• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional transition metal halide PdX2(X =F,Cl,Br,I):A promising candidate of bipolar magnetic semiconductors

    2023-12-15 11:51:16MiaoMiaoChen陳苗苗ShengShiLi李勝世WeiXiaoJi紀(jì)維霄andChangWenZhang張昌文
    Chinese Physics B 2023年12期
    關(guān)鍵詞:苗苗

    Miao-Miao Chen(陳苗苗), Sheng-Shi Li(李勝世), Wei-Xiao Ji(紀(jì)維霄), and Chang-Wen Zhang(張昌文)

    School of Physics and Technology,Institute of Spintronics,University of Jinan,Jinan 250022,China

    Keywords: PdX2 (X =F,Cl,Br,I),bipolar magnetic semiconductors,first-principles calculations

    1.Introduction

    Recently, the development of high-performance twodimensional (2D) spintronic nanodevices has attracted widespread attention, with the current mainstream trend of miniaturization of electronic information devices.[1-8]The generation of 100% spin-polarized currents and manipulation of carriers’ spin polarization at the Fermi level (EF) are two key challenges for the development of high-performance 2D spintronic nanodevices.Half-metals (HMs),[9]with one metallic spin channel and another semiconducting channel,are highly desired because they provide 100%spin-polarized currents, but they have a fixed spin direction.Conventionally,the directions of spin polarization in materials can be manipulated by a magnetic field,whereas it is hard to be complicated in operation and useful only for certain materials and has an adverse impact on adjacent device parts.[10-18]The proposal of bipolar magnetic semiconductor(BMS)[19]material solves the problems, which allows us to achieve HM with different conductive spin channels by applying a gate voltage.This depends on their unique electronic structure: the valence band(VB)and the conduction band(CB)have opposite spin polarizations near theEF.[20,21]However,the method requires persistent electrical control which is volatile and achieved by applying a gate voltage.[19,20,22]So far,although there are many theoretically predicted BMS materials,[23-27]the experimental realization of BMS[28]is still lacking,as the large leakage current hinders its application in memory storage devices.[29]Recently,Li and Denget al.[30]proposed a new method to manipulate both spin-polarized orientations in BMS materials by the introduction of a ferroelectric(FE)gate with proper band alignment.Compared with traditional electrical control approaches, the method can overcome volatility, which is more energy-efficiency.Thus,it is emergent to search for and design experimentally reachable 2D BMS.

    In this work,we first study the geometric,electronic,and magnetic properties of PdX2(X=F,Cl,Br,I)monolayers.It is found that PdCl2,PdBr2,and PdI2monolayers are outstanding candidates for spintronic materials and are possible to construct different spin-polarization transport channels in a single material by carrier doping.Hence, they are highly likely to become a material for spin field effect transistors(FET).Then we explore the robustness of PdCl2, PdBr2, and PdI2under external strains and strong electric fields and find that only the BMS properties of PdCl2and PdBr2are robust against external strains and strong electric fields.Furthermore, we introduce Ga2S3and Ga2Se3with different ferroelectric polarization to realize the nonvolatile spin polarization regulation of PdCl2and PdBr2.Finally, based on this, we design a multiferroic memory device and a spin filter device.Our research provides theoretical support for the experimental implementation of BMS.

    2.Computational details

    All of our density theory functional (DFT) calculations use the projection-enhanced wave (PAW) method,[31]which is implemented in the Viennaab initiosimulation package (VASP).[32,33]The paper uses Perdew-Burke-Ernzerhof(PBE)functional[34]to describe the correlation and exchange interactions of PdX2.The strong correlation effects for the Pd-4d electrons use the PBE+Umethod[35]and the HubbardUparameter is 3.5 eV.Then we employ the Heyd-Scuseria-Ernzerhof hybrid functional method(HSE06)[36]to obtain the accurate band structures.The cutoff energy is set to 400 eV.The Brillouin zone is sampled by using a 9×9×1k-mesh.To avoid interactions between adjacent layers,a vacuum space of 20 ?A is applied along thez-axis [001] direction.The convergence criteria for the energy and residual force on each atom are 1×10-8eV and 0.001 eV/?A.The phonon calculations are carried out by using density-functional perturbation theory as implemented in the PHONOPY code[37]combined with VASP.Theab initiomolecular dynamics(AIMD)[38]simulation is performed with a 4×4×1 supercell at 100 K temperature.The van der Waals(vdW)[39,40]is employed and a vacuum space greater than 30 ?A or 40 ?A is applied for the bilayer or three-layer heterostructures.The VASPKIT code is used to process some of the VASP data.[41]The Curie temperature is estimated by using the Monte Carlo simulation package MCSOLVER code[42]based on the Wolff algorithm.

    3.Result and discussion

    The PdX2(X=F, Cl, Br, I) monolayers share two possible phases,which are similar to classical 2D material PbBr2and PbI2,[43-52]namely,T(Fig.1(a))and H(Fig.1(b))phases.The Pd atomic layer is sandwiched by the upper and lower F/Cl/Br/I atomic layers, with atoms in each layer forming a 2D hexagonal lattice.In order to study more optimal configurations in terms of energy, the energy difference is calculated between the T and H configurations (?ET-H).The lattice constant (a) and the ?ET-Hof PdX2monolayers are shown in Table S1.The optimized lattice constants (T/H) of PdF2, PdCl2, PdBr2, and PdI2monolayers are 3.30/3.38 ?A,3.70/3.54 ?A,3.87/3.72 ?A,and 4.11/3.97 ?A,respectively.With the increase of theXatomic order, the lattice constant is increasing,meeting the positive correlation between lattice constants and atomic radius.All ?ET-Hof the PdX2monolayers are negative, which indicates that the PdX2monolayers tend to form in the 1T configuration.Our works only consider the PdX2(X=F, Cl, Br, I) monolayers that are formed in the T phases.

    Before confirming the magnetic and electronic properties of PdX2,we explore their stabilities(including dynamic stability,thermal stability,and mechanical stability).The formation energyEformis evaluated as

    whereμPdis the chemical potential of the Pd bulk andμX2is the energy of theXmolecule.The calculated formation energies are listed in Table S1.The positive values demonstrate that the iodination is an exothermal process,suggesting the feasibility of the experimental synthesis of these materials.The phonon dispersion curves are calculated with a 5×5×1 supercell using the PHONOPY package through the density functional perturbation theory.[53]As indicated in Fig.S1,all the phonon frequencies of PdX2monolayers are positive in the first Brillouin zone,which proves the excellent dynamic stabilities of PdX2monolayers.To examine the thermal stabilities of the PdX2monolayer,the AIMD simulations are evaluated in the canonical ensemble on a 5×5×1 supercell.Four images of Fig.S2 indicate the total energies of PdF2, PdCl2, PdBr2,and PdI2monolayers, respectively.It can be seen that total energies have slightly fluctuated around the equilibrium value during the simulations and there is no destruction for the materials after 10000 fs, indicating the thermal stabilities of the PdF2, PdCl2, PdBr2, and PdI2monolayers under 100 K.Because of thepˉ3m1 space group, by using Voigt symbols, the elastic tensor of PdX2can be reduced to[54]

    The independentC11,C12, andC11-C12of PdX2are shown in Table S1.It can be found that the PdX2(X= F, Cl,Br, I) monolayers satisfy the Born-Huang criterion for twodimensional hexagonal planes(C11>0 andC11-C12>0),[56]which means that the PdX2monolayers are mechanically stable.

    Fig.1.The crystal structures of PdX2 (X =F,Cl,Br,I)monolayers in T(a)and H(b)phases: top and side views.The electron localization functions for PdF2 (c),PdCl2 (d),PdBr2 (e),and PdI2 (f).Pd,F,Cl,Br,and I atoms are annotated accordingly.

    To determine the magnetic ground states of the PdX2monolayers,the total energy differences(Table S1),including the ferromagnetic (FM) and three antiferromagnetic (AFM)states (Fig.S3(a)), are compared by using the supercell.Table S1 shows that the calculated total energies of the AFM are higher than that of the FM state for PdF2, PdCl2, PdBr2, and PdI2monolayers, which indicates the magnetic ground states of the PdX2monolayers are FM state.While PbBr2is an inherently nonmagnetic semiconductor,[52]this is due to the different electronic configurations of the Pd and Pb atoms.We track the physical originations of FM coupling in PdX2monolayers by the super-exchange interactions,which can be comprehended by the Pd-X-Pd bond angleθ(Table 1).The values ofθare 97.88?, 93.49?, 92.64?, and 92.56?for PdF2, PdCl2,PdBr2, and PdI2, respectively, closed to 90?.According to the Goodenough-Kanamori-Anderson(GKA)rules,[55]PdX2monolayers possess FM coupling.

    The electron localization functions(ELF)[56-58]are plotted to investigate the bonding character of PdF2,PdCl2,PdBr2,and PdI2monolayers in Fig.1.The(001)section of the ELF confirms that electrons are highly localized around the Pd and F/Cl/Br/I atoms and that electrons are absent between them,indicating the typical ionic character between the Pd-Xbonds.Our Bader charge analyses[59]further reveal that the significant electrons respectively transfer 1.2, 0.74, 0.53, and 0.20 electrons from the Pd to F/Cl/Br/I atoms(Table 1),which fall with the electronegativity of F,CI,Br,and I reduced.

    Table 1.The Pd-X-Pd bond angle θ and charge transfer number(?e-)per unit cell for PdX2 (X =F,Cl,Br,I)monolayers.

    We used the PBE+Umethod for the calculations of the electronic structures (Fig.2).The VBs of the PdF2, PdCl2,PdBr2, and PdI2monolayers possess spin-up polarization when they approachEF, while their CBs possess spin-down polarization when they approachEF.The PdF2monolayer is a direct bandgap semiconductor with a value of 2.14 eV(Fig.2(a)).The PdCl2, PdBr2, and PdI2monolayers are the indirect bandgap semiconductors,and their band gaps are 1.33 eV,0.88 eV,and 0.34 eV,respectively(Figs.2(b)-2(d)).The above results show that the PdF2,PdCl2,PdBr2,and PdI2monolayers are BMS.To confirm the results, the more accurate HSE06 calculations (Figs.S4(a) and S4(b)) further display that although the band gaps increase to 3.56 eV,2.24 eV,1.65 eV, and 1.01 eV for PdF2, PdCl2, PdBr2, and PdI2, respectively, the VBs and the CBs have opposite spin polarizations near theEF,indicating that the BMS remains in the four systems.

    Fig.2.The electronic band structures based on the PBE+U functional for PdF2 (a),PdCl2 (b),PdBr2 (c),and PdI2 (d).

    After having demonstrated the bipolar magnetic properties, we now turn to the formation mechanism of BMS for PdX2monolayers by crystal field theory.Under the octahedral crystal fields of PdX2(Fig.3(a)),the d orbitals of Pd split into t2g(dxy/dyz/dxz) and eg(dx2-y2/dz2) with a splitting gap(?c).According to the electronegativity and nominal valence state Pd2+, the t2gorbitals and the egorbitals of the spin-up channel are occupied by six electrons and two electrons, respectively, consistent with the calculated magnetic moment 2μB.Here, the spin splitting exchange interactions lead the electronic states of the magnetic atom in VBMs and CBMs to belong to different spin channels.It can be attested by their density of states(DOS;Fig.S4(b)).The DOS shows that the spin-exchange splitting (?s) of them are the primary causes of bandgap and the CBM and VBM of PdX2are mainly contributed by Pd atoms.The BMSs in PdX2are derived from the strength of on-site Coulomb repulsion and the crystal field effect,which are coincident with the report.[60]The d electronic states of the PdX2monolayer near the Fermi surface, which usually leads to ferromagnetism, verifying the FM ground state.

    The influence of temperature on magnetism is crucial for the practical application of spin electronic devices.Based on the following formulas,the spin Hamiltonian can be described as

    whereJ,Si,D, andSZiare the nearest magnetic exchange interaction parameter, the spin vector of each atom, the anisotropy energy parameter,and theZcomponent of the spin vector,respectively.The positive and negative values ofJdepend on the FM and AFM orders,respectively,

    Fig.3.(a)The schematic diagram of the d-orbital electron occupation of Pd atoms.(b)-(e) The density of states (DOS) for PdF2, PdCl2, PdBr2 and PdI2.The gray,orange,and green solid lines represent the total DOS rotated up or down, the DOS contributed by Pd-4d, and the DOS contributed by X-p orbitals,respectively.

    where theEFMandEAFMrepresent the total energy of systems with FM and AFM ordering.The values ofJcan be estimated as

    The computedJfor 2D PdX2(X=F,Cl,Br,I)are 0.67 meV,8.67 meV, 10.30 meV, and 13.10 meV, respectively.Then their magnetic anisotropy energies(MAE)are calculated.The MAE is defined as the energy difference MAE=E001-E100between the out-of-plane (001) and the in-plane (100) magnetization directions by incorporating the SOC effect.The MAE are 61 μeV, 77 μeV, 60 μeV,-982 μeV for the PdF2,PdCl2,PdBr2,and PdI2monolayers,respectively.It indicates that there are the Berezinskii-Kosterlitz-Thouless (BKT)[61]magnetic transition at a critical temperature (TC) for PdF2,PdCl2, and PdBr2monolayers, which can be estimated asTC=0.89J/kB.HerekBis the Boltzmann constant.We get that theTCfor PdF2,PdCl2,and PdBr2monolayers are around 7 K, 90 K, and 106 K with theirJ, above the boiling point of liquid nitrogen (77 K) for PdCl2and PdBr2monolayers.Figure S4(b)shows that the PdI2monolayer has an estimated Curie temperature of 503 K, notably far above room temperature (300 K).Overall, except for PdF2, all others are apparently outstanding candidates for spintronic materials.The PdCl2,PdBr2,and PdI2monolayers will be studied in the following.

    Having evaluated the magnetic properties of PdCl2,PdBr2, and PdI2monolayers, we further turn to whether spin polarization can be controlled through electron/hole doping since introducing an FE gate to control the spin polarization of BMS is equivalent to carrier doping,as shown in Fig.S5.We take Fig.S5(a)for example,when 0.1-0.5 electrons are doped,the CBs of PdCl2are crossed by the Fermi energy level, and the material becomes an HM with the spin-up channel.Doping 0.1-0.5 holes will drive theEFto transverse with VBs,and become the HM of the spin-down channel.The introduction of a FE gate is expected to realize the control of spin polarization.

    In device fabrication, it is likely to introduce strain due to the lattice mismatch between the 2D material and the substrate,and there may be the electric interference from the environment or neighboring electric device.Therefore,we rationalize the robustness of PdCl2, PdBr2, and PdI2monolayers under the electric fields and strains.Firstly,the biaxial strains are applied to PdCl2, PdBr2, and PdI2monolayers (Fig.S6).Strains are defined asε=(a1-a0)/a0, wherea1anda0are lattice constants of PdX2with and without deformation, respectively.The negatively and positively valuedεrepresent compression and tension, respectively.The BMS characteristics are well preserved at-10%<ε<10% for PdCl2and PdBr2(Figs.S7(a) and S7(b)).With 2%-10% compressive strain, the semiconductor PdI2firstly changes to HM, then metallic,but that remains unchanged with tensile strain.Secondly, we investigate the robustness of the BMS property to electrical interference from the environment or a neighboring electrical device.Figures S7(a)-S7(c)displays the band structures of PdCl2,PdBr2,and PdI2under the electric field of 0.1-0.5 V/?A, respectively.Clearly, under the strong electric field of 0.5 V/?A, the Fermi energy levels of PdCl2and PdBr2are vibrated between the VBM and the CBM.The semiconductor changes to metal for PdI2under the electric fields(Fig.S7(c)).Moreover,the calculation of the value of ?EFM-AFM(Fig.S8)is performed to check the magnetic ground states of PdCl2,PdBr2,and PdI2monolayers,and we find that the energetically favorable magnetic configurations are still the FM coupling in the cases of the electric fields and strains.In short,only PdCl2and PdBr2monolayers exhibit robustness under the electric fields and strains and are likely to become the experimentally achievable devices.Therefore, we have only conducted research on nonvolatile electric control of spin polarization for PdCl2and PdBr2structures below.

    We screen Ga2S3and Ga2Se3from the family of 2D FE III2-VI3 materials[62]by comparing the lattice mismatch.The optimized lattice constant of the Ga2S3and Ga2Se3with vdW corrections are 3.70 ?A and 3.88 ?A,respectively.Subsequently, we construct two multiferroic vdW heterostructures(PdCl2/Ga2S3and PdBr2/Ga2Se3),whose lattice mismatch are 0.02%and 0.36%.Three possible stacking patterns are investigated as shown in Fig.4,denoted as configurations I-III.Our calculations show that configuration-III(Figs.4(c)and 4(f))is energetically the most favorable configuration for both upward polarization(P↑)and downward polarization(P↓), this stacking pattern will be researched in the following sections.The binding energy of multiferroic vdW heterostructure is defined as

    whereEBMS/FE,EBMSandEFErepresent the energies of the BMS/FE heterostructure, BMS layer and the FE layer,respectively.The cohesive energies of PdCl2/Ga2S3(P↑),PdCl2/Ga2S3(P↓),PdBr2/Ga2Se3(P↑),and PdBr2/Ga2Se3(P↓)are about-1.89 eV,-1.25 eV,-2.14 eV, and-1.41 eV, respectively, indicating that the heterostructure can be feasible to explore experimentally and stably exist.

    Fig.4.Three possible stacking modes with upward polarization (a)-(c)and downward polarization (d)-(f) for PdCl2/Ga2S3 and PdBr2/Ga2Se3 heterostructures.

    Then we discuss the density of states (DOS) of the PdCl2/Ga2S3and PdBr2/Ga2Se3heterostructures.Here red and blue symbols denote the contributions from spin-up and spin-down electronic states of PdCl2, PdBr2, Ga2S3, and Ga2Se3, respectively.Figures 5(a) and 5(c) display that theEFcrosses the minority spin-down bands of the PdCl2and PdBr2for PdCl2/Ga2S3(P↑) and PdBr2/Ga2Se3(P↑), respectively, leading to a half-metal behavior in PdCl2and PdBr2.Figures 5(b) and 5(d) show that the semiconductor natures of PdCl2and PdBr2are retained for PdCl2/Ga2S3(P↓) and PdBr2/Ga2Se3(P↓),respectively.

    Fig.5.DOS of PdCl2/Ga2S3 and PdBr2/Ga2Se3 for P↑and P↓.The solid red and blue lines represent the DOS contributed by BMS and FE,respectively.

    Next, the plane-average potential and the charge density difference of different heterointerfaces are calculated for understanding the mechanism of the electrically controlled semiconductor/half-metal transition.For the P↑,the potential energies of the BMS layer PdCl2and PdBr2are lower than that of the FE layer Ga2S3and Ga2Se3,respectively(Figs.6(a)and 6(c)), which can generate that the spin-down CBM of PdCl2and PdBr2is lower than the VBM of Ga2S3and Ga2Se3, respectively,meaning that there are electrons transfer at the heterostructure interface.

    The charge density difference suggests that electron transfer occurs only at the interface between Ga2Se3(P↑)and PdBr2(Fig.S9(c)), while there are almost no electrons accumulating around the interface between Ga2S3(P↑) and PdCl2(Fig.S9(a)).This is consistent with the DOS(Fig.5(a))showing that theEFcrosses minority spin-down bands of PdCl2.On the contrary,although the potential energies of the BMS layer PdCl2and PdBr2are lower(Figs.6(b)and 6(d)),the CBMs of Ga2S3and Ga2Se3are still slightly higher than the spin-down VBM of PdCl2and PdBr2, respectively.This can hinder the spontaneous diffusion of holes for the P↓.The charge density difference suggests that a small number of holes is still insufficient to make theEFof PdCl2and PdBr2cross the spinup bands (Figs.S9(b) and S9(d)).Hence, the realizations of the half-metallicity are dependent upon the polarization fields of the FE layer Ga2S3and Ga2Se3and the charge transfer at the interface between the FE and BMS layers for PdCl2and PdBr2.

    Fig.6.Plane-averaged potential of PdCl2/Ga2S3 and PdBr2/Ga2Se3 bilayer heterostructures along the z-direction for P↑and P↓.

    In a word, the generated electric polarizations for Ga2S3(P↓) and Ga2Se3(P↓) can drive the downward shift of theEFof PdCl2and PdBr2, which offers an opportunity to achieve nonvolatile electrical control of spin polarization in PdCl2and PdBr2by enhancing polarization field.[63,64]Then we add the Ga2S3and Ga2Se3to the bottom of PdCl2/Ga2S3and PdBr2/Ga2Se3(Figs.7(a)and 7(b)),respectively.The vdW heterostructures are named PdCl2/bi-Ga2S3and PdBr2/bi-Ga2Se3, respectively.Two different polar configurations are taken into account for bi-Ga2S3and bi-Ga2Se3,i.e.,the polarization directions of FE layers were both pointing upward(P↑↑)or downward(P↓↓).

    Fig.7.The vdW heterostructures of PdCl2/bi-Ga2S3 and PdBr2/bi-Ga2Se3 for P↑↑and P↓↓.

    The binding energies of PdCl2/bi-Ga2S3(P↑↑),PdCl2/bi-Ga2S3(P↓↓), PdBr2/bi-Ga2Se3(P↑↑), and PdBr2/bi-Ga2Se3(P↓↓) are-2.71 eV,-2.64 eV,-2.97 eV, and-2.88 eV, respectively, testifying that they are stable.As expected, the DOS of PdCl2/bi-Ga2S3and PdBr2/bi-Ga2Se3trilayer heterostructures(Fig.8)show that the BMS PdCl2and PdBr2become the spin-up (spin-down) HM for P↑↑(P↓↓),manifested that the nonvolatile spin polarization regulation of PdCl2and PdBr2can be achieved by introducing the bilayer FE gates.

    After the above discussion,we find that the PdCl2/Ga2S3and PdBr2/Ga2Se3heterostructures possess the capacity to control the HM,and the PdCl2/bi-Ga2S3and PdBr2/bi-Ga2Se3possess the capacity of controlling the spin polarization of BMS.

    Fig.8.DOS of PdCl2/bi-Ga2S3 or PdBr2/bi-Ga2Se3 for P↑and P↓.The solid red and blue lines represent the DOS contributed by BMS and FE,respectively.

    Therefore,the multiferroic memory device(Figs.9(a)and 9(b)) are designed for the bilayer heterostructures.The P↑is equivalent to the“1”state(Fig.9(a)),while the P↓is equivalent to the“0”state(Fig.9(b)).In this context,the data reading process is accessible by detecting the electrical signals,and the data reading process is accessible by switching the FE polarized states, thus avoiding the destructive effect caused by detecting the polarized state.Then the spin filter device(Figs.9(c)and 9(d))is constructed for the trilayer heterostructures.The electron would travel through the BMS layer, becoming the HM with 100%spin-down polarization at the P↑↑,which is n-type doped.Conversely, the spin-up electrons can pass through the BMS layer at the P↓↓.In short,the manipulation of spin-polarized current can be achieved in this device.

    4.Conclusion

    In summary, we predict that the PdX2(X= F, Cl, Br,I) monolayers are 2D FM BMS with dynamic stability, thermal stability, and mechanical stability by first-principles calculations.The critical temperatures of both PdCl2and PdBr2monolayers are higher than the boiling point of liquid nitrogen (77 K).Moreover, the BMS characteristics of PdCl2and PdBr2are robust against external strains and strong electric fields, which is conducive to their applications.The carrier doping can induce the change between the semiconductor and half metal.Furthermore, we manipulate the spin polarization of PdCl2and PdBr2by introducing the FE gate to enable magnetic half-metal/semiconductor switching and spin-up/down polarization switching control.Finally, based on this, we realize two kinds of spin devices(multiferroic memory and spin filter).As well as proposing two novel BMS materials: PdCl2and PdBr2, this study provides a theoretical basis for the development of spin devices.

    Acknowledgments

    Project supported by the Taishan Scholar Program of Shandong Province, China (Grant No.ts20190939), the Independent Cultivation Program of Innovation Team of Jinan City (Grant No.2021GXRC043), the National Natural Science Foundation of China (Grant No.52173283), and the Natural Science Foundation of Shandong Province (Grant No.ZR2020QA052).

    猜你喜歡
    苗苗
    Tunable terahertz acoustic-phonon emission from monolayer molybdenum disulfide
    《重拾》
    春暖花開
    我又不是好苗苗
    皮卡丹、余苗苗國(guó)畫作品
    愛幫忙的蠟燭
    小種子
    月亮面包
    年的傳說(shuō)
    My Dream
    自线自在国产av| 国产精品电影一区二区三区| 十分钟在线观看高清视频www| 欧美黑人欧美精品刺激| 在线视频色国产色| 午夜视频精品福利| 一二三四在线观看免费中文在| 窝窝影院91人妻| 我的亚洲天堂| 日韩欧美国产在线观看| 国产国语露脸激情在线看| 欧美成人一区二区免费高清观看 | 欧美精品啪啪一区二区三区| 欧美最黄视频在线播放免费| 亚洲国产精品久久男人天堂| 狂野欧美激情性xxxx| 在线观看日韩欧美| 大香蕉久久成人网| 91av网站免费观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品电影一区二区三区| 国产亚洲欧美98| 最新在线观看一区二区三区| 夜夜夜夜夜久久久久| 少妇的丰满在线观看| 欧美色欧美亚洲另类二区 | 亚洲一区二区三区不卡视频| 丝袜美足系列| 在线国产一区二区在线| 精品久久久久久久人妻蜜臀av | 午夜激情av网站| 亚洲专区字幕在线| 亚洲自偷自拍图片 自拍| 国产1区2区3区精品| 窝窝影院91人妻| 亚洲国产欧美网| 国产亚洲精品一区二区www| 窝窝影院91人妻| 日日爽夜夜爽网站| 亚洲中文日韩欧美视频| 久久 成人 亚洲| 久久婷婷成人综合色麻豆| 叶爱在线成人免费视频播放| 免费在线观看完整版高清| 黄片小视频在线播放| 久久婷婷人人爽人人干人人爱 | 视频区欧美日本亚洲| 中文字幕人妻丝袜一区二区| 国产免费av片在线观看野外av| 午夜视频精品福利| 人人妻,人人澡人人爽秒播| 伊人久久大香线蕉亚洲五| 欧美一区二区精品小视频在线| 天天一区二区日本电影三级 | 久久狼人影院| 久久精品aⅴ一区二区三区四区| 欧美不卡视频在线免费观看 | 18禁观看日本| 国产亚洲精品久久久久久毛片| 美国免费a级毛片| 免费一级毛片在线播放高清视频 | 男女下面进入的视频免费午夜 | 中出人妻视频一区二区| 日韩欧美一区二区三区在线观看| 国产一区在线观看成人免费| 伊人久久大香线蕉亚洲五| 欧美日韩黄片免| 黄网站色视频无遮挡免费观看| 香蕉久久夜色| 亚洲专区字幕在线| 免费无遮挡裸体视频| 久久久久久免费高清国产稀缺| 日日夜夜操网爽| 亚洲精品av麻豆狂野| 亚洲午夜理论影院| 99久久99久久久精品蜜桃| 午夜日韩欧美国产| 91精品国产国语对白视频| 女警被强在线播放| 熟妇人妻久久中文字幕3abv| 啦啦啦观看免费观看视频高清 | 91成人精品电影| 校园春色视频在线观看| 露出奶头的视频| 久久国产乱子伦精品免费另类| 久久国产精品影院| 亚洲成人免费电影在线观看| 12—13女人毛片做爰片一| 午夜精品国产一区二区电影| 午夜视频精品福利| 国产av在哪里看| 亚洲国产毛片av蜜桃av| 午夜福利欧美成人| 国产主播在线观看一区二区| 欧美黑人精品巨大| 在线天堂中文资源库| 极品教师在线免费播放| 久久人妻熟女aⅴ| а√天堂www在线а√下载| 黄色视频,在线免费观看| 国产精品日韩av在线免费观看 | 国产极品粉嫩免费观看在线| 麻豆av在线久日| 制服诱惑二区| 日韩一卡2卡3卡4卡2021年| 国产97色在线日韩免费| 最新在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 亚洲一区高清亚洲精品| 多毛熟女@视频| 黄片播放在线免费| 久久人妻av系列| 精品高清国产在线一区| 亚洲自偷自拍图片 自拍| 一级黄色大片毛片| 国产成人欧美| 亚洲av成人不卡在线观看播放网| 丝袜在线中文字幕| 午夜福利高清视频| 精品一区二区三区视频在线观看免费| 激情在线观看视频在线高清| 国产精品亚洲一级av第二区| 999精品在线视频| 神马国产精品三级电影在线观看 | 亚洲成国产人片在线观看| 欧美另类亚洲清纯唯美| 国产人伦9x9x在线观看| 成人欧美大片| 手机成人av网站| 亚洲三区欧美一区| 欧美+亚洲+日韩+国产| 亚洲欧美日韩无卡精品| 国产精品二区激情视频| 久久久久久国产a免费观看| 免费女性裸体啪啪无遮挡网站| av视频在线观看入口| 两性夫妻黄色片| 女警被强在线播放| 午夜成年电影在线免费观看| 精品国内亚洲2022精品成人| 亚洲av五月六月丁香网| 伊人久久大香线蕉亚洲五| 男人舔女人下体高潮全视频| 亚洲熟妇中文字幕五十中出| 国产精品精品国产色婷婷| 日本 欧美在线| 日韩有码中文字幕| 99久久精品国产亚洲精品| 欧美成人免费av一区二区三区| 人妻久久中文字幕网| 两个人看的免费小视频| 国产熟女xx| 国产精品亚洲一级av第二区| 99国产极品粉嫩在线观看| 宅男免费午夜| 久久中文字幕人妻熟女| 好男人在线观看高清免费视频 | 操出白浆在线播放| 成人18禁在线播放| 国产熟女xx| 亚洲 欧美 日韩 在线 免费| 亚洲美女黄片视频| 亚洲第一青青草原| 久久人妻熟女aⅴ| 真人一进一出gif抽搐免费| av片东京热男人的天堂| 亚洲欧洲精品一区二区精品久久久| 一级毛片女人18水好多| 欧美国产精品va在线观看不卡| 九色亚洲精品在线播放| 12—13女人毛片做爰片一| 久久狼人影院| 亚洲中文av在线| 午夜福利在线观看吧| 女人精品久久久久毛片| 午夜久久久久精精品| 国产免费男女视频| 激情视频va一区二区三区| 99国产极品粉嫩在线观看| 亚洲久久久国产精品| 久久精品国产亚洲av高清一级| 两个人视频免费观看高清| 给我免费播放毛片高清在线观看| 国产欧美日韩综合在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 日韩大尺度精品在线看网址 | 国产精品一区二区三区四区久久 | 精品久久久久久,| 欧美老熟妇乱子伦牲交| 久久中文字幕人妻熟女| 亚洲人成电影免费在线| 午夜久久久久精精品| 欧美国产精品va在线观看不卡| 亚洲欧美激情在线| 美女午夜性视频免费| 成人亚洲精品一区在线观看| 一级片免费观看大全| 桃色一区二区三区在线观看| 亚洲天堂国产精品一区在线| 亚洲av成人一区二区三| 欧美日韩黄片免| 免费av毛片视频| 露出奶头的视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成国产人片在线观看| 怎么达到女性高潮| 在线十欧美十亚洲十日本专区| 国产精品99久久99久久久不卡| 日韩免费av在线播放| 国产免费av片在线观看野外av| 亚洲无线在线观看| 制服诱惑二区| 精品日产1卡2卡| 一本大道久久a久久精品| 伊人久久大香线蕉亚洲五| 国产精品,欧美在线| 亚洲国产精品成人综合色| 欧美色欧美亚洲另类二区 | 日韩欧美一区视频在线观看| 搡老妇女老女人老熟妇| 国产精品美女特级片免费视频播放器 | 无遮挡黄片免费观看| 啦啦啦免费观看视频1| 国产一区二区三区在线臀色熟女| 久久国产精品影院| 一区二区三区激情视频| 一区二区日韩欧美中文字幕| 亚洲国产欧美一区二区综合| 久久精品国产99精品国产亚洲性色 | 99香蕉大伊视频| 国产片内射在线| 一本综合久久免费| 亚洲伊人色综图| videosex国产| 免费在线观看黄色视频的| 高潮久久久久久久久久久不卡| 又黄又粗又硬又大视频| 老汉色∧v一级毛片| 一进一出好大好爽视频| 日韩av在线大香蕉| 国产成人啪精品午夜网站| 欧美性长视频在线观看| 亚洲精品一区av在线观看| 亚洲精品国产精品久久久不卡| 国产高清有码在线观看视频 | 曰老女人黄片| 免费看a级黄色片| 久久中文字幕人妻熟女| 亚洲成国产人片在线观看| 成年版毛片免费区| 久久狼人影院| 久久久久久久精品吃奶| 欧美中文日本在线观看视频| 丁香六月欧美| 国产精品综合久久久久久久免费 | 久久久久九九精品影院| 国产精品一区二区在线不卡| 一级黄色大片毛片| 黄色女人牲交| 成人手机av| 欧美一级a爱片免费观看看 | 久久九九热精品免费| 国产精品永久免费网站| 亚洲欧美精品综合一区二区三区| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av成人不卡在线观看播放网| av视频免费观看在线观看| 久久人妻福利社区极品人妻图片| 在线观看免费午夜福利视频| 色综合婷婷激情| 97碰自拍视频| 国产一区二区激情短视频| 亚洲五月天丁香| 大码成人一级视频| 不卡av一区二区三区| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 99在线视频只有这里精品首页| 熟女少妇亚洲综合色aaa.| 757午夜福利合集在线观看| 国产精品香港三级国产av潘金莲| 色综合站精品国产| tocl精华| 脱女人内裤的视频| 午夜福利高清视频| 老汉色av国产亚洲站长工具| 成年人黄色毛片网站| 国产精品电影一区二区三区| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区| 制服丝袜大香蕉在线| 久久久久久亚洲精品国产蜜桃av| 99精品在免费线老司机午夜| 欧美亚洲日本最大视频资源| 岛国视频午夜一区免费看| 久久精品91无色码中文字幕| 色综合欧美亚洲国产小说| 久久精品国产综合久久久| 18禁观看日本| 久久久精品欧美日韩精品| 欧美黄色淫秽网站| 91九色精品人成在线观看| 亚洲成人精品中文字幕电影| 日日干狠狠操夜夜爽| 欧美日韩亚洲国产一区二区在线观看| 国产成人免费无遮挡视频| 欧美+亚洲+日韩+国产| 中文字幕另类日韩欧美亚洲嫩草| 久久人妻熟女aⅴ| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人啪精品午夜网站| 黑人操中国人逼视频| 精品久久久久久,| 性色av乱码一区二区三区2| 成人亚洲精品av一区二区| 一二三四在线观看免费中文在| avwww免费| 久久精品国产亚洲av高清一级| 中文字幕人妻熟女乱码| 窝窝影院91人妻| 999久久久国产精品视频| 成在线人永久免费视频| 日本vs欧美在线观看视频| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久久亚洲av鲁大| 女生性感内裤真人,穿戴方法视频| 久久久久九九精品影院| 久久久久久久久免费视频了| 久久久久亚洲av毛片大全| 一夜夜www| 午夜久久久久精精品| 亚洲成人久久性| 久久久久久国产a免费观看| 在线av久久热| 免费在线观看视频国产中文字幕亚洲| 自线自在国产av| 男女之事视频高清在线观看| 亚洲免费av在线视频| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 午夜精品久久久久久毛片777| 中文字幕av电影在线播放| 波多野结衣高清无吗| 91av网站免费观看| 午夜福利成人在线免费观看| 亚洲三区欧美一区| 国产精品日韩av在线免费观看 | 国产人伦9x9x在线观看| 精品不卡国产一区二区三区| 欧美日本中文国产一区发布| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 91成人精品电影| 日日干狠狠操夜夜爽| 成人18禁在线播放| ponron亚洲| 最近最新中文字幕大全免费视频| 夜夜夜夜夜久久久久| 日韩精品中文字幕看吧| 中文字幕人妻丝袜一区二区| 老司机午夜十八禁免费视频| 一级a爱视频在线免费观看| 男女床上黄色一级片免费看| 很黄的视频免费| 国产乱人伦免费视频| 亚洲熟妇熟女久久| 操美女的视频在线观看| 一本大道久久a久久精品| 97人妻精品一区二区三区麻豆 | 亚洲第一av免费看| 国产av精品麻豆| 国产人伦9x9x在线观看| 嫩草影视91久久| av网站免费在线观看视频| 黄片播放在线免费| 日韩成人在线观看一区二区三区| 香蕉丝袜av| 日本三级黄在线观看| 午夜两性在线视频| 国产精品精品国产色婷婷| 高清在线国产一区| 18禁观看日本| 大型av网站在线播放| 中文字幕久久专区| 午夜福利欧美成人| 亚洲五月婷婷丁香| 欧美绝顶高潮抽搐喷水| 午夜福利,免费看| 亚洲成a人片在线一区二区| 欧美不卡视频在线免费观看 | 欧美大码av| 91字幕亚洲| 亚洲国产欧美一区二区综合| 精品国产乱子伦一区二区三区| 老司机靠b影院| 搡老妇女老女人老熟妇| 黄片播放在线免费| 成人三级黄色视频| 久9热在线精品视频| 欧美国产精品va在线观看不卡| av视频免费观看在线观看| 亚洲人成电影免费在线| 女性被躁到高潮视频| 国产午夜精品久久久久久| 狂野欧美激情性xxxx| 黄网站色视频无遮挡免费观看| 亚洲精品粉嫩美女一区| 日韩一卡2卡3卡4卡2021年| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 黑人欧美特级aaaaaa片| 亚洲自拍偷在线| 禁无遮挡网站| 欧美日韩瑟瑟在线播放| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 午夜福利高清视频| 免费看十八禁软件| 一本综合久久免费| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| 亚洲人成77777在线视频| 日本三级黄在线观看| 亚洲少妇的诱惑av| 免费搜索国产男女视频| 热re99久久国产66热| 日韩欧美一区视频在线观看| 性少妇av在线| 亚洲中文字幕一区二区三区有码在线看 | 国产野战对白在线观看| 亚洲人成电影观看| 在线国产一区二区在线| 日韩欧美国产一区二区入口| a级毛片在线看网站| 精品高清国产在线一区| 国产一卡二卡三卡精品| 黄色片一级片一级黄色片| 9热在线视频观看99| 中文字幕另类日韩欧美亚洲嫩草| 大码成人一级视频| 自线自在国产av| 一边摸一边抽搐一进一小说| 欧美绝顶高潮抽搐喷水| 国产欧美日韩精品亚洲av| 国产亚洲欧美精品永久| 成在线人永久免费视频| 亚洲欧美精品综合久久99| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 看黄色毛片网站| 99国产精品免费福利视频| √禁漫天堂资源中文www| 成人三级黄色视频| 亚洲欧美激情综合另类| 久久婷婷成人综合色麻豆| 亚洲精华国产精华精| 欧美绝顶高潮抽搐喷水| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区免费欧美| 精品国产一区二区三区四区第35| 中文字幕人妻熟女乱码| 久热爱精品视频在线9| 午夜亚洲福利在线播放| 黄色毛片三级朝国网站| 免费在线观看完整版高清| www.熟女人妻精品国产| 国产精品久久久av美女十八| 国产麻豆成人av免费视频| 麻豆久久精品国产亚洲av| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费 | 美女扒开内裤让男人捅视频| 人人妻,人人澡人人爽秒播| 欧美日韩一级在线毛片| 国产99白浆流出| 18美女黄网站色大片免费观看| 亚洲欧美日韩另类电影网站| 国产伦人伦偷精品视频| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 久久人妻av系列| 男女下面进入的视频免费午夜 | 两个人视频免费观看高清| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 两人在一起打扑克的视频| 国产成人欧美| 亚洲人成电影观看| 在线观看66精品国产| 母亲3免费完整高清在线观看| 亚洲一区二区三区不卡视频| 日韩视频一区二区在线观看| 免费一级毛片在线播放高清视频 | 国产精品永久免费网站| 精品一品国产午夜福利视频| 中文字幕色久视频| 亚洲成人精品中文字幕电影| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 久久九九热精品免费| 夜夜看夜夜爽夜夜摸| a在线观看视频网站| 又紧又爽又黄一区二区| 国产精品 国内视频| 99国产精品一区二区三区| 亚洲九九香蕉| 国产亚洲精品av在线| 成人免费观看视频高清| 久久 成人 亚洲| 亚洲熟妇熟女久久| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 精品一区二区三区av网在线观看| 国产xxxxx性猛交| 国产精品亚洲av一区麻豆| 色在线成人网| www国产在线视频色| 国产野战对白在线观看| e午夜精品久久久久久久| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 男女午夜视频在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲少妇的诱惑av| 女人精品久久久久毛片| 村上凉子中文字幕在线| 国产亚洲欧美98| 久久欧美精品欧美久久欧美| 精品国产一区二区久久| 嫩草影视91久久| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 久9热在线精品视频| 国产一区二区三区视频了| 给我免费播放毛片高清在线观看| 在线十欧美十亚洲十日本专区| 亚洲激情在线av| 天堂影院成人在线观看| 亚洲激情在线av| 最近最新中文字幕大全电影3 | 亚洲一区中文字幕在线| 亚洲av熟女| 97人妻天天添夜夜摸| av超薄肉色丝袜交足视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品中文字幕一二三四区| 亚洲国产日韩欧美精品在线观看 | 午夜福利高清视频| 国产熟女午夜一区二区三区| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片 | 午夜久久久久精精品| 久久人人精品亚洲av| 久久精品国产99精品国产亚洲性色 | 动漫黄色视频在线观看| 嫁个100分男人电影在线观看| 亚洲欧美精品综合一区二区三区| 日韩av在线大香蕉| 午夜激情av网站| 这个男人来自地球电影免费观看| 欧美日韩精品网址| 日本 欧美在线| 久久香蕉精品热| 男人操女人黄网站| 12—13女人毛片做爰片一| 国产成人一区二区三区免费视频网站| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 久久久久亚洲av毛片大全| 在线av久久热| 国产一区在线观看成人免费| 国产精品 欧美亚洲| 一进一出好大好爽视频| 91老司机精品| 国产精品日韩av在线免费观看 | 国产蜜桃级精品一区二区三区| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲午夜精品一区,二区,三区| 制服丝袜大香蕉在线| 在线十欧美十亚洲十日本专区| 天天添夜夜摸| 少妇熟女aⅴ在线视频| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看 | 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影| 成人永久免费在线观看视频| 亚洲欧美一区二区三区黑人| 国产精品1区2区在线观看.| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 好男人在线观看高清免费视频 | 此物有八面人人有两片| 中文字幕色久视频| 午夜福利一区二区在线看| 国产日韩一区二区三区精品不卡| 免费av毛片视频| 啦啦啦观看免费观看视频高清 | 精品国产乱子伦一区二区三区| 亚洲av美国av| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 久久精品亚洲精品国产色婷小说| 免费看美女性在线毛片视频| 9热在线视频观看99| 亚洲五月婷婷丁香| 久久欧美精品欧美久久欧美|