• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved RF power performance of InAlN/GaN HEMT by optimizing rapid thermal annealing process for high-performance low-voltage terminal applications

    2023-12-15 11:51:16YuweiZhou周雨威MinhanMi宓珉瀚PengfeiWang王鵬飛CanGong龔燦YilinChen陳怡霖ZhihongChen陳治宏JielongLiu劉捷龍MeiYang楊眉MengZhang張濛QingZhu朱青XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2023年12期

    Yuwei Zhou(周雨威), Minhan Mi(宓珉瀚), Pengfei Wang(王鵬飛), Can Gong(龔燦),Yilin Chen(陳怡霖), Zhihong Chen(陳治宏), Jielong Liu(劉捷龍), Mei Yang(楊眉),Meng Zhang(張濛), Qing Zhu(朱青), Xiaohua Ma(馬曉華), and Yue Hao(郝躍)

    1School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China

    2Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    Keywords: InAlN/GaN,rapid thermal annealing,low voltage,RF power performance,terminal applications

    1.Introduction

    With the booming development of wireless communication systems, the demand for high-performance low-voltage terminal equipment is surging, where radio-frequency (RF)power devices of power amplifiers (PAs) are required to operate at low voltage to deliver high power-added-efficiency(PAE) and moderate output power density (POUT).[1]Traditional GaAs technology has been widely adopted in lowvoltage terminal applications.Nevertheless, compared with GaAs technology, GaN technology is able to deliver better PAE at the samePOUTor higherPOUTat the same PAE,which is conducive to realizing lower power consumption and a smaller area of the chip.[2-4]In addition, GaN technology also has superior bandwidth, which is beneficial to enable a significant reduction in the number and area of PA as well as high-speed broadband communication.[5]Thus,GaN technology has great potential for high-performance low-voltage terminal applications.

    Most GaN-based RF power devices are fabricated on a mature AlGaN/GaN heterojunction to achieve high-voltage and high-power characteristics.[6-8]Besides, considering the convenience of the fabrication and relatively low cost,the formation of ohmic contacts is mainly achieved by performing rapid thermal annealing (RTA),[9-13]after the evaporation of Ti/Al/Ni/Au ohmic metals,whose RTA temperature is usually higher than 800?C.[12,13]However,due to the limitation of relatively large sheet resistance for AlGaN/GaN heterojunction,the maximum output current density (ID.MAX) is generally lower than 1500 mA·mm-1and the knee voltage (VKNEE) is also quite large,which makes it difficult to obtain high device performance at low operating voltage.[14,15]In order to enable higherID.MAXand lowerVKNEE, both of which are important for the device to operate at low voltage,the parasitic resistance must be reduced.[16]Thus, device fabrication should be performed on a more strongly polarized heterojunction with low sheet resistance, such as an InAlN/GaN heterojunction.[17,18]On the basis of an InAlN/GaN heterojunction, the RTA process must be carefully designed because both the higher RTA temperature and longer time will cause the rough ohmic metal surface morphology and degraded heterojunction quality to induce a series of negative effects on device performance and reliability,[19-21]in spite of the lower ohmic contact resistance(RC).As a consequence,for the InAlN/GaN heterojunction,it is vital to optimize the RTA condition and explore the appropriate one,which may be different from the optimal annealing condition for a conventional AlGaN/GaN heterojunction.

    In this work, by optimizing the RTA process including annealing temperature and time, the optimized RTA In-AlN/GaN high electron mobility transistor (HEMT) exhibits lower parasitic resistance,smoother ohmic metal surface morphology, less degraded heterojunction sheet resistance, and clearer heterojunction interfaces as well as negligible material out-diffusion, which contribute to the improvement in output current, knee voltage, peak transconductance, off-state leakage current, and current collapse.Due to the improved DC and pulsedI-Vcharacteristics, an obviously increased PAE of 62%andPOUTof 0.71 W·mm-1are achieved for the optimized HEMT at 8 GHz andVDSof 6 V,compared with those of 51%and 0.49 W·mm-1for the non-optimized one, to satisfy high-performance low-voltage terminal applications.

    2.Device fabrication

    The lattice-matched In0.17Al0.83N/GaN heterojunction was adopted in this work to fabricate high-performance lowvoltage HEMT, whose schematic cross section is shown in Fig.1(a).The epilayers were grown on a semi-insulating SiC substrate by metal-organic chemical vapor deposition, consisting of a 2 nm GaN cap,an 8 nm InAlN barrier,a 1 nm AlN spacer, and a GaN buffer.Room-temperature Hall measurement showed the two-dimensional electron gas (2DEG) density of 1.65×1013cm-2and mobility of 1512 cm2/V·s,leading to the sheet resistance(RSH)of 251 ?/sq.

    Fig.1.(a)Schematic cross section of low-voltage InAlN/GaN HEMT.SEM characterization of the fabricated InAlN/GaN HEMT(b)before and(c)after the gate metals evaporation in the top view to determine the device size.

    The fabrication process started with device isolation via boron ion implantation,followed by deposition of Ti/Al/Ni/Au ohmic metals via electron beam evaporation.Given that there exists a trade-off among low ohmic contact resistance, excellent heterojunction quality, and smooth ohmic metal surface morphology in the RTA process for the InAlN/GaN heterojunction, the RTA condition must be carefully optimized to guarantee the lowest parasitic resistance together with smoother ohmic metal surface morphology and negligible material out-diffusion.Consequently, the whole wafer was sliced into several pieces.As a reference, the optimal RTA condition for the conventional AlGaN/GaN heterojunction on our production line(860?C,30 s)was applied to one of the InAlN/GaN samples.And the exploration of the appropriate RTA condition for the InAlN/GaN heterojunction was based on the remaining samples.First,at a fixed RTA time of 30 s,the RTA temperature was investigated by annealing five samples in the temperature range of 800?C-880?C, with a temperature step of 20?C.After that, the five annealed samples were passivated by a 120 nm SiN via PECVD, followed by the evaluation ofRCandRSHvia transmission-line-model(TLM) measurement.According to the TLM measurement,ohmic contact resistance is defined as the resistance between the ohmic metal and 2DEG channel,and the associated sheet resistance is regarded as the sheet resistance of the 2DEG channel.After preliminarily finding the optimal RTA temperature of 840?C, which yields the lowest parasitic resistance among the five samples mentioned above, the RTA time was studied at the fixed temperature of 840?C by annealing the other five samples with the time in the range of 20-60 s,with a time step of 10 s.Likewise,following the deposition of the SiN passivation layer, TLM measurement was performed to preliminarily determine the optimal RTA time of 40 s, which produces the lowest parasitic resistance among the ten samples mentioned above.However,such a two-step optimization process does not definitely lead to the most optimal RTA parameters.In order to improve the total optimization procedure,on the basis of the two-step optimization, another two optimizations of annealing time were performed at annealing temperatures of 830?C and 850?C, which were relatively close to the previous optimal temperature of 840?C.With the comparison of the parasitic resistance among the samples with temperatures of 830?C, 840?C, and 850?C, and various times,it is found that the lowest parasitic resistance is achieved for the annealing condition of 840?C for 40 s, which will be shown hereinafter.Compared with the reference sample(nonoptimized RTA sample), the optimized RTA sample showed lower parasitic resistance.Besides, a smoother ohmic metal surface morphology and clearer heterojunction interfaces as well as negligible material out-diffusion were also achieved for the optimized RTA sample, which will be demonstrated hereinafter.For convenience,the subsequent process was only carried out on the optimized RTA sample and the reference one.After the definition of the gate foot region via electron beam lithography,the SiN on the gate foot region was removed by CF4plasma dry etching.Eventually, Ni/Au gate metals were deposited via electron beam evaporation after gate head lithography.As shown in Figs.1(b)and 1(c),a T-shaped gate was formed with a gate length(LG)of 0.2μm and gate width(WG)of 2×50μm.The source-drain spacing(LSD)was 2μm with equal gate-source and gate-drain spacing(LGS,LGD)of 0.9μm.

    3.Results and discussion

    As mentioned above,there exists a trade-off between the lower ohmic contact resistance and less degraded heterojunction sheet resistance in the RTA process of the InAlN/GaN heterojunction,[20]both of which determine the parasitic resistance and thus the device’s electrical performance.In order to lower the parasitic resistance, both the RTA temperature and time have been optimized,whose process details are described in Section 2.

    Fig.2.Influence of RTA temperature on(a)RC and RSH as well as(b)the calculated parasitic resistance,to preliminarily determine the optimal temperature.Effect of RTA time on (c) RC and RSH as well as (d) the calculated parasitic resistance, to preliminarily determine the optimal time.(e) Comparison of the parasitic resistance among samples with temperatures of 830 ?C, 840 ?C, 850 ?C, and various times, to finally determine the optimal RTA condition.(f)The actual temperature profile of the optimal RTA condition(840 ?C,40 s).

    The corresponding TLM measurements are demonstrated in Fig.2, to ascertain the optimal RTA condition.As shown in Fig.2(a), as the temperature increases, the ohmic contact resistance gradually decreases,while the heterojunction sheet resistance degrades by degrees.Such two contradictory trends preliminarily determine an optimal temperature of 840?C to yield the lowest parasitic resistance among those five samples, as shown in Fig.2(b).On this basis, the optimal time is further investigated.As demonstrated in Fig.2(c), the influence of time is slightly different from that of temperature.The gradual saturation of ohmic contact resistance is exhibited with the increase in time, while the heterojunction sheet resistance still degrades continuously.Similar contradictory trends preliminarily lead to an optimal time of 40 s to deliver the lowest parasitic resistance among the ten samples,as shown in Fig.2(d).In order to more reasonably explore the optimal RTA parameters,on the basis of the previous two-step optimization process, another two optimizations of annealing time were performed at annealing temperatures of 830?C and 850?C, which were relatively close to the temporarily optimal temperature of 840?C.As shown in Fig.2(e),the sample annealed at 840?C for 40 s shows the lowest parasitic resistance.Thus,we basically reckon that the annealing condition of 840?C for 40 s should be or very close to the most optimal one.In addition,what is noteworthy is that RTA temperature has a much stronger effect than RTA time onRC,RSH,and parasitic resistance,according to the TLM measurements.In a word, compared with the reference sample annealed at 860?C for 30 s,the parasitic resistance is decreased as much as we can for the optimized RTA sample annealed at 840?C for 40 s to guarantee a high-performance device.Considering that there inevitably exists a control error in temperature and time for the RTA furnace, this optimal RTA condition should be further adjusted to 840±10?C with 40±10 s.

    Fig.3.(a)and(b)Qualitative characterization of the ohmic metal surface morphology by SEM as well as (c) and (d) quantificational characterization of the ohmic metal surface morphology by AFM for the optimized and non-optimized RTA samples.

    Except for the evaluation of parasitic resistance,the comparison of the ohmic metal surface morphology and other heterojunction quality is performed between the optimized and non-optimized RTA samples.Figure 3 demonstrates the ohmic metal surface morphology of both samples, characterized by scanning electron microscopy (SEM) and atomic force microscopy(AFM).Similar to the cases reported in other works,the bumpy ohmic metal surface with bulges of various sizes is shown for both samples, which is an inevitable annoying phenomenon in the RTA process.[12,22,23]However, compared with the non-optimized RTA sample,the optimized one has smoother ohmic metal surface morphology whose rootmean-square (rms) surface roughness and maximum height variation of bulges (?H) are obviously reduced, which is attributed to the less Ni-Al alloy aggregation by relatively lower RTA temperature.[12,21]Besides the evaluation of the degradation for heterojunction sheet resistance mentioned above, another heterojunction quality of both samples is compared in Fig.4.By high-resolution transmission electron microscopy(HRTEM)measurement, clearer heterojunction interfaces are shown for the optimized RTA sample.More importantly,due to the relatively low annealing temperature, there is negligible element out-diffusion from the barrier to the channel and buffer for the optimized one, which is characterized by an energy dispersive spectrometer (EDS) and indicates the better material quality and fewer defects introduced during the optimized RTA process.The fewer defects imply the suppressed off-state leakage current and current collapse for the optimized RTA condition, which will be shown hereinafter.On the contrary,the reference annealing condition(860?C for 30 s)indeed causes more severe heterojunction quality degradation.However,such degradation contributes to the reduction in ohmic contact resistance, probably due to the introduction of more defects to facilitate the electron transition.

    Fig.4.(a)and(b)HRTEM characterization of the heterojunction structure as well as(c)and(d)EDS analysis of element out-diffusion for the optimized and non-optimized RTA sample.

    A Keithley 4200 semiconductor parameter analyzer was used for DC and pulsedI-Vmeasurements.A comparison of transfer characteristics atVDSof 6 V is shown in Fig.5(a),demonstrating the peak extrinsic transconductance (gm.peak)of 526 mS·mm-1and 473 mS·mm-1for the optimized and non-optimized RTA HEMT, respectively.Besides, compared with the reference HEMT with off-state drain leakage current(Id.off)of 1×10-1mA·mm-1,theId.offof 7×10-3mA·mm-1is achieved for the optimized RTA HEMT.Figure 5(b)demonstrates the output characteristics of both devices,showing that the higherID.MAXof 2279 mA·mm-1and lowerVKNEEof 3.8 V are obtained for the optimized HEMT, compared with those of 2066 mA·mm-1and 4.2 V for the non-optimized one.As demonstrated in Figs.5(c) and 5(d), the pulsedI-Vcharacteristics are characterized at gate voltages of 2 V and 0 V,with quiescent bias points of (VGSQ,VDSQ=0 V, 0 V) and(VGSQ,VDSQ=-6 V, 10 V).The optimized HEMT exhibits the current collapse ratio of 4%, compared with that of 15%for the non-optimized one.For the optimized RTA HEMT,the increasedID.MAXandgm.peakas well as reducedVKNEEare attributed to the lowered parasitic resistance.In addition, the better heterojunction quality contributes to the suppression of off-state leakage current and current collapse.

    Fig.5.Comparison of(a)transfer characteristics and(b)output characteristics between the optimized and non-optimized RTA HEMT.Pulsed I-V characteristics of the(c)optimized and(d)non-optimized device.

    Fig.6.Comparison of (a) small signal characteristics and (b) lowvoltage large signal characteristics between the optimized and nonoptimized RTA HEMT.

    The small signal characteristics were characterized from 1-40 GHz for both devices, using an Agilent 8363B vector network analyzer calibrated with a short-open through calibration standard.As shown in Fig.6(a), by extrapolating of the short circuit current gain (|H21|) and the maximum stable gain/maximum available gain (MSG/MAG) curves using-20 dB/decade slopes,fT/fMAXvalues of 77/110 GHz and 71/95 GHz are achieved for the optimized and non-optimized RTA HEMT biased atVDSof 6 V, respectively.The lowvoltage large signal characterization was performed in a continuous wave using an on-wafer load-pull system.Both the source and the load impedance were tuned to maximize PAE.At 8 GHz andVDSof 6 V,an improved PAE of 62%together with an increasedPOUTof 0.71 W·mm-1is achieved for the optimized RTA HEMT,as shown in Fig.6(b),as a result of the improvement in output current,knee voltage,off-state leakage current,and current collapse.

    Finally, the comparison of ohmic contact resistance, offstate leakage current,current collapse,POUTand PAE between our fabricated InAlN/GaN HEMT and the state-of-the-art ones is performed, which can be seen in the table below.Obviously, our fabricated InAlN/GaN HEMT demonstrates lower ohmic contact resistance as well as suppressed off-state leakage current and current collapse.More importantly, a decent PAE andPOUTare achieved at a low operating voltage for this InAlN/GaN HEMT, appealing to low-voltage terminal applications.

    Table 1.Comparison of ohmic contact resistance,off-state leakage current,current collapse,PAE,and POUT for InAlN/GaN HEMTs.

    4.Conclusions

    In conclusion, improved low-voltage RF power performance of InAlN/GaN HEMT is realized via an optimized RTA process to satisfy high-performance terminal applications.This optimal annealing condition (840?C with 40 s)is explored via adjusting the RTA temperature and time to achieve the lowest parasitic resistance,which leads to the improved output current density and higher peak transconductance as well as reduced knee voltage.Moreover, compared with the reference HEMT, the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion, which contributes to the suppression of off-state leakage current and current collapse.Due to the improved DC and pulsedI-Vcharacteristics, an obviously enhanced PAE of 62% andPOUTof 0.71 W·mm-1are achieved atVDSof 6 V for the optimized RTA HEMT,indicating the great potential of the optimized RTA HEMT in high-performance low-voltage terminal applications.Considering that there inevitably exists a control error in the temperature and time for the RTA furnace, this optimal RTA condition should be further adjusted to 840±10?C with 40±10 s.RTA temperature or time beyond the upper limit of this optimal condition leads to severer degradation of heterojunction quality (including the substantially degraded heterojunction sheet resistance, blurred heterojunction interfaces as well as significant material out-diffusion) and rougher ohmic metal surface morphology, and RTA temperature or time not reaching the lower limit of this optimal condition causes higher ohmic contact resistance.However, a decent balance among low ohmic contact resistance,excellent heterojunction quality,and smooth ohmic metal surface morphology is enabled by this optimal RTA condition, thus achieving the improvement in DC,pulsedI-V,and RF power performance.

    Acknowledgements

    Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404),in part by the National Natural Science Foundation of China(Grant Nos.61904135 and 62234009),the Key R&D Program of Guangzhou (Grant No.202103020002), Wuhu and Xidian University special fund for industry-university-research cooperation(Grant No.XWYCXY-012021014-HT),the Fundamental Research Funds for the Central Universities (Grant No.XJS221110),the Natural Science Foundation of Shaanxi,China (Grant No.2022JM-377), and the Innovation Fund of Xidian University(Grant No.YJSJ23019).

    国产在视频线在精品| 亚洲av电影在线观看一区二区三区 | 日本av手机在线免费观看| 麻豆成人午夜福利视频| 中文字幕久久专区| 成人毛片a级毛片在线播放| 99久久精品热视频| 久久6这里有精品| 午夜激情福利司机影院| 看黄色毛片网站| 寂寞人妻少妇视频99o| 精品人妻视频免费看| 丰满乱子伦码专区| 国产亚洲av嫩草精品影院| 亚洲不卡免费看| av在线亚洲专区| 三级国产精品欧美在线观看| 97超视频在线观看视频| 色播亚洲综合网| 又爽又黄无遮挡网站| 成人午夜精彩视频在线观看| 日本-黄色视频高清免费观看| 久久久成人免费电影| av在线播放精品| 国产精品国产三级国产专区5o| av在线老鸭窝| 国产免费福利视频在线观看| 国产黄a三级三级三级人| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 国产午夜精品一二区理论片| 国产女主播在线喷水免费视频网站 | 久久久久精品性色| 99热这里只有是精品50| 一级毛片黄色毛片免费观看视频| 日日撸夜夜添| 免费观看性生交大片5| 狂野欧美白嫩少妇大欣赏| 免费少妇av软件| 一个人看视频在线观看www免费| 久久久久久九九精品二区国产| 久久久久久伊人网av| 女人十人毛片免费观看3o分钟| 国产精品国产三级国产专区5o| 成人欧美大片| 免费高清在线观看视频在线观看| 18禁在线播放成人免费| 免费看av在线观看网站| 中文资源天堂在线| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 最近2019中文字幕mv第一页| 国产色婷婷99| 久久精品人妻少妇| 99九九线精品视频在线观看视频| 欧美 日韩 精品 国产| 国产午夜精品论理片| 男女边摸边吃奶| 床上黄色一级片| 男人和女人高潮做爰伦理| 丝袜喷水一区| 国产精品一区二区在线观看99 | 午夜爱爱视频在线播放| 亚洲在线自拍视频| 寂寞人妻少妇视频99o| 亚洲自偷自拍三级| 日韩亚洲欧美综合| 免费少妇av软件| 国产一级毛片七仙女欲春2| 一级毛片 在线播放| 精品久久久久久久末码| 十八禁国产超污无遮挡网站| 天天躁夜夜躁狠狠久久av| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 国产伦精品一区二区三区四那| 国产成人精品久久久久久| 美女黄网站色视频| 简卡轻食公司| 尾随美女入室| 日韩伦理黄色片| 一二三四中文在线观看免费高清| 午夜精品国产一区二区电影 | 日本免费在线观看一区| 2018国产大陆天天弄谢| 在线 av 中文字幕| 人人妻人人看人人澡| 中文天堂在线官网| 精品久久国产蜜桃| 久久99热6这里只有精品| 波多野结衣巨乳人妻| 永久免费av网站大全| 五月玫瑰六月丁香| 国产黄色视频一区二区在线观看| 中文资源天堂在线| 自拍偷自拍亚洲精品老妇| or卡值多少钱| 国产精品久久久久久久久免| 亚洲最大成人中文| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 国产在线一区二区三区精| 亚洲av二区三区四区| 草草在线视频免费看| 在线观看免费高清a一片| 欧美日韩亚洲高清精品| .国产精品久久| 久久这里只有精品中国| 亚洲综合精品二区| 国产成人a区在线观看| 精品熟女少妇av免费看| 一级a做视频免费观看| 麻豆成人午夜福利视频| 国产精品99久久久久久久久| 少妇丰满av| 啦啦啦中文免费视频观看日本| 免费看av在线观看网站| www.av在线官网国产| 欧美日韩精品成人综合77777| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 麻豆成人av视频| 美女主播在线视频| 久久久久九九精品影院| 亚洲丝袜综合中文字幕| 亚洲激情五月婷婷啪啪| 国产黄色小视频在线观看| 蜜桃亚洲精品一区二区三区| 黄色一级大片看看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品人妻熟女av久视频| 国产精品人妻久久久久久| 久久久午夜欧美精品| 激情 狠狠 欧美| 99热这里只有是精品在线观看| 91精品一卡2卡3卡4卡| 天天躁夜夜躁狠狠久久av| 综合色av麻豆| 麻豆av噜噜一区二区三区| 国产午夜精品论理片| 精品人妻视频免费看| 女人十人毛片免费观看3o分钟| 免费黄网站久久成人精品| h日本视频在线播放| 亚洲怡红院男人天堂| 18禁裸乳无遮挡免费网站照片| 最近最新中文字幕大全电影3| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 成人二区视频| 国产老妇女一区| 免费不卡的大黄色大毛片视频在线观看 | 少妇熟女aⅴ在线视频| 少妇丰满av| 97热精品久久久久久| 久久久a久久爽久久v久久| 日本-黄色视频高清免费观看| 国产精品三级大全| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 偷拍熟女少妇极品色| 亚洲av电影不卡..在线观看| 成人亚洲欧美一区二区av| 亚州av有码| 精品人妻熟女av久视频| 色综合色国产| 亚洲av福利一区| 成人性生交大片免费视频hd| 中文资源天堂在线| av免费在线看不卡| 青春草国产在线视频| 人妻制服诱惑在线中文字幕| 国产黄a三级三级三级人| 成年免费大片在线观看| 熟女电影av网| 成人漫画全彩无遮挡| 成年av动漫网址| 日本免费在线观看一区| 国产黄色小视频在线观看| av线在线观看网站| av网站免费在线观看视频 | 久久精品熟女亚洲av麻豆精品 | 亚洲精品日本国产第一区| 国产欧美日韩精品一区二区| 97人妻精品一区二区三区麻豆| 精品久久久精品久久久| 亚洲精华国产精华液的使用体验| 国产精品久久久久久精品电影| 成年人午夜在线观看视频 | 777米奇影视久久| 午夜激情欧美在线| 大香蕉久久网| 一边亲一边摸免费视频| 亚洲精品中文字幕在线视频 | 91久久精品国产一区二区三区| 欧美 日韩 精品 国产| 女人久久www免费人成看片| 国产精品一及| 亚洲成人一二三区av| 色网站视频免费| 少妇的逼好多水| 超碰97精品在线观看| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 久久久久久久亚洲中文字幕| 国产一区二区三区av在线| 禁无遮挡网站| 免费大片黄手机在线观看| 国产成年人精品一区二区| 久久精品国产亚洲网站| av福利片在线观看| 综合色丁香网| 精品人妻一区二区三区麻豆| 国产午夜精品久久久久久一区二区三区| 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| av国产免费在线观看| 在现免费观看毛片| 亚洲经典国产精华液单| 我要看日韩黄色一级片| 精品久久久久久久久久久久久| 午夜福利高清视频| 日韩欧美精品免费久久| 成人高潮视频无遮挡免费网站| 爱豆传媒免费全集在线观看| 中文字幕亚洲精品专区| 男人舔奶头视频| 六月丁香七月| 久久久久久久久久成人| 亚洲内射少妇av| 亚洲精品成人av观看孕妇| 亚洲在线观看片| 国产av在哪里看| 美女xxoo啪啪120秒动态图| 国产乱来视频区| 精品国产一区二区三区久久久樱花 | 高清视频免费观看一区二区 | 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 婷婷色av中文字幕| 久久热精品热| 亚洲最大成人手机在线| 国产毛片a区久久久久| 又粗又硬又长又爽又黄的视频| 91精品国产九色| 身体一侧抽搐| 国产精品久久久久久av不卡| 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 麻豆av噜噜一区二区三区| 亚洲第一区二区三区不卡| 成人漫画全彩无遮挡| 亚洲精品一区蜜桃| av播播在线观看一区| 好男人视频免费观看在线| 99久久精品一区二区三区| 欧美bdsm另类| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| 国产精品一区二区三区四区久久| 国产91av在线免费观看| freevideosex欧美| 国内精品宾馆在线| 波野结衣二区三区在线| 青青草视频在线视频观看| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 一级毛片 在线播放| 免费看av在线观看网站| 天天躁夜夜躁狠狠久久av| av卡一久久| 小蜜桃在线观看免费完整版高清| 亚洲精品乱久久久久久| 成年av动漫网址| 久久久久久九九精品二区国产| 色播亚洲综合网| 免费av观看视频| 亚洲国产精品专区欧美| 99久国产av精品| 国产免费一级a男人的天堂| 两个人视频免费观看高清| 成人综合一区亚洲| 久久久久精品久久久久真实原创| 国产视频内射| 国产高潮美女av| 91精品伊人久久大香线蕉| a级一级毛片免费在线观看| 亚洲av男天堂| 亚洲精品国产av蜜桃| 久久久午夜欧美精品| 大香蕉97超碰在线| 精品不卡国产一区二区三区| 免费观看无遮挡的男女| 熟妇人妻久久中文字幕3abv| 日韩强制内射视频| 免费观看精品视频网站| 免费电影在线观看免费观看| 中文字幕免费在线视频6| 久久久午夜欧美精品| 国内精品宾馆在线| 国产有黄有色有爽视频| 久久午夜福利片| 看免费成人av毛片| 欧美一区二区亚洲| 免费看不卡的av| xxx大片免费视频| 高清毛片免费看| 亚洲欧美精品专区久久| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 少妇猛男粗大的猛烈进出视频 | 国产三级在线视频| 国产中年淑女户外野战色| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| www.av在线官网国产| 听说在线观看完整版免费高清| 日韩电影二区| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| 美女主播在线视频| 欧美成人精品欧美一级黄| freevideosex欧美| 青春草国产在线视频| 中文天堂在线官网| 简卡轻食公司| 国内精品美女久久久久久| 18禁在线无遮挡免费观看视频| 久久久久久久久久成人| 青青草视频在线视频观看| 午夜视频国产福利| 麻豆国产97在线/欧美| 国产综合懂色| 免费av毛片视频| 晚上一个人看的免费电影| freevideosex欧美| 国产黄色视频一区二区在线观看| 永久免费av网站大全| 能在线免费看毛片的网站| 久久久久国产网址| 国产黄片视频在线免费观看| 久久久久久久久久成人| 深爱激情五月婷婷| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 国产欧美日韩精品一区二区| 国产 亚洲一区二区三区 | 亚洲一区高清亚洲精品| 只有这里有精品99| 婷婷色av中文字幕| 黄片wwwwww| 久久草成人影院| 亚洲av国产av综合av卡| 亚洲欧美一区二区三区国产| ponron亚洲| 99久国产av精品国产电影| 国产探花极品一区二区| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片| 亚洲内射少妇av| 国产一区有黄有色的免费视频 | 麻豆精品久久久久久蜜桃| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 99久久精品国产国产毛片| 全区人妻精品视频| 春色校园在线视频观看| 寂寞人妻少妇视频99o| 国语对白做爰xxxⅹ性视频网站| 久久久久国产网址| 在线观看免费高清a一片| 国产白丝娇喘喷水9色精品| av在线播放精品| 不卡视频在线观看欧美| 毛片一级片免费看久久久久| 国产男女超爽视频在线观看| 大片免费播放器 马上看| 亚洲在久久综合| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 国产精品精品国产色婷婷| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 国产又色又爽无遮挡免| av一本久久久久| 国产色婷婷99| 国产亚洲午夜精品一区二区久久 | 国产熟女欧美一区二区| 国产在视频线精品| h日本视频在线播放| 免费观看无遮挡的男女| 成年版毛片免费区| 亚洲国产精品成人综合色| 国产精品99久久久久久久久| 一区二区三区四区激情视频| 少妇高潮的动态图| 亚洲婷婷狠狠爱综合网| 国产老妇女一区| 性色avwww在线观看| 九九在线视频观看精品| 男人和女人高潮做爰伦理| av在线蜜桃| 国产片特级美女逼逼视频| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 欧美三级亚洲精品| 成人av在线播放网站| 男女边摸边吃奶| 欧美xxxx性猛交bbbb| 亚洲精品自拍成人| 麻豆av噜噜一区二区三区| 国产三级在线视频| 成人亚洲精品av一区二区| 日本色播在线视频| 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄| 直男gayav资源| 亚洲国产精品专区欧美| 亚洲在线自拍视频| 久久久久久国产a免费观看| 国产在线男女| 狂野欧美激情性xxxx在线观看| 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 国产成人freesex在线| 午夜亚洲福利在线播放| 九草在线视频观看| 男女视频在线观看网站免费| 一个人看的www免费观看视频| 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 午夜老司机福利剧场| 精品国产露脸久久av麻豆 | 免费大片黄手机在线观看| 亚洲欧美日韩卡通动漫| av福利片在线观看| 国产亚洲精品久久久com| 国产免费福利视频在线观看| 水蜜桃什么品种好| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| 国产精品无大码| 观看免费一级毛片| 五月玫瑰六月丁香| 联通29元200g的流量卡| 亚洲国产欧美人成| 国产亚洲精品av在线| 欧美日韩视频高清一区二区三区二| 久久久久免费精品人妻一区二区| 日本免费a在线| 伊人久久精品亚洲午夜| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 能在线免费看毛片的网站| 欧美日韩一区二区视频在线观看视频在线 | 国产精品爽爽va在线观看网站| 国产亚洲精品av在线| 亚洲av一区综合| 白带黄色成豆腐渣| 日韩欧美精品免费久久| av在线蜜桃| 亚洲欧美一区二区三区国产| 国产精品福利在线免费观看| 欧美3d第一页| 久久久久精品久久久久真实原创| 老师上课跳d突然被开到最大视频| 亚洲av免费在线观看| 欧美潮喷喷水| 免费大片18禁| 岛国毛片在线播放| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 水蜜桃什么品种好| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 日韩伦理黄色片| 观看免费一级毛片| 亚洲国产欧美人成| 欧美+日韩+精品| 在线观看免费高清a一片| 免费观看在线日韩| 乱系列少妇在线播放| 亚洲av国产av综合av卡| 欧美成人精品欧美一级黄| 九九久久精品国产亚洲av麻豆| 久久久a久久爽久久v久久| 国产精品日韩av在线免费观看| 国产亚洲精品av在线| 亚洲国产精品成人综合色| 99视频精品全部免费 在线| 国内精品宾馆在线| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 99久久中文字幕三级久久日本| 青春草视频在线免费观看| 深爱激情五月婷婷| 免费无遮挡裸体视频| 一本久久精品| freevideosex欧美| 亚洲精品国产av蜜桃| 我的女老师完整版在线观看| 80岁老熟妇乱子伦牲交| 69av精品久久久久久| 最近中文字幕2019免费版| av女优亚洲男人天堂| 亚洲乱码一区二区免费版| 国产精品久久久久久久久免| 亚洲av男天堂| 国产淫语在线视频| 深爱激情五月婷婷| 九九在线视频观看精品| 韩国av在线不卡| 热99在线观看视频| 欧美一级a爱片免费观看看| 亚洲av电影在线观看一区二区三区 | 一个人看的www免费观看视频| 毛片女人毛片| 日产精品乱码卡一卡2卡三| 蜜桃亚洲精品一区二区三区| 高清日韩中文字幕在线| 成人午夜精彩视频在线观看| av在线播放精品| 日本免费在线观看一区| 最近2019中文字幕mv第一页| 免费观看a级毛片全部| 国产一区有黄有色的免费视频 | 亚洲人成网站高清观看| 搡老乐熟女国产| 大香蕉久久网| 老司机影院成人| 日本与韩国留学比较| 色尼玛亚洲综合影院| 色哟哟·www| 国产毛片a区久久久久| 99久久精品国产国产毛片| 亚洲成人精品中文字幕电影| 中文字幕人妻熟人妻熟丝袜美| 国产精品爽爽va在线观看网站| 亚洲经典国产精华液单| 99热6这里只有精品| 草草在线视频免费看| 天堂av国产一区二区熟女人妻| 欧美激情在线99| 国产女主播在线喷水免费视频网站 | 身体一侧抽搐| 久久草成人影院| 一级片'在线观看视频| 国产毛片a区久久久久| 亚洲成人久久爱视频| 久久精品夜夜夜夜夜久久蜜豆| 国产淫语在线视频| 欧美激情在线99| 一区二区三区高清视频在线| 久久久久久久国产电影| 精品久久国产蜜桃| 网址你懂的国产日韩在线| 久久久久精品性色| 日韩精品有码人妻一区| 日韩欧美一区视频在线观看 | 你懂的网址亚洲精品在线观看| 青春草国产在线视频| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 亚洲精品久久久久久婷婷小说| 久久精品国产鲁丝片午夜精品| 一级毛片 在线播放| 人人妻人人看人人澡| av卡一久久| 国产黄色免费在线视频| 午夜久久久久精精品| 99九九线精品视频在线观看视频| 一级毛片黄色毛片免费观看视频| 久久草成人影院| 高清av免费在线| 成年版毛片免费区| 久久精品国产亚洲网站| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 婷婷色综合www| 亚洲精品日韩av片在线观看| 联通29元200g的流量卡| 亚洲高清免费不卡视频| 日产精品乱码卡一卡2卡三| 国产综合懂色| 综合色丁香网| 国内少妇人妻偷人精品xxx网站| 高清毛片免费看| 噜噜噜噜噜久久久久久91| 全区人妻精品视频| 中文字幕亚洲精品专区| 色综合站精品国产| 国产精品久久久久久久电影| 一级av片app| 亚洲内射少妇av| 久久久久久久久久人人人人人人| 久久人人爽人人片av| 日韩欧美三级三区| 亚洲最大成人中文| 国产中年淑女户外野战色| 国产 亚洲一区二区三区 | 国产精品人妻久久久久久| 2021少妇久久久久久久久久久| 亚洲自拍偷在线| 联通29元200g的流量卡| 六月丁香七月| 日本与韩国留学比较| 欧美97在线视频| 亚洲国产精品成人综合色| 亚洲精品,欧美精品| 天堂网av新在线|