• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal

    2023-12-15 11:47:48YangHeChen陳洋河BoJi季波NianQinLi李念芹ZhenJiang姜震WeiLi李維YuDongLi李昱東LiangSenFeng馮梁森TengFeiWu武騰飛andGuangQiangHe何廣強
    Chinese Physics B 2023年12期
    關(guān)鍵詞:李維洋河騰飛

    Yang-He Chen(陳洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李維),Yu-Dong Li(李昱東), Liang-Sen Feng(馮梁森), Teng-Fei Wu(武騰飛), and Guang-Qiang He(何廣強),?

    1SJTU Pinghu Institute of Intelligent Optoelectronics,Department of Electronic Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    2State Key Laboratory of Advanced Optical Communication Systems and Networks,Department of Electronic Engineering,Shanghai Jiao Tong University,Shanghai 200240,China

    3Science and Technology on Metrology and Calibration Laboratory,Changcheng Institute of Metrology&Measurement,Aviation Industry Corporation of China,Beijing 100095,China

    Keywords: hyperentanglement,nonlinear photonic crystal,quasi-phase-matching

    1.Introduction

    Quantum entanglement is a fascinating and captivating phenomenon in quantum mechanics.It plays a crucial role in areas such as quantum computing,[1-3]quantum communication,[4-7]quantum cryptography,[8,9]quantum imaging,[10,11]and quantum precision measurement.[12]By harnessing quantum entanglement, we can achieve faster and more secure communication,[13,14]efficient computational methods,[15]and breakthroughs in encryption technology.[16]

    Hyperentanglement is an intriguing extension of the phenomenon of quantum entanglement that pushes the boundaries of our understanding and exploration of the quantum world.Hyperentanglement refers to a quantum state with entanglement in multiple degrees of freedom,such as polarization,frequency,path,time,and orbital angular momentum.[17]This intricate entanglement creates a vast and intricate quantum state space, offering unprecedented opportunities for information processing and communication.[18]One of the most fascinating aspects of hyperentanglement is its potential for enhancing quantum communication protocols.By exploiting multiple degrees of freedom, hyperentanglement allows for more efficient transmission of information and increases resistance to noise.[19]Such advancements pave the way for significant applications in secure quantum key distribution,[20,21]quantum teleportation,[22]and quantum cryptography.[23,24]

    The generation of hyperentangled photon pairs through the spontaneous parametric down-conversion(SPDC)process in nonlinear photonic crystals(NPC)[25-28]with second-order susceptibilityχ(2)is widely employed in research.Specifically,photonic crystals such as periodically poled lithium niobate (PPLN) and periodically poled potassium titanyl phosphate(PPKTP),designed using quasi-phase matching(QPM)technology, enable a range of optical parametric processes,possessing both high efficiency and flexibility.[29-31]This versatility facilitates advanced scientific investigations into novel quantum entanglement sources, contributing to cutting-edge research in the field.

    The state of art technique for fabricating two-dimensional NPCs involves a combination of advanced lithography techniques, materials engineering, and nanofabrication methods.Electron beam(EB)lithography is a high-resolution patterning technique that uses a focused beam of electrons to selectively expose a material.[32]Without any static bias, Heet al.realized the fabrication of two-dimensional ferroelectric domainreversed structures in lithium niobate using EB lithography at room temperature.[33]In addition, ultrafast laser writing is also a promising fabrication technique for controlling precise two-dimensional NPC structures,and it can achieve threedimensional NPC fabrication with nanoscale resolution by either writing or erasing domain structures in the crystal.[34,35]Another commonly used technique in NPC fabrication is electrical poling,which involves applying a high voltage to a specific region of the crystal, resulting in the flipping of itsχ(2).In our work, considering that the two-dimensional NPC we designed only has a resolution at the micrometer scale,it can be easily achieved through electrical poling.

    In this paper, we first introduce our compact pathfrequency hyperentanglement scheme and basic parameters of the designed nonlinear photonic crystal.Then we give the theoretical model of our hyperentangled source using quantum optics theory.Finally the joint-spectral amplitude (JSA) of the generated photon pair is calculated,with Schmidt decomposition on it, demonstrating a strong frequency correlation between the generated two photons.

    2.Overall hyperentanglement scheme

    We plan and design specific spontaneous parametric down-conversion processes to generate path-frequency hyperentangled photon pair.SPDC processes will take place when both energy conservation and momentum conservation are satisfied.We design a two-dimensional periodicalχ(2)nonlinear photonic crystal to compensate for the phase mismatch in the SPDC processes,i.e.,to satisfy quasi-phase-match conditions in the plane perpendicular to the pump beam.Our theoretical scheme is shown in Fig.1(a).A type-I (e→o+o)phase-matched 5%MgO-doped lithium niobate is selected as the material of our NPC and the temperature is set as room temperature(25?C).

    Our scheme of path-frequency hyperentanglement totally includes 6 different paths and 2 different frequencies.As shown in Fig.1(b), each path is labeled by a unique angleθi(i= 1,2,3,4,5,6) on thexOyplane, and two generated frequenciesω1andω2satisfy the energy conservationωP=ω1+ω2.

    Along thez-axis,the momentum is fully conserved which means a perfect phase match

    where the subscriptzrefers to thezcomponent and?is the angle between the signal (or idler) photon’s momentum andz-axis.The angle?can be deduced after the frequencies of pump,signal,and idler are chosen.

    However,because of the difference between the frequencies of signal and idler photons,momentum mismatch appears in thexOyplane as follows:

    In our scheme,we set the wavelength of the pump beam asλP=775 nm (in vacuum, same below), and chooseλS=1530 nm,λI= 1570.5 nm, which belong to the communication band.Then we can calculatef1=c/λI=190.9 THz andf2=c/λS= 195.9 THz.The corresponding refractive indices of pump light, signal light, and idler light arenP=2.1707,nS=2.2095, andnI=2.2082, respectively.According to Eqs.(1) and (2), we can obtain?= 0.186 rad and?k=0.0443μm-1.

    Fig.1.(a) Our scheme of path-frequency hyperentanglement using a designed two-dimensional NPC.The second order susceptibility χ(2) of NPC is periodically modified in the xOy plane in order to compensate the momentum mismatch perpendicular to the pump beam.Perfect phase match is achieved along the z axis.(b)Spatial distribution cross section.

    Fig.2.(a)Lattice structure of the χ(2) susceptibility design example of our NPC(i.e.,u(r)).(b)Convolution of lattice and circular motif(i.e.,u(r)?s(r)),indicating the distribution of χ(2) in the xOy plane with accurate structure parameters.

    The momentum mismatches of the six SPDC processes have the same numerical value and each possesses a unique direction.That is,the momentum mismatch vectors are evenly distributed on one circumference

    whereθis the directed angles between the projection of the signal’s(or idler’s)momentum on thexOyplane and the positive direction of thex-axis,and the subscriptirefers to theith angle of the corresponding SPDC process.

    The momentum mismatches can be perfectly compensated through the periodic poling method.[36,37]By periodically modifying the susceptibility of NPC in real space,we can obtain six peak values in its Fourier space (reciprocal space)to perform QPM.The designed distribution of NPC’sχ(2)is shown in Fig.2.

    The second order susceptibilityχ(2)of our NPC can be mathematically expressed asg(r)=a(r)×(u(r)?s(r)),wherea(r)denotes the area of the NPC,u(r)is a sum of delta functions referring to the lattice structure of NPC,ands(r)is the motif function.

    Circular motif with a radius of 56.67μm-1is selected.In the motifχ(2)=+1, whileχ(2)=-1 in the rest area of the NPC.We fix the relative radius of motifR/a=0.2.

    We then further check our design by viewing the NPC in the Fourier domain,as shown in Fig.3.The six arrows indicate the six mismatch vectors of six SPDC processes.We conclude that the QPM conditions are satisfied using the design.

    Using the design example above,we are going to make a brief discussion on the relationship between the direction and frequency of the generated photons.We first fix the azimuth angle of the emitted signal(idler)photons:θS=0,θI=π,and use the QPM conditions to calculate the relationship between?m(m=S,I)and signal photon’s wavelength.The results are shown in Fig.4.

    Fig.3.The χ(2) susceptibility distribution of designed NPC in Fourier space.The six peaks correspond to six momentum mismatches of expected SPDC processes, which means the QPM conditions are satisfied through the designed NPC.

    Fig.4.Relationship between ?m (m=S,I) and signal photon’s wavelength. ?m (m=S,I) refers to the angle between the pump beam and signal(idler).In our scheme,?S=?I ensures the symmetry of signal and idler.

    Fig.5.(a) The angle between pump beam and idler (?I) varies with the signal’s wavelength (λS) when ?S is fixed, where the perfect phase matching condition is always maintained.The intersection of two curves corresponds to our scheme.Due to the symmetry of f1 and f2 with respect to fP/2, there are two intersections in the graph.(b) The azimuth angles of generated photons (θm, m=S,I) vary with the signal’s wavelength(λS)when ? is fixed.Two curves are approximately coincident because the signal and idler’s wave vectors are much larger than the momentum mismatch compensated by the designed NPC.Both ends of the curve correspond to two of the six expected SPDC processes in our scheme.

    Then we fix the angle?S=0.186 rad to analyze the relationship between other direction angles and signal photon’s wavelength.The other three angles are obtained using the three-dimensional vector equation of phase match.The results are shown in Fig.5.

    The analysis above indicates the path-frequency relationship along two orthogonal directions.In fact,our scheme has good scalability and can be easily extended to the case of signal light and idler light at different frequencies,while the calculation and design processes are similar.The angle?and value of mismatch vector ?kwill be different.Therefore, it is necessary to change the poling period of nonlinear photonic crystals.At this point, the NPC’s lattice structureu(r)needs to be correspondingly reduced or amplified.If we want to expand the number of paths to more than six,we need to utilize quasi-periodic poling nonlinear photonic crystals to compensate for more wave vector mismatches and meet more quasiphase-matching conditions.However, at this point, due to its Fourier transform domain having smaller peaks at the corresponding mismatch than in the case of periodic poling, and having peaks at other mismatches, the conversion efficiency will decrease.

    3.Theoretical model

    We will derive the theoretical expression of the generated path-frequency hyperentangled biphoton state.In the interaction picture, the evolution of the quantum state with time satisfies the following equation:[38]is JSA for the process where the signal photon propagates along pathθ1and the idler photon propagates along pathθ1+π,|S,θ1,ωS〉= ?a?S,kS,θ1|0〉S,and|I,θ1+π,ωI〉= ?a?I,kI,θ1+π|0〉I.The phase mismatch on thexOyplane for this process is denoted as ?k⊥1.A2(ωS,ωI),...,A6(ωS,ωI) can be obtained similarly.

    The photon flux can be estimated by[39-41]

    Equation(13)is the final expression of our path-frequency hyperentangled biphoton state.

    4.Frequency correlations of two-photon pairs

    We theoretically calculate the JSA of the generated photon pair,as shown in Fig.6.Specifically,we set the full width at half maxima (FWHM) of the input continuous pump light to 0.1 nm.The frequency center of the simulated JSA isfP/2,the bandwidth is 8 THz, and the momentum mismatch ?kis fixed at 0.0443μm-1.We should note that the FWHM of the pump light needs to be narrow enough to ensure high degree of entanglement.In practice, the lattice structure parameters of nonlinear photonic crystals require very precise fabrication,as it directly affects ?kthat the crystal can provide, thereby affecting the conversion efficiency of nonlinear processes.

    Fig.6.JSA(A(ωS,ωI))of the generated hyperentangled photon pair.

    To investigate frequency entanglement property, we can perform Schmidt decomposition onA(ωS,ωI), that is,[42]

    The first 12 Schmidt coefficients, arranged from largest to smallest, are shown in Fig.7(a).Note that the latter coefficients are close to 0 and their contributions to the degree of entanglement are negligible.BecauseA(ωS,ωI)is symmetric with respect tofP/2, Schmidt coefficients always appear in pairs,that is,λ2k=λ2k+1(k ∈Z).Based on the eigenvalueλnobtained from the Schmidt decomposition, we can calculate the entropySof entanglement and effective Schmidt rankKto characterize the degree of frequency entanglement,which are defined as

    respectively.S>0 andK>1 both indicate the presence of entanglement,and the larger value indicates the higher degree of entanglement.The JSA is first normalized and then solved to obtain the Schmidt coefficients in the Schmidt decomposition.The calculated effective Schmidt rankK=6.4675>1,andSfinally converges to 3.2789, demonstrating strong frequency correlation between the generated two photons around two discrete frequenciesf1andf2.Figure 7(b)shows the first 30 iterations ofS.

    Fig.7.(a) The maximum 12 Schmidt coefficients.Schmidt coefficients appear in pairs because of the symmetry with respect to fP/2 of A(ωS,ωI).(b)The first 30 iterations of entropy S of entanglement.

    The first eight basis functions in the Schmidt decomposition are shown in Fig.8,from which we can see the orthogonality of each basis function.Because of the symmetry with respect tofP/2 ofA(ωS,ωI),ψnandφnare divided into two groups,distributed aroundf1andf2,respectively.It is worth mentioning thatψnandφnhave the same shape due to type-I quasi-phase-matching conditions, which means that both signal and idler photons have the same ordinary field mode.

    Fig.8.The first eight basis functions(a)and(b)ψn and(c)and(d)φn.

    5.Conclusion

    We propose a compact path-frequency hyperentangled quantum light source based on type-I quasi-phase-matched NPC.A two-dimensional periodicalχ(2)NPC is designed to realize quasi-phase-matching in the plane perpendicular to the incident pump beam, including six different paths and two different frequencies.We derive the theoretical expression for the generated two-photon state in detail and estimate the photon flux of our source, which can reach 2.068×105pairs·s-1·mm-2.JSA has been calculated and the resulting entropySof entanglement and effective Schmidt rankKare 3.2789 and 6.4675, respectively, indicating strong frequency correlation between the generated two photons.As NPC manufacturing technology continues to advance,the possibilities for our two-dimensional NPC scheme are expanding into three dimensions.[34]This advancement opens up promising avenues for future applications in quantum holography,quantum information processing, and long-distance quantum communication.

    Acknowledgments

    Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No.2018B030325002), the National Natural Science Foundation of China (Grant No.62075129), the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics (Grant No.2022SPIOE204), the Science and Technology on Metrology and Calibration Laboratory (Grant No.JLJK2022001B002),and the Sichuan Provincial Key Laboratory of Microwave Photonics(Grant No.2023-04).

    猜你喜歡
    李維洋河騰飛
    Generation of hyperentangled photon pairs based on lithium niobate waveguide
    天鵝洋河舞翩躚
    考試與招生(2022年3期)2022-03-15 07:24:24
    千年酒鎮(zhèn) 醉美洋河
    華人時刊(2021年17期)2021-12-02 03:26:02
    為李維世點贊
    盧騰飛
    小小三雙鞋,見證騰飛路
    快樂語文(2018年25期)2018-10-24 05:39:10
    The Importance of Enhancing Oral English Classes in China
    三角函數(shù)求值題巧妙變換就容易
    秦皇島市洋河水電站增效擴容改造工程經(jīng)濟評價論述
    法國李維·斯特勞斯中學
    神州·校長(2013年7期)2013-04-29 19:10:31
    757午夜福利合集在线观看| 18禁裸乳无遮挡免费网站照片 | 性少妇av在线| 99在线人妻在线中文字幕| 男女床上黄色一级片免费看| 婷婷六月久久综合丁香| 国产av在哪里看| 欧美+亚洲+日韩+国产| 激情视频va一区二区三区| 欧美日韩av久久| 国产亚洲精品综合一区在线观看 | 怎么达到女性高潮| 热re99久久国产66热| 亚洲精品av麻豆狂野| 久久人人爽av亚洲精品天堂| 成人18禁高潮啪啪吃奶动态图| 级片在线观看| 国产日韩一区二区三区精品不卡| 久久久久久久久免费视频了| 怎么达到女性高潮| 咕卡用的链子| 9191精品国产免费久久| 国产熟女xx| 97人妻天天添夜夜摸| 日韩免费高清中文字幕av| 成人精品一区二区免费| 一级a爱视频在线免费观看| 免费在线观看亚洲国产| 中文欧美无线码| 久久久久九九精品影院| 中文字幕人妻熟女乱码| aaaaa片日本免费| 十分钟在线观看高清视频www| 少妇的丰满在线观看| 国产精华一区二区三区| 国产成人影院久久av| 十八禁人妻一区二区| 成人手机av| 国产av又大| a在线观看视频网站| 欧美乱妇无乱码| 国产成人一区二区三区免费视频网站| 人人妻人人澡人人看| 在线av久久热| 黄色丝袜av网址大全| 欧美最黄视频在线播放免费 | 又黄又爽又免费观看的视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲午夜精品一区,二区,三区| 在线观看免费视频日本深夜| 亚洲专区中文字幕在线| 日本五十路高清| 精品国产一区二区三区四区第35| 日韩欧美一区视频在线观看| 国产欧美日韩一区二区三| 黄片小视频在线播放| 天堂√8在线中文| 啦啦啦 在线观看视频| 国产一卡二卡三卡精品| 天堂√8在线中文| 免费高清在线观看日韩| 黄频高清免费视频| 亚洲国产欧美一区二区综合| a级毛片在线看网站| 黄片大片在线免费观看| 一进一出抽搐动态| 色综合欧美亚洲国产小说| 亚洲精品国产色婷婷电影| 亚洲国产欧美网| 国产精品98久久久久久宅男小说| 丝袜在线中文字幕| 国产一区在线观看成人免费| 黄色女人牲交| 在线天堂中文资源库| 日韩欧美免费精品| 久久天躁狠狠躁夜夜2o2o| 一区在线观看完整版| 狂野欧美激情性xxxx| 黄色a级毛片大全视频| 亚洲午夜理论影院| 美女国产高潮福利片在线看| 一本综合久久免费| 一级黄色大片毛片| 亚洲中文字幕日韩| av中文乱码字幕在线| 男女做爰动态图高潮gif福利片 | 亚洲五月色婷婷综合| 99久久久亚洲精品蜜臀av| 三上悠亚av全集在线观看| 亚洲欧美激情在线| 欧美+亚洲+日韩+国产| 久久狼人影院| 在线天堂中文资源库| 中国美女看黄片| 久久这里只有精品19| 国产在线精品亚洲第一网站| 不卡av一区二区三区| 国产精品98久久久久久宅男小说| 国产亚洲av高清不卡| 亚洲美女黄片视频| 十八禁网站免费在线| 免费高清在线观看日韩| 高清毛片免费观看视频网站 | 一级毛片女人18水好多| 一级毛片女人18水好多| 欧美乱码精品一区二区三区| a级毛片黄视频| 日韩免费av在线播放| 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 日韩av在线大香蕉| 制服诱惑二区| 狂野欧美激情性xxxx| 亚洲 欧美一区二区三区| 欧美人与性动交α欧美软件| 身体一侧抽搐| 日韩欧美一区视频在线观看| 亚洲狠狠婷婷综合久久图片| 久久香蕉激情| 日韩欧美在线二视频| 国产av一区在线观看免费| 日韩免费高清中文字幕av| 老汉色∧v一级毛片| 亚洲自拍偷在线| 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| 亚洲一区高清亚洲精品| 亚洲情色 制服丝袜| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美人与性动交α欧美软件| 亚洲精品中文字幕在线视频| avwww免费| 亚洲欧美一区二区三区黑人| 久9热在线精品视频| 免费av中文字幕在线| 看黄色毛片网站| 亚洲午夜理论影院| 在线观看66精品国产| 妹子高潮喷水视频| 国产一区在线观看成人免费| videosex国产| 香蕉国产在线看| 级片在线观看| 757午夜福利合集在线观看| 久久人人97超碰香蕉20202| 18禁国产床啪视频网站| 欧美成人性av电影在线观看| 国产精品秋霞免费鲁丝片| 最近最新中文字幕大全电影3 | 天堂动漫精品| 18禁裸乳无遮挡免费网站照片 | 亚洲成人久久性| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av高清一级| 无人区码免费观看不卡| 9色porny在线观看| 日韩国内少妇激情av| 12—13女人毛片做爰片一| 亚洲精品久久成人aⅴ小说| 香蕉丝袜av| 视频区图区小说| 我的亚洲天堂| 九色亚洲精品在线播放| 欧美av亚洲av综合av国产av| 天堂动漫精品| 麻豆av在线久日| 国产亚洲欧美精品永久| 亚洲国产欧美网| 国产深夜福利视频在线观看| 欧美黄色片欧美黄色片| 母亲3免费完整高清在线观看| 精品午夜福利视频在线观看一区| 午夜福利影视在线免费观看| 欧美日韩亚洲高清精品| 黄色女人牲交| 高清黄色对白视频在线免费看| 操美女的视频在线观看| 人妻丰满熟妇av一区二区三区| 国产乱人伦免费视频| 丁香欧美五月| 久久中文字幕人妻熟女| 极品人妻少妇av视频| xxxhd国产人妻xxx| 午夜激情av网站| 国产深夜福利视频在线观看| 88av欧美| 高清毛片免费观看视频网站 | 在线观看66精品国产| 亚洲第一av免费看| 久久久水蜜桃国产精品网| 大香蕉久久成人网| 亚洲男人的天堂狠狠| 国产成人精品久久二区二区免费| 一进一出抽搐gif免费好疼 | 成人影院久久| 女性被躁到高潮视频| 乱人伦中国视频| 久久精品影院6| 国产精品久久视频播放| 美女扒开内裤让男人捅视频| 亚洲va日本ⅴa欧美va伊人久久| 神马国产精品三级电影在线观看 | 久久中文字幕人妻熟女| 日韩有码中文字幕| 人人妻人人添人人爽欧美一区卜| 午夜两性在线视频| 两个人免费观看高清视频| 一个人观看的视频www高清免费观看 | 老司机午夜福利在线观看视频| 真人做人爱边吃奶动态| 精品电影一区二区在线| 日韩欧美一区二区三区在线观看| 精品国产乱码久久久久久男人| 极品人妻少妇av视频| 在线观看舔阴道视频| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看| 在线观看午夜福利视频| 伦理电影免费视频| 日韩精品中文字幕看吧| av天堂在线播放| 五月开心婷婷网| 在线观看免费午夜福利视频| 午夜免费鲁丝| 亚洲精品中文字幕在线视频| 免费在线观看完整版高清| 在线观看午夜福利视频| 国产成人啪精品午夜网站| 超碰成人久久| 午夜免费成人在线视频| 视频区欧美日本亚洲| 在线观看日韩欧美| 夜夜躁狠狠躁天天躁| 久久婷婷成人综合色麻豆| 人人妻人人爽人人添夜夜欢视频| 男人的好看免费观看在线视频 | 91老司机精品| 亚洲精品粉嫩美女一区| 一级片免费观看大全| 国产精品久久电影中文字幕| 欧美最黄视频在线播放免费 | 精品人妻在线不人妻| 夜夜夜夜夜久久久久| 国产一区二区在线av高清观看| 岛国在线观看网站| 亚洲av第一区精品v没综合| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 午夜福利影视在线免费观看| 大型黄色视频在线免费观看| 国产精品av久久久久免费| 国产区一区二久久| 久久精品亚洲熟妇少妇任你| 午夜福利一区二区在线看| 99riav亚洲国产免费| 亚洲在线自拍视频| 好男人电影高清在线观看| 成在线人永久免费视频| 国产av又大| 一级毛片精品| 伊人久久大香线蕉亚洲五| 午夜福利在线免费观看网站| 极品人妻少妇av视频| 日韩精品中文字幕看吧| 欧美在线黄色| 中国美女看黄片| 淫妇啪啪啪对白视频| 亚洲伊人色综图| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 水蜜桃什么品种好| 午夜免费观看网址| 视频在线观看一区二区三区| 精品第一国产精品| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 很黄的视频免费| 91在线观看av| 欧美在线黄色| 又大又爽又粗| 可以在线观看毛片的网站| 久久久国产欧美日韩av| 色精品久久人妻99蜜桃| 国产精品野战在线观看 | 欧美乱妇无乱码| 国产亚洲精品综合一区在线观看 | 91成年电影在线观看| 欧美丝袜亚洲另类 | 中文字幕人妻丝袜一区二区| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影 | 久久亚洲精品不卡| 69av精品久久久久久| 久久影院123| 一区二区三区激情视频| www.999成人在线观看| 视频区图区小说| 搡老熟女国产l中国老女人| 国产不卡一卡二| 国产精品成人在线| 人人澡人人妻人| 大型黄色视频在线免费观看| 露出奶头的视频| 国产麻豆69| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 少妇裸体淫交视频免费看高清 | 亚洲色图 男人天堂 中文字幕| 精品国内亚洲2022精品成人| 嫩草影视91久久| 男女下面插进去视频免费观看| 免费久久久久久久精品成人欧美视频| 亚洲欧美激情在线| 淫秽高清视频在线观看| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 美女午夜性视频免费| 免费看十八禁软件| 久久人妻av系列| 三上悠亚av全集在线观看| 中文字幕人妻丝袜制服| 欧美另类亚洲清纯唯美| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久av网站| 无人区码免费观看不卡| 老司机亚洲免费影院| 欧美老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频| 国产深夜福利视频在线观看| 精品免费久久久久久久清纯| 最新美女视频免费是黄的| 亚洲精品国产区一区二| 亚洲九九香蕉| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 日韩欧美免费精品| 法律面前人人平等表现在哪些方面| 老熟妇仑乱视频hdxx| 日本a在线网址| 国产精品一区二区在线不卡| 999久久久精品免费观看国产| 99国产综合亚洲精品| 午夜成年电影在线免费观看| 欧美日韩亚洲高清精品| cao死你这个sao货| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产精品麻豆| 欧美丝袜亚洲另类 | 热re99久久精品国产66热6| 成人免费观看视频高清| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 高清黄色对白视频在线免费看| 91老司机精品| 亚洲国产精品999在线| 久久精品91无色码中文字幕| 美女福利国产在线| 欧美日本亚洲视频在线播放| 色精品久久人妻99蜜桃| 国产99久久九九免费精品| 亚洲成人精品中文字幕电影 | 视频区图区小说| 欧美激情久久久久久爽电影 | 国产免费现黄频在线看| 色综合欧美亚洲国产小说| 悠悠久久av| 国产成人精品久久二区二区91| 91老司机精品| 国产xxxxx性猛交| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 国产精品一区二区三区四区久久 | 亚洲国产看品久久| bbb黄色大片| 日本黄色视频三级网站网址| 亚洲av第一区精品v没综合| 久久国产亚洲av麻豆专区| 国产欧美日韩一区二区三| www国产在线视频色| 国产99白浆流出| 黄频高清免费视频| 窝窝影院91人妻| 日韩免费av在线播放| 夜夜爽天天搞| 色综合婷婷激情| 午夜a级毛片| 欧美日韩一级在线毛片| 欧美不卡视频在线免费观看 | 精品熟女少妇八av免费久了| 免费日韩欧美在线观看| 日韩三级视频一区二区三区| 国产激情久久老熟女| av中文乱码字幕在线| 久久午夜亚洲精品久久| 少妇 在线观看| 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 亚洲国产看品久久| 精品一区二区三区四区五区乱码| 成人特级黄色片久久久久久久| 日日干狠狠操夜夜爽| 丝袜美足系列| 亚洲,欧美精品.| 午夜久久久在线观看| 男女午夜视频在线观看| 成人黄色视频免费在线看| 侵犯人妻中文字幕一二三四区| 精品久久久久久久毛片微露脸| 亚洲在线自拍视频| 精品一品国产午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 999精品在线视频| 1024视频免费在线观看| 久久精品亚洲熟妇少妇任你| 午夜福利在线免费观看网站| 成人18禁高潮啪啪吃奶动态图| 国产不卡一卡二| 桃色一区二区三区在线观看| 少妇粗大呻吟视频| 久久久久九九精品影院| 精品福利观看| 欧美日韩亚洲综合一区二区三区_| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区激情| 99久久国产精品久久久| 亚洲欧美激情在线| 一个人观看的视频www高清免费观看 | 国产精品99久久99久久久不卡| 午夜福利在线免费观看网站| av天堂久久9| 日本 av在线| 极品人妻少妇av视频| 不卡一级毛片| 大型av网站在线播放| 国产熟女xx| 亚洲熟妇熟女久久| 亚洲精品国产一区二区精华液| 亚洲精品一区av在线观看| 一级作爱视频免费观看| 美女国产高潮福利片在线看| 亚洲九九香蕉| 麻豆一二三区av精品| 久久精品影院6| 最近最新中文字幕大全电影3 | 免费在线观看亚洲国产| 国产无遮挡羞羞视频在线观看| 免费搜索国产男女视频| 日韩国内少妇激情av| 久久久久久大精品| 高潮久久久久久久久久久不卡| 亚洲视频免费观看视频| 精品欧美一区二区三区在线| 久久欧美精品欧美久久欧美| 制服诱惑二区| 在线观看66精品国产| 亚洲黑人精品在线| 亚洲专区字幕在线| videosex国产| 黑人欧美特级aaaaaa片| 国产av一区二区精品久久| 99久久综合精品五月天人人| www.自偷自拍.com| 午夜精品在线福利| 少妇 在线观看| 国产成人精品无人区| 国产熟女xx| 午夜福利在线免费观看网站| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 亚洲avbb在线观看| 最好的美女福利视频网| 热99国产精品久久久久久7| 天堂动漫精品| 国产成人av激情在线播放| a级片在线免费高清观看视频| 国产精品 欧美亚洲| 在线观看一区二区三区| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 国产欧美日韩综合在线一区二区| 精品国产超薄肉色丝袜足j| a在线观看视频网站| 国产精品国产高清国产av| 日本免费a在线| 香蕉久久夜色| 视频区欧美日本亚洲| 免费一级毛片在线播放高清视频 | 露出奶头的视频| 美女福利国产在线| 女生性感内裤真人,穿戴方法视频| 最新美女视频免费是黄的| 欧美午夜高清在线| 久久伊人香网站| 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 母亲3免费完整高清在线观看| 亚洲av片天天在线观看| 色综合站精品国产| 一级毛片精品| av有码第一页| 麻豆一二三区av精品| 国产精品日韩av在线免费观看 | 欧美 亚洲 国产 日韩一| 午夜福利在线免费观看网站| 亚洲av片天天在线观看| 午夜福利免费观看在线| 久久国产亚洲av麻豆专区| 亚洲精品粉嫩美女一区| 搡老乐熟女国产| 80岁老熟妇乱子伦牲交| svipshipincom国产片| 80岁老熟妇乱子伦牲交| www.精华液| 久久狼人影院| 午夜久久久在线观看| 男人舔女人下体高潮全视频| 成人三级做爰电影| 国产主播在线观看一区二区| 多毛熟女@视频| 在线永久观看黄色视频| 级片在线观看| 免费在线观看完整版高清| 免费女性裸体啪啪无遮挡网站| 多毛熟女@视频| 久久精品国产亚洲av香蕉五月| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 高清在线国产一区| 欧美老熟妇乱子伦牲交| 黄色丝袜av网址大全| 在线观看免费视频网站a站| 婷婷丁香在线五月| avwww免费| 久久久久久久精品吃奶| 亚洲精品国产一区二区精华液| 美女大奶头视频| 熟女少妇亚洲综合色aaa.| 久热这里只有精品99| 欧美一级毛片孕妇| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区 | 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 久久久久国内视频| 身体一侧抽搐| 视频区图区小说| 最好的美女福利视频网| 性欧美人与动物交配| 欧美在线黄色| 高清在线国产一区| 亚洲,欧美精品.| 亚洲 欧美一区二区三区| 国产一区二区激情短视频| 真人做人爱边吃奶动态| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| cao死你这个sao货| 精品少妇一区二区三区视频日本电影| 久久九九热精品免费| 好男人电影高清在线观看| 极品人妻少妇av视频| 国产在线观看jvid| 免费av中文字幕在线| 88av欧美| 99国产精品99久久久久| 国产亚洲精品久久久久5区| 欧美日韩瑟瑟在线播放| 视频在线观看一区二区三区| 动漫黄色视频在线观看| bbb黄色大片| 美女大奶头视频| 级片在线观看| 在线天堂中文资源库| 香蕉久久夜色| av网站免费在线观看视频| 一区二区三区激情视频| 国产欧美日韩综合在线一区二区| 欧美日本亚洲视频在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产免费av片在线观看野外av| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 在线观看舔阴道视频| 男女下面插进去视频免费观看| 亚洲专区国产一区二区| 男人操女人黄网站| 涩涩av久久男人的天堂| 精品久久久久久成人av| 国产成年人精品一区二区 | 女性生殖器流出的白浆| 午夜福利影视在线免费观看| cao死你这个sao货| 在线观看www视频免费| 午夜精品久久久久久毛片777| 国产av在哪里看| 亚洲精品国产一区二区精华液| 一进一出好大好爽视频| 国产成人免费无遮挡视频| 51午夜福利影视在线观看| 亚洲五月色婷婷综合| 午夜精品久久久久久毛片777| 最好的美女福利视频网| www.精华液| 亚洲熟妇中文字幕五十中出 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品一二三| 中文字幕高清在线视频| 国产成人精品无人区| 久久精品91蜜桃|