• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation study of ionization characteristics of argon dielectric barrier discharge

    2023-12-15 11:48:08GuimingLiu劉桂銘LeiChen陳雷ZhiboZhao趙智博andPengSong宋鵬
    Chinese Physics B 2023年12期
    關(guān)鍵詞:陳雷

    Guiming Liu(劉桂銘), Lei Chen(陳雷),?, Zhibo Zhao(趙智博), and Peng Song(宋鵬)

    1Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System,Shenyang Aerospace University,Shenyang 110136,China

    2College of Mechanical and Electrical Engineering,Dalian Minzu University,Dalian 116600,China

    Keywords: dielectric barrier discharge,particle distribution properties,electron density,electron temperature

    1.Introduction

    According to some research, non-equilibrium plasmas are applicable in a wide range of fields such as medical services, aerospace, environmental protection and agricultural production.[1,2]They can be generated by glow discharge,corona discharge, dielectric barrier discharge (DBD) and so on.[3-5]Among various discharge technologies,DBD provides one of the most effective solutions to the generation of lowtemperature non-equilibrium plasma under atmospheric pressure.Capable of working under high pressure and at a wide frequency range, it meets the requirement for use of plasma discharge technology under high pressures, playing an important role in the industrial application of low-temperature plasma.[6-8]Therefore,many scholars have already carried out research on how the characteristics of a DBD would be affected by the parameters of the DBD actuator structure, discharge parameters,working conditions and other factors.[9-11]

    In the process of DBD,it is worth paying attention to the selection of dielectric materials,the structure of the discharge space and the size of the input voltage as these factors can affect the ionization characteristics of particles.[12]Jud′eeet al.[13]compared the plasma parameters of the jet part of the exciter of a single dielectric layer DBD and a double dielectric layer DBD so as to analyze their ionization characteristics and the factors influencing plasma jet length and ionization velocity.However,no consideration was given to the law governing the influence of different parameters on the characteristics of ionization inside the exciter.[13]Barkaouiet al.[14]studied the effects of aerodynamic parameters and input voltage of gas on a plasma jet to analyze the effect of gas velocity on the electric field and electron density in the course of propagation.Despite this, no analysis was conducted on the characteristics of particle ionization in the exciter.[14]Baiet al.[15]investigated the thermodynamic reaction process of a nanosecond pulsed DBD to analyze how to produce important substances when methane and carbon dioxide are introduced,with the generation of these substances described in detail.However, little attention was paid to analyzing the final result of ionization.[15]Wanget al.[16]conducted a study on the characteristics of multi-current pulse dielectric layer discharge with a ring electrode under atmospheric pressure.In this study,the effects of different current pulses on ionization characteristics in the same cycle were described.They analyzed the patterns of variation in discharge mode, current density,electron density and electric field when the number of current pulses was changed.However,they did not take into account how the structural parameters of the physical model would affect the characteristics of ionization.[16]Wanget al.[17]used a one-dimensional fluid simulation model of a He/N2dielectric blocking discharge with parallel plate electrodes to investigate the law of the effect of different gap widths,secondary electron emission coefficients and driving frequencies on the characteristics of the multi-current pulse discharge and transition of the discharge mode.The process of discharge mode transition was further explored when the parameters changed,but the effect on the particle discharge characteristics was ignored.[17]Apart from assisting the effort to establish the correlation between the structural parameters,working parameters and performance indices of the discharge exciter,the results of qualitative and quantitative analyses of the internal working process and its influencing factors also provide a crucial reference for the design and development of the discharge exciter and accelerate the development cycle.It is thus necessary to reveal the rationale of the DBD exciter and identify its influencing factors.In addition, simulation of the plasma must be performed progressively because setting the actual working conditions directly often leads to error and hampers troubleshooting.Given the relative simplicity of the reaction kinetics of Ar,we first study Ar in this paper to summarize the law applied to setting the practical conditions of simulation and application for reference.[18]However, most of the current plasma simulations are one-dimensional.Unlike two-dimensional simulations, they ignore the distribution of particles in the axial direction,which results in inaccurate simulation results.[19-21]

    To solve this problem,the internal discharge process and operating characteristics of a DBD exciter are taken as the research object of this paper, with Ar as the carrier gas.The purpose is to explore the effect of different voltages,pressures inside the reactor and relative permittivities on the characteristics of ionization under atmospheric pressure.The distribution laws of electron density, potential and electron temperature are also analyzed.This helps address the shortcoming of one-dimensional simulations.

    2.Experimental details

    2.1.Experimental setup

    The experimental setup is illustrated in Fig.1.The plasma generator shown in the figure is a coaxial DBD device independently developed by our group.As its components, the central electrode is made of purple copper with a diameter of 7 mm and a length of 65 mm, the insulation layer is made of polytetrafluoroethylene(PTFE)with a relative dielectric constant of 2.55, the shell is made of 304 stainless steel with a discharge gap of 2 mm and the CPT-2000K low-temperature plasma power supply produced by Nanjing Suman is purposed to power the DBD device.The voltage and current waveforms generated during the experiment were recorded using a Tektronix-TDS1002 digital oscilloscope.A MX2500+multichannel spectrometer was employed to record the spectral information and transmit the spectral data to the computer in real time,facilitating both observation and recording.

    Fig.1.Schematic diagram of the experimental setup.

    2.2.Spectral diagnostic method and calculation of electron density

    Figure 2 illustrates how spectral acquisition was performed.With the fiber optic probe fixed at a distance of 30 mm from the DBD device,the axis of the fiber optic probe and the DBD device were kept aligned during the experiment.Also,the spectral information on the plasma generated by the DBD was collected by the spectrometer.

    Fig.2.Physical diagram of spectral acquisition.

    For the spectral lines of non-hydrogen-like atoms, the Boltzmann slope method was used.For the two emission spectral lines at wavelengthsλ1andλ2,the ratio of their intensities is expressed as

    whereIis the intensity of the emitted light,kis the Boltzmann constant,gis the statistical weight,Ais the Einstein coefficient of the spontaneous radiation,Eis the excitation energy of the spectral line andTeis the electron excitation temperature.By taking logarithms for both sides of the above equation,the collation yield is obtained as

    where the values of excitation energyEare obtained from the atomic spectra database,gandAare obtained from the National Institute of Standards and Technology table of leap odds and the spectral intensityIis measured using a spectrometer.Thus,the electron excitation temperature can be calculated by measuring only the spectral intensities of the two emitted lights with wavelengthsλ1andλ2.To calculate the electron excitation temperature using Eq.(2),the following requirements need to be met.Firstly,the light emission of both spectral lines must be proportional to the ground state Bourget number.Secondly,the two excited states undergo a known electron collisional excitation process.Thirdly,the leap is subjected to no radiative capture.Fourthly,the two excitation energies are basically identical.Fifthly, there is no variation in the leap probabilities and other de-activation steps of the two spectral lines with the change of the plasma.Lastly, the excitation processes of the two spectral lines are related to the electron energy at the same level.By introducing the natural logarithm of the intensity relationship of the emitted light and inputting the values ofk,the following formula is obtained:

    According to Eq.(3),if a series of ln(Iλ/(gA))values corresponding to the excitation energyEof each spectral line are plotted as coordinates, it is theoretically possible to obtain a straight line with a slope of-5040/Te.Thus,the electron excitation temperatureTecan be calculated.

    3.Simulation model

    3.1.Physical model

    Figure 3 shows a three-dimensional model of the coaxial dielectric blocking discharge.As can be seen from the figure,the AC is connected to the central electrode,the dielectric layer covers the surface of the central electrode and the ground electrode is connected to the metal shell.The diameter of the central electrode is 2 mm,the thickness of the dielectric layer is 1 mm,the thickness of the metal shell is 1 mm and the discharge gap between the dielectric layer and the metal shell is 2 mm.PTFE is taken as the dielectric material,and has a relative dielectric constant of 2.55.A sinusoidal AC voltage is applied between the central electrode and the metal housing

    The discharge frequencyf0=104Hz.The discharge gap is filled with pure Ar gas, the temperature of which is set to 300 K,and the pressure inside the reactor is set to 1 atm.The initial electron density is set to 1010m-3and the initial average electron energy is set to 4 V.Due to the large computational volume of the actual three-dimensional model, the model is simplified into a two-dimensional axisymmetric model in this paper for improved efficiency of computation.Figure 4 shows the simulation model used in this study.According to the figure, the dielectric layer widthx=1 mm, the discharge gapd=2 mm and the lengthL=8 mm.

    Fig.3.Three-dimensional model of the coaxial medium blocking discharge.

    Fig.4.Simulation model.

    3.2.Chemical model

    The kinetic reactions that occur when the dielectric barrier is infused with gas discharges are highly complex.At present,there remains a lack of clarity on the influence of the interactions between different particles on the results.The reaction kinetics of Ar plasma is far less complex than the reactions of gas in the ionization process.The mechanism of Ar plasma reaction is shown in Table 1,with four types of particles, namely, e, Ar, Ars and Ar+, involved in a total of seven different reactions.

    Table 1.Argon plasma reaction mechanism.

    3.3.Mathematical models

    The transport equations for electrons during the model calculation are formulated as follows:

    whereneandnεare the electron number density and electron energy density,Eis the electric field strength in the discharge space,Reis the electron rate expression,Rεis the energy loss due to inelastic collisions,uis to the mass-averaged flow rate,Γeis the electron flux andΓεis the electron energy.TheReandRεare calculated as

    wherekejis the reaction rate coefficient,cjis the molar concentration of reactants in thejth reaction,Nnis the number density of neutral particles and ?εjis the energy loss during the reaction.

    Based on the drift-diffusion approximation, the electron flux and energy flux are calculated as

    whereμeis the electron mobility,μεis the electron energy mobility,Deis the diffusion coefficient of electrons andDεis the energy diffusivity of electrons.

    The electron temperature is calculated with the equation of conservation of electron energy

    The electric fieldEis governed by Poisson’s equation,which is related to the potentialV

    The boundary conditions for the electrons on the solid wall are

    wherenis the unit normal vector on the surface of the medium,γiis the secondary electron emission coefficient,αsis the switching function associated withEandα′sbeing the switching function associated withn.

    4.Results and analysis

    In this paper, finite element analysis is conducted to explore the discharge characteristics of a coaxial DBD.To begin with,the particle discharge process is studied under a specific working condition.Then, the effect on the particle distribution in the DBD process is analyzed by changing the discharge voltage,dielectric layer material and air pressure,respectively,through the control variable method.

    4.1.Discharge characteristics of particles in four cycles

    In an atmosphere of pure Ar gas,the AC voltage is set to 10 kV and PTFE is taken as the dielectric layer material(relative permittivity 2.55).On this basis,the voltage and current,and electron density and electron temperature distribution are studied in one cycle to analyze the connection between them.

    Figure 5 shows the voltage and current waveforms in four cycles.According to the figure, there is a one-off change in the direction of the sinusoidal AC voltage and current in one cycle,and the numerical magnitude of the voltage and current first increases and then decreases over time in the same direction as the discharge.Since the voltage and current waveforms in the four cycles are identical,the laws of electron density and electron temperature changes are studied for only one cycle in the following sections.Figure 6 shows the spatial distribution of electron density at a certain point in time.Since the electron density and electron temperature at any moment vary in each position in space, the average of electron density and electron temperature in space at each moment is taken as the electron density and electron temperature at that moment.This method is used to calculate the magnitude of electron density and electron temperature in the numerical simulation section of this paper.Figure 7 shows the variation of electron density and electron temperature in four cycles over time.As shown in the figure,electron density increases sharply and reaches its maximum in the initial stage of the discharge; this is because the electrons absorb energy and collide with Ar atoms under the action of an electric field,thus producing a large number of sub-stable Ar atoms.The density of sub-stable Ar atoms also increases rapidly.When the voltage decreases gradually, the energy absorbed by the electrons diminishes, which causes a gradual decline in the number density of sub-stable Ar atoms.During the period 80-100μs,the particles increasingly aggregate on one side of the discharge.When the voltage is applied continuously, the energy absorbed by the electrons increases and the number of particles produced becomes larger, which means the electron density rises.In the initial stage of the discharge,the electron temperature rises at an extremely fast pace because of the energy generated after numerous electron collisions.However,in the period 60-80μs,the energy consumed by the collisions between particles exceeds the energy released by ionization,which reduces the electron temperature.[23]Figure 8 shows curves of the electron density and total capacitive power deposition with time.It can be seen from the figure that fluctuation of total capacitive power deposition occurs twice per cycle.The discharge process provides the energy required to excite the DBD,the discharge energy drives the generation of plasma active material in the discharge air gap and the energy is partly stored in the dielectric layer.The particles collide with each other due to the applied electric field, with a large number of free electrons and ions generated.As a result,electron density increases.

    Fig.5.Voltage and current waveforms.

    Fig.6.Spatial distribution of electron density.

    Fig.8.Change in electron density and total capacitance power deposition.

    4.2.Effect of voltage on discharge characteristics

    With other conditions unchanged,a study was conducted on the effect of voltage on electron density and electron temperature when the AC voltage increases from 10 kV to 15 kV.Figure 9 shows the variation of electron density with voltage.As can be seen, the energy absorbed by the particles in the electric field increases with the gradual rise in voltage.Meanwhile,the collisions become more violent,the number of electrons produced increases and the maximum value of electron density rises from 6.36×1016m-3to 8.31×1016m-3.

    Fig.9.Change in electron density at different voltages.

    Fig.7.Change in electron density and electron temperature.

    Fig.10.Change in electron temperature at different voltages.

    Figure 10 shows the change in electron temperature with voltage.As can be seen, with the increase in input voltage,the electron temperature shows an overall increasing trend and its maximum value also rises gradually.This is because the collisions between the particles absorbing energy intensifies continuously,thus leading to a rise in temperature.

    4.3.Effect of dielectric layer material on discharge characteristics

    With other conditions unchanged,variations of discharge characteristics were analyzed by changing the dielectric layer material.For teflon,silica and quartz as dielectric layer materials, the relative permittivities areεteflon=2.55,εsilica=3.9 andεquartz=4.3.

    Figure 11 shows the variation of electron density with relative permittivity.It can be seen from the figure that the electron-dense region expands with increase in the relative permittivity.This is because when the dielectric blocks discharge,the dielectric layer acts as a capacitive element in the circuit to store the electric field energy, and the capacitance of the capacitive element increases when the relative permittivity increases.The relationship between the capacitanceC,the chargeqand the voltageuof the capacitive element is expressed as

    Fig.11.Variation of electron density at different relative permittivities.

    Given a certain through voltage,the larger the capacitanceC,the higher the chargeqand the greater the current density.Therefore, the current density increases with increase in the relative permittivity, which increases the number of charged particles on the surface of the dielectric during the discharge process, thus expanding the range of electron density distributions for which the dielectric blocks discharge.Figure 12 shows the variation of electron temperature with relative permittivity,and Fig.13 shows the spatial distribution of electron temperature given different relative permittivities.It can be seen from the figures that the high-temperature region gradually approaches the cathode region with increase in relative permittivity,while the maximum value of electron temperature gradually decreases.This is because the intensity of electric field in the cathode region rises as the relative permittivity increases.In this case,the electrons have more energy to collide with each other, and power loss increases accordingly.Also,there is a gradual decrease not only in the width of the cathode glow region but also in the maximum value of electron temperature.

    Fig.12.Variation of electron temperature at different relative permittivities.

    Fig.13.Spatial distribution of electron temperature at different relative permittivities.

    4.4.Effect of pressure inside the reactor on discharge characteristics

    With the other parameters unchanged, the effect of air pressure on electron density and electron temperature distribution was analyzed by changing only the pressure inside the reactor.Figure 14 shows the change of electron density with discharge pressure inside the reactor.According to this figure,the electron density increases significantly when the discharge pressure inside the reactor is raised from 1.0 atm to 1.2 atm.This is because when the density of the gas rises,the free range between the particles is narrowed,the number of collisions between individual particles increases and the collision leads to the generation of more particles.That is to say, the electron density increases.

    The variation of electron temperature with discharge time is shown in Fig.15.As the discharge pressure inside reactor increases from 1.0 atm to 1.2 atm, the electron temperature shows a decreasing trend.This is because the rise in the number of collisions between individual particles increases energy consumption,thus reducing the electron temperature.

    Fig.14.Change in electron density under different pressures inside the reactor.

    Fig.15.Change in electron temperature under different pressures inside reactor.

    4.5.Processing of experimental results

    The spectral data for a DBD can be obtained by using a spectrometer and plotting a characteristic spectral map.Since the distribution of Ar atoms ranges between 680 and 850,some of the data are selected for Gaussian fitting, as shown in Fig.16.The slope of this image is clearly observable, and has a value of-5040/Te.Furthermore, the numerical magnitude of the electron excitation temperature can be obtained.With the other parameters related to the experiment kept constant,the discharge voltage is adjusted to determine the variation of electron excitation temperature with discharge voltage,as shown in Fig.17.Through a comparison with the simulation results,it is found that the experimentally measured electron excitation temperature changes with voltage in the same way as in the simulation,so the temperature of electron excitation increases with increase in the voltage.However,there is a disparity between the experimental and simulation data due to errors in the process of experimental measurement.The errors are within the allowable range.

    Fig.16.Gaussian fitting diagram.

    Fig.17.Trend of changes in electron excitation temperature with voltage.

    5.Conclusion

    In the present work an investigation was conducted into the effects of voltage,pressure inside the reactor and dielectric layer material on the characteristics of particle discharge during the course of a coaxial dielectric blocking discharge.The main conclusions of this study are as follows.

    (1) As the input voltage rises, the potential of the discharge gap increases, the particles absorb more and more energy,the collisions become intensified,the number of particles generated increases with more energy released and there is an increase in both electron density and electron temperature.

    (2)With change in the dielectric layer material,the number of charged particles in the dielectric layer increases with the relative permittivity,the electron density rises and the electron temperature decreases due to the increase in energy loss caused by the collisions.

    (3)With a gradual rise in pressure inside reactor,the gas density increases, which causes the number of particle collisions to increase.Meanwhile, the electron density increases,while the electron temperature gradually declines due to energy consumption between the particles.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.51509035 and 51409158), the Project of Shenyang Science and Technology Bureau (Grant No.RC200010),and the National Natural Science Foundation of Liaoning Province of China(Grant No.2020-KF-13-03).

    猜你喜歡
    陳雷
    Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
    間斷吸唾技術(shù)對根管治療患者舒適度的影響
    陳雷膠漆
    命中注定
    水利部部長陳雷在我省調(diào)研水利工作
    山西水利(2016年5期)2017-01-20 08:51:22
    時尚“吃播”陳雷:邊吃邊秀邊掙錢
    華人時刊(2016年16期)2016-04-05 05:57:23
    陳雷主持召開國家防總會商會安排臺風“天鵝”和新一輪強降雨防范工作
    中國水利(2015年16期)2015-02-28 15:14:52
    陳雷講“三嚴三實”專題黨課
    中國水利(2015年11期)2015-02-28 15:13:49
    陳雷主持召開全國水庫安全度汛視頻會議
    中國水利(2015年8期)2015-02-28 15:13:15
    水利部傳達貫徹全國兩會精神 陳雷主持會議并講話
    中國水利(2015年6期)2015-02-28 15:12:51
    精品一区二区三区四区五区乱码| 1024视频免费在线观看| 久久人妻福利社区极品人妻图片| 国产av又大| 中文字幕色久视频| 91老司机精品| 国产无遮挡羞羞视频在线观看| 日本五十路高清| 亚洲精品美女久久av网站| 1024视频免费在线观看| 中文字幕最新亚洲高清| 亚洲一区中文字幕在线| 日本五十路高清| 欧美日韩中文字幕国产精品一区二区三区 | 免费日韩欧美在线观看| 国产精品久久久av美女十八| 大型av网站在线播放| 免费在线观看黄色视频的| 黄片播放在线免费| 欧美 日韩 精品 国产| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 天堂8中文在线网| 精品少妇一区二区三区视频日本电影| 国产又色又爽无遮挡免费看| 色精品久久人妻99蜜桃| 国产精品一区二区在线不卡| 久久国产精品影院| 久久中文看片网| 18禁美女被吸乳视频| 国产区一区二久久| 欧美乱码精品一区二区三区| 少妇精品久久久久久久| 大型av网站在线播放| 亚洲第一欧美日韩一区二区三区 | 亚洲av美国av| 中文欧美无线码| svipshipincom国产片| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看 | 久久精品亚洲av国产电影网| 怎么达到女性高潮| 天天躁夜夜躁狠狠躁躁| 91成年电影在线观看| 美女主播在线视频| 中文字幕高清在线视频| 丝袜喷水一区| 啪啪无遮挡十八禁网站| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 一个人免费看片子| 69av精品久久久久久 | 久久av网站| 亚洲人成电影观看| 欧美久久黑人一区二区| 12—13女人毛片做爰片一| 99精品欧美一区二区三区四区| 亚洲av日韩在线播放| 久久精品亚洲av国产电影网| 久久久精品国产亚洲av高清涩受| 可以免费在线观看a视频的电影网站| 精品久久蜜臀av无| 欧美日韩亚洲国产一区二区在线观看 | 另类亚洲欧美激情| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 精品熟女少妇八av免费久了| 久久久国产一区二区| 丁香六月欧美| 色婷婷久久久亚洲欧美| 老汉色∧v一级毛片| 国产成人系列免费观看| 精品少妇黑人巨大在线播放| 亚洲av日韩精品久久久久久密| 国产黄色免费在线视频| 国产成人免费观看mmmm| 国产精品秋霞免费鲁丝片| 在线观看免费视频日本深夜| 又紧又爽又黄一区二区| 日韩免费高清中文字幕av| 美女国产高潮福利片在线看| 欧美日韩黄片免| 男女午夜视频在线观看| 亚洲视频免费观看视频| 成在线人永久免费视频| 久久久久久久久久久久大奶| 极品人妻少妇av视频| 国产aⅴ精品一区二区三区波| 亚洲午夜理论影院| 亚洲欧美激情在线| 丁香六月天网| 欧美黑人欧美精品刺激| 亚洲精品中文字幕一二三四区 | 亚洲专区字幕在线| www.自偷自拍.com| 国产有黄有色有爽视频| 久久久精品94久久精品| 老熟妇仑乱视频hdxx| 大香蕉久久网| 极品人妻少妇av视频| 搡老熟女国产l中国老女人| 午夜福利视频在线观看免费| 午夜福利在线观看吧| 国产片内射在线| 国产亚洲av高清不卡| 久久中文看片网| 成人黄色视频免费在线看| 国产av国产精品国产| 天天躁夜夜躁狠狠躁躁| 满18在线观看网站| 丰满迷人的少妇在线观看| 久久婷婷成人综合色麻豆| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 女同久久另类99精品国产91| 日韩熟女老妇一区二区性免费视频| 精品国产一区二区久久| 又黄又粗又硬又大视频| 久久久欧美国产精品| 欧美精品一区二区免费开放| 美女福利国产在线| 日韩成人在线观看一区二区三区| 国产成人影院久久av| 久久久久久久久免费视频了| 丝瓜视频免费看黄片| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕 | av线在线观看网站| 夜夜爽天天搞| 中文字幕av电影在线播放| 日韩欧美国产一区二区入口| 日韩人妻精品一区2区三区| 国产在线精品亚洲第一网站| 十八禁高潮呻吟视频| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 国产高清视频在线播放一区| 欧美激情高清一区二区三区| 精品第一国产精品| videos熟女内射| 久久99一区二区三区| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久人妻精品电影 | 日韩免费av在线播放| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美在线一区| 国产一区二区三区视频了| 国产免费现黄频在线看| 伦理电影免费视频| av天堂在线播放| 亚洲国产精品一区二区三区在线| 我的亚洲天堂| 丁香六月天网| 成人黄色视频免费在线看| 99九九在线精品视频| 亚洲第一av免费看| 男人操女人黄网站| 香蕉久久夜色| 午夜福利一区二区在线看| 亚洲色图 男人天堂 中文字幕| 一区二区三区国产精品乱码| 久久毛片免费看一区二区三区| 亚洲熟女精品中文字幕| 岛国在线观看网站| 大香蕉久久网| 亚洲欧洲精品一区二区精品久久久| 热re99久久精品国产66热6| 成人免费观看视频高清| 黄色丝袜av网址大全| 免费在线观看影片大全网站| 夜夜爽天天搞| 久久精品国产综合久久久| 久久国产精品男人的天堂亚洲| 亚洲精品自拍成人| 热re99久久国产66热| 国产不卡一卡二| 国产黄频视频在线观看| 亚洲自偷自拍图片 自拍| 80岁老熟妇乱子伦牲交| 操美女的视频在线观看| 国产精品1区2区在线观看. | 纵有疾风起免费观看全集完整版| 我的亚洲天堂| 男女无遮挡免费网站观看| 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频| 18在线观看网站| 国产又色又爽无遮挡免费看| 午夜福利,免费看| 51午夜福利影视在线观看| 日本vs欧美在线观看视频| 免费一级毛片在线播放高清视频 | 日本欧美视频一区| 亚洲性夜色夜夜综合| 人人妻人人澡人人看| 免费在线观看日本一区| 欧美日韩黄片免| 日韩欧美三级三区| 欧美日韩成人在线一区二区| 最近最新中文字幕大全电影3 | 黄色a级毛片大全视频| 91成人精品电影| 中亚洲国语对白在线视频| 日日夜夜操网爽| 日韩视频在线欧美| 亚洲国产av影院在线观看| 亚洲专区国产一区二区| 精品国产乱码久久久久久男人| 在线播放国产精品三级| 免费少妇av软件| 成年人黄色毛片网站| 亚洲专区字幕在线| av有码第一页| 欧美大码av| 老熟女久久久| 久久免费观看电影| 丝袜美足系列| 亚洲第一青青草原| 欧美成人免费av一区二区三区 | 国产日韩欧美亚洲二区| 制服诱惑二区| 国产精品亚洲一级av第二区| 亚洲精品中文字幕一二三四区 | 黄频高清免费视频| 国产在线精品亚洲第一网站| 两个人免费观看高清视频| 最黄视频免费看| 一边摸一边抽搐一进一出视频| 国产欧美日韩精品亚洲av| 亚洲国产欧美在线一区| 人人妻,人人澡人人爽秒播| 丝袜人妻中文字幕| 欧美激情久久久久久爽电影 | 久久久久网色| 国内毛片毛片毛片毛片毛片| 在线观看免费高清a一片| avwww免费| 99热国产这里只有精品6| 一边摸一边抽搐一进一出视频| 国产在线免费精品| 人人澡人人妻人| 精品一区二区三卡| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 一边摸一边抽搐一进一小说 | 免费少妇av软件| 亚洲人成电影免费在线| 激情视频va一区二区三区| 中文字幕人妻丝袜制服| 真人做人爱边吃奶动态| 捣出白浆h1v1| av天堂久久9| 国产一区有黄有色的免费视频| 午夜精品久久久久久毛片777| 手机成人av网站| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 亚洲第一av免费看| 欧美黄色淫秽网站| 99久久人妻综合| 一区二区三区精品91| 欧美精品啪啪一区二区三区| 亚洲av日韩精品久久久久久密| 国产人伦9x9x在线观看| 国产高清激情床上av| 久久这里只有精品19| 久久久精品区二区三区| 99riav亚洲国产免费| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 久久久久久免费高清国产稀缺| 18禁观看日本| 纵有疾风起免费观看全集完整版| 丝袜喷水一区| 少妇裸体淫交视频免费看高清 | 久久ye,这里只有精品| 久久99热这里只频精品6学生| 女人高潮潮喷娇喘18禁视频| a级片在线免费高清观看视频| 欧美成狂野欧美在线观看| 日韩中文字幕视频在线看片| www日本在线高清视频| 无遮挡黄片免费观看| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品1区2区在线观看. | 亚洲欧美日韩另类电影网站| 久热这里只有精品99| 欧美日韩一级在线毛片| 无限看片的www在线观看| 日韩 欧美 亚洲 中文字幕| 1024视频免费在线观看| 国产成人免费无遮挡视频| 日韩成人在线观看一区二区三区| 中文欧美无线码| 黄片播放在线免费| 美女国产高潮福利片在线看| 麻豆成人av在线观看| 欧美另类亚洲清纯唯美| 久久99热这里只频精品6学生| 99精国产麻豆久久婷婷| 狠狠婷婷综合久久久久久88av| 一边摸一边抽搐一进一小说 | 国产麻豆69| 久久ye,这里只有精品| 91老司机精品| 久久精品亚洲精品国产色婷小说| 午夜两性在线视频| 国产xxxxx性猛交| 露出奶头的视频| 大香蕉久久成人网| √禁漫天堂资源中文www| 一本大道久久a久久精品| 极品少妇高潮喷水抽搐| 亚洲av电影在线进入| 色婷婷av一区二区三区视频| 午夜福利视频精品| 亚洲全国av大片| 亚洲,欧美精品.| 嫁个100分男人电影在线观看| 在线播放国产精品三级| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 成在线人永久免费视频| 免费在线观看黄色视频的| 亚洲精品av麻豆狂野| 丰满饥渴人妻一区二区三| 99国产精品免费福利视频| 久久性视频一级片| 黄色丝袜av网址大全| 91九色精品人成在线观看| 新久久久久国产一级毛片| 国产男女超爽视频在线观看| 亚洲人成电影免费在线| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 国产一区二区三区综合在线观看| 后天国语完整版免费观看| 少妇猛男粗大的猛烈进出视频| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 高清毛片免费观看视频网站 | 怎么达到女性高潮| 天堂俺去俺来也www色官网| 精品人妻在线不人妻| 又大又爽又粗| 日日夜夜操网爽| 91字幕亚洲| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx| 一边摸一边抽搐一进一出视频| 欧美在线黄色| 国内毛片毛片毛片毛片毛片| www.精华液| 妹子高潮喷水视频| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 涩涩av久久男人的天堂| 久久国产精品大桥未久av| 亚洲人成电影免费在线| 色播在线永久视频| 精品亚洲成a人片在线观看| 俄罗斯特黄特色一大片| 精品久久蜜臀av无| 国产精品98久久久久久宅男小说| 考比视频在线观看| 99热国产这里只有精品6| 超碰成人久久| 免费少妇av软件| 成人黄色视频免费在线看| 男男h啪啪无遮挡| 国产在线观看jvid| 黄片大片在线免费观看| 午夜福利视频精品| 91字幕亚洲| 91av网站免费观看| 亚洲伊人久久精品综合| 国产成+人综合+亚洲专区| 国产xxxxx性猛交| 国产成人精品久久二区二区91| 国产精品电影一区二区三区 | 国产极品粉嫩免费观看在线| 亚洲国产欧美网| 久久人人97超碰香蕉20202| 国产成人精品久久二区二区91| 精品熟女少妇八av免费久了| 99国产精品99久久久久| videos熟女内射| 欧美在线一区亚洲| 国产精品 欧美亚洲| 国产视频一区二区在线看| 精品少妇黑人巨大在线播放| 亚洲人成伊人成综合网2020| 成人永久免费在线观看视频 | 欧美日韩福利视频一区二区| 一区二区三区国产精品乱码| 国产成人系列免费观看| 日韩大码丰满熟妇| 黄色a级毛片大全视频| 国产欧美日韩一区二区三区在线| 国产av精品麻豆| 婷婷丁香在线五月| 少妇 在线观看| 欧美老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 国产精品久久久久久人妻精品电影 | 久久久久久人人人人人| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 中文字幕色久视频| 日韩中文字幕欧美一区二区| 女性生殖器流出的白浆| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 五月开心婷婷网| 欧美日韩亚洲国产一区二区在线观看 | 久久久水蜜桃国产精品网| 99久久精品国产亚洲精品| 757午夜福利合集在线观看| 欧美激情 高清一区二区三区| 久久免费观看电影| 国产片内射在线| 亚洲精品中文字幕在线视频| 欧美激情极品国产一区二区三区| 一级片'在线观看视频| 午夜两性在线视频| 午夜福利在线免费观看网站| 国产亚洲午夜精品一区二区久久| 女人被躁到高潮嗷嗷叫费观| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看| 亚洲九九香蕉| 亚洲精品乱久久久久久| 国产亚洲一区二区精品| 肉色欧美久久久久久久蜜桃| 欧美精品av麻豆av| 精品亚洲乱码少妇综合久久| 超色免费av| 国产成人精品久久二区二区免费| 高清欧美精品videossex| 亚洲熟女毛片儿| 黄色视频,在线免费观看| 久久ye,这里只有精品| 新久久久久国产一级毛片| 亚洲一区二区三区欧美精品| 精品少妇内射三级| 国产精品香港三级国产av潘金莲| 三级毛片av免费| 午夜两性在线视频| 亚洲精品中文字幕一二三四区 | videos熟女内射| 高清毛片免费观看视频网站 | 久久国产精品男人的天堂亚洲| 亚洲天堂av无毛| 亚洲午夜精品一区,二区,三区| 99国产精品免费福利视频| 国产亚洲欧美精品永久| 三上悠亚av全集在线观看| 欧美精品一区二区大全| 亚洲成人手机| 国产一卡二卡三卡精品| 老司机午夜福利在线观看视频 | 久久天堂一区二区三区四区| 亚洲国产av影院在线观看| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 久久久久久久久免费视频了| 午夜福利欧美成人| 女人精品久久久久毛片| 99久久人妻综合| av超薄肉色丝袜交足视频| 亚洲午夜理论影院| 99re在线观看精品视频| 女人精品久久久久毛片| 久久久久久免费高清国产稀缺| 成人免费观看视频高清| 亚洲avbb在线观看| 男人舔女人的私密视频| 中亚洲国语对白在线视频| 精品高清国产在线一区| 国产精品香港三级国产av潘金莲| 国产成人一区二区三区免费视频网站| 变态另类成人亚洲欧美熟女 | 黑人巨大精品欧美一区二区蜜桃| 纵有疾风起免费观看全集完整版| 中文字幕色久视频| 欧美性长视频在线观看| 欧美变态另类bdsm刘玥| 久久这里只有精品19| 国产精品免费视频内射| 亚洲,欧美精品.| 国产欧美日韩一区二区精品| 黄色视频在线播放观看不卡| 欧美午夜高清在线| 99香蕉大伊视频| 97人妻天天添夜夜摸| 黑丝袜美女国产一区| 亚洲精品久久午夜乱码| avwww免费| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美| av网站免费在线观看视频| 欧美日韩国产mv在线观看视频| 亚洲,欧美精品.| 欧美国产精品一级二级三级| 国产亚洲精品第一综合不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲一级av第二区| 狠狠狠狠99中文字幕| 欧美乱码精品一区二区三区| 国产在线免费精品| 欧美大码av| 天天影视国产精品| 国产成人免费观看mmmm| 999久久久国产精品视频| 欧美亚洲 丝袜 人妻 在线| 九色亚洲精品在线播放| 丝袜美腿诱惑在线| 脱女人内裤的视频| 在线永久观看黄色视频| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 69精品国产乱码久久久| 变态另类成人亚洲欧美熟女 | 在线看a的网站| 欧美乱码精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 女人高潮潮喷娇喘18禁视频| 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 啪啪无遮挡十八禁网站| 色婷婷久久久亚洲欧美| 免费女性裸体啪啪无遮挡网站| 亚洲午夜理论影院| 日韩熟女老妇一区二区性免费视频| 精品国产乱子伦一区二区三区| 久久精品熟女亚洲av麻豆精品| 久久精品国产99精品国产亚洲性色 | 国产极品粉嫩免费观看在线| 美女视频免费永久观看网站| 久久天躁狠狠躁夜夜2o2o| 女人爽到高潮嗷嗷叫在线视频| 啦啦啦 在线观看视频| 天堂8中文在线网| 80岁老熟妇乱子伦牲交| 国产区一区二久久| 亚洲少妇的诱惑av| 精品熟女少妇八av免费久了| 在线观看www视频免费| 18在线观看网站| 国产精品久久久久久精品电影小说| 满18在线观看网站| 超碰成人久久| 精品国产一区二区三区久久久樱花| 国产成人免费无遮挡视频| 中文字幕人妻丝袜一区二区| 黑人欧美特级aaaaaa片| 久久久欧美国产精品| 一级毛片电影观看| 日韩视频在线欧美| 一本色道久久久久久精品综合| 老熟妇仑乱视频hdxx| 亚洲天堂av无毛| 久久婷婷成人综合色麻豆| 免费人妻精品一区二区三区视频| 九色亚洲精品在线播放| 日韩人妻精品一区2区三区| 欧美日韩av久久| 欧美精品一区二区大全| 国产精品98久久久久久宅男小说| 国产黄色免费在线视频| 亚洲中文字幕日韩| 视频在线观看一区二区三区| 一区二区三区激情视频| 久久精品亚洲av国产电影网| 在线观看www视频免费| 男人操女人黄网站| 伊人久久大香线蕉亚洲五| aaaaa片日本免费| 嫩草影视91久久| 日本vs欧美在线观看视频| 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆| 国产日韩欧美在线精品| 亚洲精品国产一区二区精华液| 久久精品国产亚洲av香蕉五月 | 亚洲精品乱久久久久久| 天天影视国产精品| 大片电影免费在线观看免费| av欧美777| 欧美国产精品一级二级三级| 他把我摸到了高潮在线观看 | 精品一品国产午夜福利视频| 多毛熟女@视频| 日韩欧美三级三区| 亚洲 欧美一区二区三区| 国产免费现黄频在线看| 美女福利国产在线| 久久精品人人爽人人爽视色| 91精品国产国语对白视频| 啦啦啦 在线观看视频| 丝袜美足系列| 久久中文字幕人妻熟女| 又黄又粗又硬又大视频| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 欧美成狂野欧美在线观看|