressing the oxygen release.As mentioned above,the electrolyte decomposition at active material surface significantly affects the performance of the cathodes at high charge voltages.Surface coating can act as a physical protection barrier to isolate the active materials from the electrolyte and inhibit the generation of CEI at high working voltage.The common coating materials mainly contain oxides,[24,25]phosphates[26]and fluorides.[27]

    4.Conclusion

    In this paper,NCM523 is used to explore the cycle performance under different cut-off voltages (2.8-4.4 V, 2.8-4.5 V and 2.8-4.6 V).Under the condition of 45?C as the acceleration factor, the higher is the cut-off voltage, the faster will be the capacity decay.Among them,the capacity of the 4.6 V charged material decays by 80%after 150 cycles,which is due to power loss.Further analysis shows that theRctundergoes a substantially larger increase during cycling at high voltages.Combined with XRD and STEM,it was found that there was no obvious phase transition and cracking in the bulk of the material.High-resolution STEM and EBSD confirmed that the layered structure on the surface of the particles changed to the mixed phase or rock-salt phase after cycling at high voltages.Therefore, the phase transition near the surface at high voltages is mainly responsible for capacity degradation.Our understanding provides an important reference for further improving the high-voltage NCM523 performance.

    成人国语在线视频| 亚洲七黄色美女视频| 19禁男女啪啪无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频,在线免费观看| 免费看a级黄色片| 新久久久久国产一级毛片| 999精品在线视频| 9191精品国产免费久久| 国产精品欧美亚洲77777| 亚洲人成电影免费在线| 欧美日韩一级在线毛片| 热99re8久久精品国产| 中文字幕人妻熟女乱码| 日本vs欧美在线观看视频| 大码成人一级视频| 欧美日韩瑟瑟在线播放| 久久久精品免费免费高清| 久久人妻熟女aⅴ| av片东京热男人的天堂| 韩国av一区二区三区四区| 亚洲 国产 在线| 深夜精品福利| 免费观看人在逋| 欧美精品人与动牲交sv欧美| 母亲3免费完整高清在线观看| 老鸭窝网址在线观看| 高清毛片免费观看视频网站 | 亚洲成人免费电影在线观看| 动漫黄色视频在线观看| 女人被躁到高潮嗷嗷叫费观| 涩涩av久久男人的天堂| 老司机靠b影院| 老熟女久久久| 村上凉子中文字幕在线| tube8黄色片| 久久久国产精品麻豆| av网站免费在线观看视频| 亚洲成国产人片在线观看| 色播在线永久视频| 村上凉子中文字幕在线| 午夜福利免费观看在线| 国产精品美女特级片免费视频播放器 | 超色免费av| x7x7x7水蜜桃| 99国产精品一区二区三区| 91成人精品电影| 女人久久www免费人成看片| 国产欧美日韩一区二区精品| 亚洲av成人一区二区三| 午夜免费成人在线视频| 久久99一区二区三区| 三级毛片av免费| 国产亚洲欧美精品永久| 亚洲精品久久午夜乱码| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看一区二区三区激情| 天堂√8在线中文| 制服诱惑二区| 成人精品一区二区免费| 黑人巨大精品欧美一区二区蜜桃| 成人免费观看视频高清| 国产精品亚洲av一区麻豆| 在线观看舔阴道视频| 丝瓜视频免费看黄片| 国产欧美日韩精品亚洲av| 99riav亚洲国产免费| 日韩欧美在线二视频 | 免费人成视频x8x8入口观看| 久久久久精品国产欧美久久久| 亚洲专区国产一区二区| 天堂√8在线中文| 亚洲人成电影免费在线| 91在线观看av| 午夜福利欧美成人| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 国产亚洲一区二区精品| 国产成人精品在线电影| 欧美日韩亚洲国产一区二区在线观看 | av免费在线观看网站| 日韩欧美一区二区三区在线观看 | 91在线观看av| 日韩欧美一区视频在线观看| 成人手机av| 两个人看的免费小视频| 老熟女久久久| 亚洲欧美一区二区三区黑人| www.熟女人妻精品国产| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 欧美精品一区二区免费开放| 色综合婷婷激情| 极品少妇高潮喷水抽搐| 一级片免费观看大全| 成人18禁在线播放| 欧美 日韩 精品 国产| 在线天堂中文资源库| 久99久视频精品免费| 中文字幕高清在线视频| tube8黄色片| 69av精品久久久久久| 99久久国产精品久久久| 亚洲国产看品久久| 亚洲专区中文字幕在线| 国产精品影院久久| 乱人伦中国视频| 亚洲国产看品久久| 国产免费现黄频在线看| 夜夜爽天天搞| 99久久精品国产亚洲精品| 国产精品一区二区免费欧美| 老司机深夜福利视频在线观看| 热re99久久国产66热| 欧美人与性动交α欧美软件| 亚洲精品国产区一区二| 亚洲欧美色中文字幕在线| 成年人免费黄色播放视频| 亚洲黑人精品在线| 久99久视频精品免费| 久久国产亚洲av麻豆专区| 久久人人97超碰香蕉20202| 精品国产一区二区三区久久久樱花| 国产区一区二久久| 侵犯人妻中文字幕一二三四区| 丰满的人妻完整版| 黄色片一级片一级黄色片| 香蕉久久夜色| 日韩精品免费视频一区二区三区| 亚洲熟女精品中文字幕| 99国产精品一区二区三区| 午夜福利一区二区在线看| 成年人黄色毛片网站| 啦啦啦视频在线资源免费观看| 老熟女久久久| 最近最新免费中文字幕在线| 亚洲av片天天在线观看| 国产在线观看jvid| 日韩人妻精品一区2区三区| 欧美久久黑人一区二区| 精品电影一区二区在线| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美在线观看 | 90打野战视频偷拍视频| 国产片内射在线| 国产一区二区三区视频了| 一个人免费在线观看的高清视频| 国产精品欧美亚洲77777| 国产一区二区三区视频了| 午夜福利免费观看在线| 高清在线国产一区| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 欧美大码av| 一进一出抽搐gif免费好疼 | 亚洲第一欧美日韩一区二区三区| 激情在线观看视频在线高清 | 丁香六月欧美| 亚洲片人在线观看| 热99re8久久精品国产| 欧美国产精品va在线观看不卡| 久久精品aⅴ一区二区三区四区| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 亚洲人成电影免费在线| 欧美不卡视频在线免费观看 | 久久久久久久久久久久大奶| 久久久久久久久免费视频了| 极品少妇高潮喷水抽搐| 在线观看午夜福利视频| 一本综合久久免费| 91麻豆精品激情在线观看国产 | 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| 亚洲精华国产精华精| av国产精品久久久久影院| 午夜影院日韩av| 麻豆av在线久日| 少妇猛男粗大的猛烈进出视频| 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| 亚洲一区二区三区不卡视频| 人人妻人人爽人人添夜夜欢视频| 国产单亲对白刺激| 三上悠亚av全集在线观看| 久久精品国产亚洲av高清一级| 久久影院123| 久久精品国产a三级三级三级| 满18在线观看网站| 国产1区2区3区精品| 国产在线观看jvid| 中文字幕人妻丝袜制服| 夫妻午夜视频| 免费黄频网站在线观看国产| 麻豆av在线久日| 一级毛片高清免费大全| 国产91精品成人一区二区三区| 欧美日韩一级在线毛片| 在线国产一区二区在线| 亚洲美女黄片视频| 中文字幕人妻熟女乱码| 亚洲av成人一区二区三| 欧美在线黄色| 国产熟女午夜一区二区三区| 国产精品一区二区精品视频观看| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 久久精品国产a三级三级三级| 夜夜爽天天搞| 欧美乱色亚洲激情| 亚洲av日韩精品久久久久久密| 亚洲精品国产一区二区精华液| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 中文字幕高清在线视频| 91精品三级在线观看| 成年女人毛片免费观看观看9 | 天天操日日干夜夜撸| 高潮久久久久久久久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 97人妻天天添夜夜摸| av有码第一页| 黄色a级毛片大全视频| 搡老岳熟女国产| 一区在线观看完整版| 日韩免费高清中文字幕av| 免费少妇av软件| 日韩人妻精品一区2区三区| av一本久久久久| 欧美不卡视频在线免费观看 | 一本综合久久免费| 色在线成人网| 最近最新中文字幕大全免费视频| 啦啦啦视频在线资源免费观看| av在线播放免费不卡| 成人黄色视频免费在线看| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 午夜久久久在线观看| 亚洲三区欧美一区| 老汉色av国产亚洲站长工具| a在线观看视频网站| 欧美中文综合在线视频| 9热在线视频观看99| 精品一品国产午夜福利视频| 五月开心婷婷网| 精品人妻1区二区| 午夜福利在线免费观看网站| 男人操女人黄网站| 久久青草综合色| 自线自在国产av| 丝袜人妻中文字幕| 水蜜桃什么品种好| 51午夜福利影视在线观看| 窝窝影院91人妻| av视频免费观看在线观看| 99久久精品国产亚洲精品| 精品一区二区三区视频在线观看免费 | 女人爽到高潮嗷嗷叫在线视频| 亚洲国产毛片av蜜桃av| 日本一区二区免费在线视频| 美女视频免费永久观看网站| 一区二区三区精品91| 老司机亚洲免费影院| 岛国毛片在线播放| 人人澡人人妻人| 精品视频人人做人人爽| 大码成人一级视频| 日本五十路高清| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看. | 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 人妻久久中文字幕网| 99久久人妻综合| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 国产亚洲精品久久久久5区| 亚洲精品av麻豆狂野| 宅男免费午夜| 久久久国产一区二区| 婷婷精品国产亚洲av在线 | 亚洲精品在线观看二区| 在线观看日韩欧美| 欧美 日韩 精品 国产| 中国美女看黄片| 亚洲自偷自拍图片 自拍| 五月开心婷婷网| 亚洲情色 制服丝袜| 精品人妻在线不人妻| 国产亚洲欧美98| ponron亚洲| 国产精品成人在线| 丰满饥渴人妻一区二区三| 啪啪无遮挡十八禁网站| 色老头精品视频在线观看| 日韩视频一区二区在线观看| 中文字幕高清在线视频| 视频区欧美日本亚洲| 亚洲情色 制服丝袜| 黄色女人牲交| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品sss在线观看 | 法律面前人人平等表现在哪些方面| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 精品国产亚洲在线| 欧美亚洲 丝袜 人妻 在线| 757午夜福利合集在线观看| 久久中文字幕人妻熟女| 美国免费a级毛片| 大香蕉久久网| 看免费av毛片| 日韩三级视频一区二区三区| av国产精品久久久久影院| 欧美黄色片欧美黄色片| 欧美久久黑人一区二区| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 国产成人系列免费观看| 欧美一级毛片孕妇| 巨乳人妻的诱惑在线观看| 亚洲人成伊人成综合网2020| 国产深夜福利视频在线观看| 人人妻人人澡人人看| 老汉色∧v一级毛片| 男人的好看免费观看在线视频 | 日韩 欧美 亚洲 中文字幕| 十分钟在线观看高清视频www| 日韩免费av在线播放| 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色成人免费大全| 一个人免费在线观看的高清视频| 久久久国产成人免费| 亚洲人成77777在线视频| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 免费在线观看影片大全网站| 精品国产一区二区三区久久久樱花| 人人妻人人澡人人看| 99热网站在线观看| 中文亚洲av片在线观看爽 | 最近最新中文字幕大全免费视频| 精品福利永久在线观看| 国产97色在线日韩免费| 欧美日韩瑟瑟在线播放| 精品一品国产午夜福利视频| 亚洲人成电影免费在线| av免费在线观看网站| 午夜福利在线免费观看网站| 午夜91福利影院| 久久久久久久午夜电影 | 国产亚洲精品久久久久久毛片 | 欧美亚洲日本最大视频资源| 午夜精品在线福利| 12—13女人毛片做爰片一| 青草久久国产| 999精品在线视频| 国产精品久久视频播放| 午夜两性在线视频| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 久久午夜亚洲精品久久| 午夜精品国产一区二区电影| 精品久久久久久电影网| 亚洲成人免费av在线播放| 日本撒尿小便嘘嘘汇集6| 国产在线一区二区三区精| 亚洲人成电影免费在线| 十八禁高潮呻吟视频| 免费在线观看亚洲国产| 在线视频色国产色| 精品午夜福利视频在线观看一区| 国产在线观看jvid| 欧美中文综合在线视频| 欧美老熟妇乱子伦牲交| 免费在线观看日本一区| 国产成人精品在线电影| 免费在线观看视频国产中文字幕亚洲| 久久人妻福利社区极品人妻图片| 不卡av一区二区三区| а√天堂www在线а√下载 | av超薄肉色丝袜交足视频| 亚洲欧美精品综合一区二区三区| 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 亚洲国产欧美日韩在线播放| 日本wwww免费看| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 欧美老熟妇乱子伦牲交| 国产激情欧美一区二区| 国产精品自产拍在线观看55亚洲 | 国产成人精品无人区| 9热在线视频观看99| 国产精品久久视频播放| 亚洲精品国产区一区二| 国产精品秋霞免费鲁丝片| 女人高潮潮喷娇喘18禁视频| 大片电影免费在线观看免费| 亚洲精品一二三| 久久国产精品人妻蜜桃| 国产午夜精品久久久久久| 看黄色毛片网站| 久久国产精品大桥未久av| 国产在视频线精品| 母亲3免费完整高清在线观看| 国产精品免费视频内射| 亚洲色图 男人天堂 中文字幕| 久久婷婷成人综合色麻豆| 18禁黄网站禁片午夜丰满| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色 | cao死你这个sao货| 亚洲欧美激情在线| 在线观看免费午夜福利视频| 人人妻,人人澡人人爽秒播| 久久精品国产99精品国产亚洲性色 | 夜夜夜夜夜久久久久| 在线视频色国产色| av一本久久久久| 人人妻人人爽人人添夜夜欢视频| 国产1区2区3区精品| 大陆偷拍与自拍| 中文字幕精品免费在线观看视频| 亚洲国产欧美一区二区综合| 成人特级黄色片久久久久久久| 成人黄色视频免费在线看| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 国产精品 国内视频| 99精品欧美一区二区三区四区| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 久久久久久久久久久久大奶| 久久久久国产精品人妻aⅴ院 | 日韩欧美在线二视频 | 国产激情久久老熟女| 亚洲国产看品久久| av网站在线播放免费| av欧美777| 大片电影免费在线观看免费| 91成人精品电影| 精品久久久久久电影网| 18禁观看日本| 国产精品秋霞免费鲁丝片| 丝瓜视频免费看黄片| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 免费不卡黄色视频| av中文乱码字幕在线| 亚洲人成电影免费在线| 不卡一级毛片| 国产精品成人在线| 妹子高潮喷水视频| 中国美女看黄片| 欧美精品啪啪一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产综合久久久| 欧美日韩乱码在线| 亚洲国产欧美网| 成在线人永久免费视频| av电影中文网址| 久久人妻熟女aⅴ| 又黄又爽又免费观看的视频| 国内毛片毛片毛片毛片毛片| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区 | 黄色怎么调成土黄色| 久久精品国产亚洲av香蕉五月 | av网站免费在线观看视频| 亚洲国产欧美网| 午夜福利免费观看在线| 国产激情欧美一区二区| 免费在线观看完整版高清| 首页视频小说图片口味搜索| 婷婷丁香在线五月| 黄色怎么调成土黄色| 精品久久久久久,| 久久久久久亚洲精品国产蜜桃av| 国产精品综合久久久久久久免费 | 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看 | 午夜免费观看网址| 黄色成人免费大全| 久久久国产欧美日韩av| а√天堂www在线а√下载 | 十八禁高潮呻吟视频| 麻豆av在线久日| 久久国产精品影院| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| 亚洲熟女毛片儿| 午夜精品在线福利| 建设人人有责人人尽责人人享有的| 99riav亚洲国产免费| 亚洲欧美激情在线| 色精品久久人妻99蜜桃| 欧美国产精品va在线观看不卡| 国产有黄有色有爽视频| 好看av亚洲va欧美ⅴa在| 国产一区二区三区在线臀色熟女 | 中文字幕色久视频| 在线观看一区二区三区激情| 欧洲精品卡2卡3卡4卡5卡区| 一区二区日韩欧美中文字幕| 久久影院123| 日本黄色日本黄色录像| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区 | a级毛片黄视频| 国产亚洲精品久久久久5区| 中文字幕精品免费在线观看视频| 国产亚洲欧美在线一区二区| 精品国内亚洲2022精品成人 | 夜夜爽天天搞| 久久精品亚洲精品国产色婷小说| 黑丝袜美女国产一区| 啦啦啦在线免费观看视频4| 人人妻人人爽人人添夜夜欢视频| 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女 | 曰老女人黄片| 大香蕉久久成人网| 18禁观看日本| 久久草成人影院| 色在线成人网| 婷婷丁香在线五月| 亚洲精品一二三| 美女福利国产在线| 久久人妻福利社区极品人妻图片| 久久精品亚洲熟妇少妇任你| 男女下面插进去视频免费观看| 色老头精品视频在线观看| 日韩大码丰满熟妇| 妹子高潮喷水视频| 国产麻豆69| 国产xxxxx性猛交| 夫妻午夜视频| 美女高潮喷水抽搐中文字幕| 久久热在线av| 捣出白浆h1v1| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 亚洲自偷自拍图片 自拍| 91av网站免费观看| 美女福利国产在线| 狠狠婷婷综合久久久久久88av| 久久精品亚洲熟妇少妇任你| 亚洲黑人精品在线| 757午夜福利合集在线观看| 亚洲av日韩在线播放| 757午夜福利合集在线观看| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 欧美亚洲 丝袜 人妻 在线| 999精品在线视频| 99香蕉大伊视频| 欧美+亚洲+日韩+国产| 精品久久久久久电影网| 亚洲国产精品sss在线观看 | 电影成人av| 国产视频一区二区在线看| 嫁个100分男人电影在线观看| 欧美亚洲日本最大视频资源| 久久久久国产一级毛片高清牌| 午夜福利,免费看| 老司机亚洲免费影院| 午夜精品在线福利| avwww免费| xxxhd国产人妻xxx| 交换朋友夫妻互换小说| 成人av一区二区三区在线看| 成人18禁在线播放| 亚洲性夜色夜夜综合| 午夜两性在线视频| 亚洲成国产人片在线观看| 成年人免费黄色播放视频| 黄色成人免费大全| 色婷婷av一区二区三区视频| 中文字幕人妻丝袜一区二区| 久久精品亚洲精品国产色婷小说| 波多野结衣一区麻豆| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 99riav亚洲国产免费| 在线观看一区二区三区激情| 久久国产亚洲av麻豆专区| 视频在线观看一区二区三区| tube8黄色片| 亚洲在线自拍视频| 欧美精品人与动牲交sv欧美| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品人妻蜜桃| 天堂中文最新版在线下载| 少妇粗大呻吟视频| 国产人伦9x9x在线观看| 久久中文字幕一级| 国产精品综合久久久久久久免费 | 满18在线观看网站| 天天躁夜夜躁狠狠躁躁| 最新美女视频免费是黄的| 欧美激情高清一区二区三区| 成人av一区二区三区在线看| 校园春色视频在线观看|