• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers

    2023-12-15 11:51:24WenHuiLiang梁文會JianSu蘇鑒YuTongWang王雨桐YingZhang張穎FengXiaHu胡鳳霞andJianWangCai蔡建
    Chinese Physics B 2023年12期
    關(guān)鍵詞:張穎

    Wen-Hui Liang(梁文會), Jian Su(蘇鑒), Yu-Tong Wang(王雨桐), Ying Zhang(張穎),Feng-Xia Hu(胡鳳霞),4,5,?, and Jian-Wang Cai(蔡建 旺),4,§

    1Department of Physics,State Key Laboratory of Low-Dimensional Quantum Physics,Tsinghua University,Beijing 100084,China

    2Frontier Science Center for Quantum Information,Tsinghua University,Beijing 100084,China

    3Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism,Institute of Physics,

    Chinese Academy of Sciences,Beijing 100190,China

    4School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    5Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: magnetic skyrmion, MgO/FeNiB/Mo multilayers, electromagnetic coordinated manipulation,Lorentz transmission electron microscopy(LTEM)

    1.Introduction

    In recent years, with the rapid development of emerging fields such as big data, artificial intelligence, and the Internet of Things, people have put forward higher and higher requirements for information storage technology.Researching new types of random access memory with high density, high speed, non-volatile, and low energy consumption is currently the most urgent and challenging task.In magnetic materials with broken structure-inversion symmetry,there will be magnetic skyrmions with several compelling attributes as prototype memory elements,namely their:nontrivial spin topology,small size and solitonic nature.[1]These characteristics make it possible to meet the above requirements and break through challenges such as Moore’s law and superparamagnetic limit,and have great potential in future applications of electronic devices such as storage and logic.[2]

    In order to realize the practical application of memory devices by using magnetic skyrmions, the key is to obtain magnetic skyrmions which are stable at room temperature and easy to be regulated.It is generally believed that skyrmions exist in non-centrosymmetric systems with chiral interactions[3-6]or multilayer film systems with interface symmetry breaking.[7-10]Among them, the magnetic skyrmions observed in the latter has many advantages, such as its stable existence near room temperature, easy adjustment of experimental parameters,good compatibility with devices, and the ability to achieve current regulation behavior,which makes it beneficial for practical applications.[1,11-17]People have conducted extensive researches in this area and found that stable skyrmion phase can be created by engineering the interfacial perpendicular magnetic anisotropy(PMA) of the multilayer film systems.[9,10,18]Our recent study shows that MgO/FeNiB/Mo-based heterostructures exhibit large PMA, which can be regulated by the thickness of the FeNiB layer.[19]This indicates that it is possible to find skyrmion in MgO/FeNiB/Mo system,which will undoubtedly add bricks to the skyrmion family.

    In this work,a series of MgO/FeNiB/Mo multilayer structures were prepared by magnetron sputtering.When the thickness of FeNiB layer is 1.5 nm, PMA of the structure is moderate, and skyrmions can be observed under the effect of an external magnetic field.The creation of skyrmion in the structure was studied by Lorentz transmission electron microscope(L-TEM), and it was manipulated by adjusting the applied magnetic field and electric field.The discovery of this material broadens the exploration of new materials for skyrmion and promotes the development of spintronic devices based on skyrmion.

    2.Experimental methods

    The multilayer structures of substrate/MgO(2.5)/[MgO(2.5)/FeNiB(tFeNiB)/Mo(3.0)]×7/Mo(5.0) (where “×7” denotes the layer repetition numbers, thickness in nm and FeNiB-layer thicknesstFeNiBvarying from 1.4 nm to 1.7 nm)were fabricated using magnetron sputtering with a background pressure of~4×10-8Torr (1 Torr=1.33322×102Pa).The structure is schematically shown in Fig.1(a).The FeNiB films were sputtered from the composite target by symmetrically placing boron patches on Fe85Ni15alloy targets.The film compositions are Fe68Ni14B18in atomic percent, determined by coupled plasmas atomic emission spectrometry(ICP-AES).The MgO layer were deposited by radio frequency sputtering,where the Mo layer was deposited by direct current magnetron sputtering.A 5-nm Mo cap was deposited to prevent the oxidation of the stack.The deposition pressure was kept at 3.5 mTorr for all the layers.Films were deposited on two types of substrates: 10-nm-thick Si3N4membrane windows(for direct TEM observation)and simultaneously on thermally oxidized Si wafers with standard Hall bar shape(for magnetic measurements).Each Hall bar includes a 4.8 mm×0.5 mm channel and a perpendicularly placed 1.5 mm×0.3 mm channel.All the films were annealed at 400?C for 30 min in a high vacuum furnace (3×10-7Torr) without external magnetic field to enhance their PMA.The magnetic structures were observed by Lorentz transmission electron microscope(L-TEM: JEOL 2100F) with perpendicular magnetic field,which was introduced by increasing the objective lens current.The skyrmion manipulation behavior by electric current was conducted using a double-tilt electrical TEM holder with two electrical conducting blocks at two sides of the film.A current pulse with 150-μs pulse width was supplied by a sourcemeasure unit instrument (Keithley 6221).The magnetic hysteresis(M-H)loops of the same Hall bar were measured using vibrating sample magnetometry(VSM).All the measurements were done at room temperature.

    3.Results and discussion

    In multilayer structures with PMA, N′eel-type magnetic skyrmion is mainly involved due to the competition of the exchange interaction, the dipolar interaction, the Dzyaloshinskii-Moriya interaction (DMI) and the anisotropy.[12,20-23]There is experimental evidence that medium strength PMA is more likely to produce magnetic skyrmion than strong PMA.[11]For the convenience of discussion, the quality factorQ(Q=Ku/Kd) is used to identify different magnetic anisotropy,[9,24]whereKuis the dipole demagnetization energy, also known as the uniaxial anisotropy constant, andKd(Kd=2πM2s,Msis the saturation magnetization)is the shape anisotropy constant.Therefore,materials withQ>1 andQ<1 correspond to PMA and IMA,respectively.In this work, we will pay comprehensive attention to the magnetic anisotropy of MgO/FeNiB/Mo system and its relationship with skyrmion.

    Fig.1.The hysteresis loops and magnetic domain of the stacks of MgO(3)/FeNiB(t)/Mo(3) in different thicknesses of FeNiB.(a) Schematic multilayers made of seven repetitions of MgO/FeNiB/Mo trilayer.(b)-(c) The normalized out-of-plane and in-plane hysteresis loops of the stacks of MgO(3)/FeNiB(t)/Mo(3).(d)-(f) The magnetic domain of the samples while FeNiB thickness was 1.4 nm, 1.5 nm, and 1.7 nm, where the external magnetic field was absent.The scale bar is 2μm.

    By changing the thickness of FeNiB layer, PMA can be controlled in multilayer films.The normalized out-of-plane and in-plane hysteresis loops together with the corresponding magnetic domain morphology of the multilayers at room temperature are shown in Fig.1.As shown in Figs.1(b) and 1(c),as the thickness of FeNiB layer increases,the easy magnetization axis of the sample gradually rotates from out-ofplane to in-plane.For multilayers with thinner FeNiB layer thicknesstFeNiB=1.4 nm, significant PMA is observed from the magnetic hysteresis loops,with an effective perpendicular anisotropy field of about 4000 Oe (1 Oe=79.5775 A·m-1),and the quality factorQ> 1.WhentFeNiBincreases from 1.4 nm to 1.5 nm, the perpendicular magnetic anisotropy energy decreases from 1.14×105J/m3to-4×104J/m3,and the corresponding quality factorQ ≈1.The saturated magnetization of FeNiB is around 1.16×106A/m for all the samples,which was measured by VSM.AstFeNiBcontinues to increase,the value of quality factor becomes less than 1.

    Besides, in the absence of external magnetic field, the magnetic domain structure of the multilayer films grown on the Si3N4membrane windows was observed by L-TEM[Figs.1(d)-1(f)].The sample behaves like a labyrinth domain whentFeNiB=1.4 nm [Fig.1(d)].WhentFeNiBincreases to 1.5 nm,it appears as a stripe domain and its density is smaller than that of 1.4 nm[Fig.1(e)].WhentFeNiB=1.7 nm,most of the magnetic domains are in-plane domains[Fig.1(f)].Then,a perpendicular magnetic field was appliedin situby L-TEM to observe the relationship between the domain structure and the external magnetic field.It is found that skyrmion can be observed in the stripe domain samples oftFeNiB=1.5 nm under suitable external magnetic field.However, no matter how the external magnetic field is changed, skyrmion is unlikely to be observed in other samples (tFeNiB=1.4 nm andtFeNiB=1.7 nm).Therefore,the sample withtFeNiB=1.5 nm was mainly studied.

    Figure 2 depicts the magnetic domain patterns of MgO(2.5)/[MgO(2.5)/FeNiB(1.5)/Mo(3.0)]×7/Mo(5.0)multilayer films under different perpendicular external magnetic fields.The images of magnetic domain patterns were obtained using L-TEM.In the absence of an external magnetic field,the stripe domain alongzdirection is very stable[Fig.2(a)].With the application of perpendicular magnetic field,the density of stripe domain decreases [Fig.2(b)].When the perpendicular magnetic field increases to around 550 Oe,the stripe domains disappear and skyrmion with a size of about 200 nm is created [Fig.2(c)].When the perpendicular magnetic field continues to increase,the density of skyrmion decreases gradually(660 Oe)[Fig.2(d)], and finally drops to 0, showing a single domain state(720 Oe)[Fig.2(e)].Subsequently,with the decrease of the perpendicular magnetic field(650 Oe),skyrmion reappears [Fig.2(f)].When the perpendicular magnetic field reduces to around 580 Oe,the density of skyrmion reaches the highest again[Fig.2(g)].As the perpendicular magnetic field continues to decrease,the skyrmion disappears gradually(390 Oe)[Fig.2(h)]and the initial stripe domain reappears(0 Oe)[Fig.2(i)].Obviously, skyrmions in multilayer films can be reversibly created through the reciprocating changes of the external perpendicular magnetic field.

    Fig.2.Magnetic domain evolution of MgO(2.5)/[MgO(2.5)/FeNiB(1.5)/Mo(3.0)]×7/Mo(5.0)multilayer films under different perpendicular magnetic fields.0 Oe(a),450 Oe(b),650 Oe(c),660 Oe(d),720 Oe(e),650 Oe(f),580 Oe(g),390 Oe(h),and 0 Oe(i).The scale bar is 2μm.

    So far,it is certain that high-density skyrmion can be obtained in MgO/FeNiB/Mo multilayer structures.However, in practical applications,the manipulation of skyrmion is a necessary condition for achieving its practical use.As we all know, the application of magnetic field in information storage devices is a serious obstacle to the development of highdensity and low-energy devices, and the realization of electrical control of skyrmion is the most critical step in the future application of skyrmion.Therefore, in this work, the effect of electric current on skyrmion is further studied.And the schematic geometry of the electric current application is shown in Fig.3(a).

    Firstly, the electric current is applied to the sample in the absence of magnetic field, and it was found that even if a large current was applied, the creation and manipulation of skyrmion cannot be achieved while ensuring the integrity of the device.Therefore, for MgO(2.5)/[MgO(2.5)/FeNiB(1.5)/Mo(3.0)]×7/Mo(5.0)multilayer films, in order to achieve electrical control, the application of a certain size of perpendicular magnetic field is necessary.When a perpendicular magnetic field of 450 Oe is applied, the magnetic domain structure of the sample remains striped [Fig.3(b)].When a current of 1.35×108A/m2is applied to the sample,the stripe domains pinch off into slyrmions and generate the mixed skyrmion and stripe phase[Fig.3(c)].This is probably due to the introduction of current in the device.On the one hand,torque will be generated due to the spin Hall effect after the introduction of current in heavy metals,which will further affect the magnetic domain structure of the sample.[10,16]The inevitable defects in polycrystalline multilayer films help to pin the main body of the stripe domains,while the current applies spin Hall torque at the head and tail of the stripe domains.[10]On the other hand, the Joule thermal effect will be introduced to increase the temperature of the sample,which will reduce the magnetic anisotropy to a certain extent.As the current continues to increase, the number of skyrmion further increases, and the stripe domains gradually disappear[Figs.3(d)-3(e)].The skyrmion density is remarkably enhanced by this electromagnetic control compared with the skyrmions induced only by the magnetic field as shown in Fig.2(c).It is worth mentioning that the current density to produce the high-density skyrmons are quite smaller than those in other multilayers.[10,25]However,when the current increases to 1.77×108A/m2,the skyrmion density will actually decrease[Fig.3(f)].The reason may be that the heat generated by the high current prevents skyrmion from being stable,while this does not cause damage to the device.When the current is reduced to 0, the initial stripe domains reappear [Fig.3(g)].Therefore,it can be concluded that the magnetic properties of MgO(2.5)/[MgO(2.5)/FeNiB(1.5)/Mo(3.0)]×7/Mo(5.0)multilayer films are highly tolerant to electric current.Meanwhile,the associated domain structures,including skyrmion,are not sensitive to current processes.

    Fig.3.The electric current manipulations of the MgO(2.5)/[MgO(2.5)/FeNiB(1.5)/Mo(3.0)]×7/Mo(5.0)multilayer films via applying a fixed magnetic field(450 Oe)at different currents.(a)The schematic geometry of the electric current application for 0(b),1.35(c),1.56(d),1.70(e),1.77(f),and 0(g)(in units of 108 A/m2).The scale bar is 2μm.

    Subsequently, the electric current dependence of the skyrmion distribution under different fixed magnetic fields is systematically analyzed by Lorentz TEM to better understand the electromagnetic manipulation.In the case of a given current (0.64×108A/m2), the external perpendicular magnetic field is changed to observe the changes in magnetic domains in the sample,as shown in Fig.4.In the absence of an external magnetic field,there are only stripe domains under the action of a simple current[Fig.4(a)].When the external perpendicular magnetic field increased to 450 Oe [the amplitude of the magnetic field is consistent with Fig.2(b)],the number of stripe domains decreases and some skyrmions begin to occur.When the perpendicular magnetic field increases to around 550 Oe,the skyrmion density reaches the maximum,which is consistent with the situation where only the external magnetic field is applied without adding current.The magnetic field to form complete skyrmions is significantly reduced at a fixed current dentsity[Figs.4(c)and 2(c)].However,when the perpendicular magnetic field continues to increase(650 Oe), the skyrmion completely disappears [Fig.4(d)].This is different from the previous case of simply applying an external magnetic field (the skyrmion will not completely disappear until the external magnetic field increases to 720 Oe).The possible reason is that the application of the electric current changes the perpendicular anisotropy of the multilayer films,which in turn reduces the size of the external field that enables the steady state formation of the skyrmion in the sample.Subsequently,with the decrease of the perpendicular magnetic field(520 Oe),the high-density skyrmion reappears[Fig.4(e)].When the external magnetic field is removed,the magnetic domain returns to the original stripe domain,which once again shows that the above process is stable and repeatable.

    4.Conclusion and perspectives

    In conclusion, in MgO(2.5)/[MgO(2.5)/FeNiB(tFeNiB)/Mo(3.0)]×7/Mo(5.0) multilayer structures, after hightemperature vacuum annealing at 400?C, the effective perpendicular anisotropy of the sample approaches zero when FeNiB thickness is about 1.5 nm.By adjusting the amplitude of the external perpendicular magnetic field,high-density skyrmions can be created, and when the external magnetic field is removed,it can return to the initial steady state,which proves that the regulation is reversible.Besides, it is found that the electric current can effectively reduce the magnetic field required for skyrmion formation in the system to some extent.The above results show that MgO/FeNiB/Mo-based heterostructures may provide a new material system for novel skyrmion-based spintronic devices.

    Acknowledgements

    Project supported by the National Basic Research Program of China (Grant No.2015CB921403), the National Key Research and Development Program of China (Grant No.2016YFA0300804), and the National Natural Science Foundation of China (Grant Nos.51871236, 11874408,51431009, 92263202, and 51971240), the Science Center of the National Science Foundation of China (Grant No.52088101), and the Strategic Priority Research Program(B,Grant No.XDB33030200)of the Chinese Academy of Sciences(CAS).

    猜你喜歡
    張穎
    張穎
    大江南北(2023年2期)2023-02-11 05:45:56
    張穎
    大江南北(2022年11期)2022-11-08 12:04:18
    張穎
    大江南北(2022年3期)2022-03-12 01:19:16
    因式分解的常見應(yīng)用
    春天醒了
    北方音樂(2019年13期)2019-08-21 02:14:32
    Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit?
    意義的獵手
    對談美食與遠(yuǎn)方(下)
    餐飲世界(2017年8期)2017-09-11 14:35:49
    On the Notion of Equivalence in Translation
    分居期間租房費(fèi)用可否按共同消費(fèi)處理
    伴侶(2015年9期)2015-09-09 03:28:18
    色在线成人网| 香蕉丝袜av| 国产欧美日韩一区二区精品| 国内精品久久久久精免费| 亚洲色图av天堂| 人人妻,人人澡人人爽秒播| 在线免费观看的www视频| 免费搜索国产男女视频| 首页视频小说图片口味搜索| 欧美 亚洲 国产 日韩一| 日韩欧美国产一区二区入口| av在线天堂中文字幕| 在线观看日韩欧美| 成人精品一区二区免费| 一进一出抽搐gif免费好疼| av欧美777| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩一区二区精品| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 亚洲成人国产一区在线观看| 久久久久九九精品影院| 久久精品国产99精品国产亚洲性色| 精品高清国产在线一区| 97碰自拍视频| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 最近在线观看免费完整版| 黄色丝袜av网址大全| 国产精品国产高清国产av| 波多野结衣av一区二区av| 国产精品自产拍在线观看55亚洲| 可以在线观看的亚洲视频| 欧美一级a爱片免费观看看 | 国产av不卡久久| 禁无遮挡网站| 国产精品电影一区二区三区| 亚洲成人久久性| 日本精品一区二区三区蜜桃| 黄片大片在线免费观看| 91老司机精品| 18禁观看日本| 叶爱在线成人免费视频播放| 国产视频内射| 欧美国产精品va在线观看不卡| 亚洲自拍偷在线| 天天添夜夜摸| 精品欧美一区二区三区在线| 午夜激情av网站| 日本 av在线| 色播亚洲综合网| 午夜福利成人在线免费观看| 岛国在线观看网站| 在线永久观看黄色视频| 久久午夜亚洲精品久久| 看片在线看免费视频| 久久久久久九九精品二区国产 | 中文字幕人妻熟女乱码| 在线观看舔阴道视频| 亚洲精品在线观看二区| 两个人视频免费观看高清| 婷婷丁香在线五月| 亚洲精品av麻豆狂野| 白带黄色成豆腐渣| 白带黄色成豆腐渣| 身体一侧抽搐| 亚洲自拍偷在线| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产欧美网| 少妇熟女aⅴ在线视频| 婷婷精品国产亚洲av| 国产99白浆流出| 99国产极品粉嫩在线观看| 免费电影在线观看免费观看| 制服诱惑二区| 久久热在线av| 亚洲午夜精品一区,二区,三区| √禁漫天堂资源中文www| 国产av一区在线观看免费| 精品日产1卡2卡| 欧美中文日本在线观看视频| 很黄的视频免费| 一卡2卡三卡四卡精品乱码亚洲| 精品国产国语对白av| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 精品免费久久久久久久清纯| 亚洲一卡2卡3卡4卡5卡精品中文| 国内精品久久久久久久电影| 法律面前人人平等表现在哪些方面| 欧美久久黑人一区二区| 国产成+人综合+亚洲专区| 亚洲av五月六月丁香网| 每晚都被弄得嗷嗷叫到高潮| 久久久国产欧美日韩av| 1024香蕉在线观看| 在线天堂中文资源库| 搡老妇女老女人老熟妇| 亚洲色图 男人天堂 中文字幕| e午夜精品久久久久久久| 国产av一区在线观看免费| 色播在线永久视频| 精品少妇一区二区三区视频日本电影| 黄色 视频免费看| 日韩 欧美 亚洲 中文字幕| 国产精品爽爽va在线观看网站 | 超碰成人久久| 国产91精品成人一区二区三区| 两性夫妻黄色片| 亚洲av中文字字幕乱码综合 | 国产成人啪精品午夜网站| 国产精品国产高清国产av| 无遮挡黄片免费观看| 最好的美女福利视频网| 成人国产综合亚洲| 国产成人系列免费观看| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类 | 日韩免费av在线播放| 国产三级黄色录像| 在线观看免费午夜福利视频| 成人一区二区视频在线观看| ponron亚洲| 长腿黑丝高跟| 欧美乱妇无乱码| 黄色丝袜av网址大全| 国产亚洲精品久久久久久毛片| 中文字幕人成人乱码亚洲影| 男女之事视频高清在线观看| 久久久精品国产亚洲av高清涩受| 精品一区二区三区av网在线观看| 又紧又爽又黄一区二区| 午夜福利一区二区在线看| 精品免费久久久久久久清纯| 亚洲avbb在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 50天的宝宝边吃奶边哭怎么回事| av免费在线观看网站| 在线视频色国产色| 精品国产乱码久久久久久男人| 两人在一起打扑克的视频| 久久 成人 亚洲| 动漫黄色视频在线观看| 自线自在国产av| 久久久久久久久久黄片| av超薄肉色丝袜交足视频| 中文字幕人妻熟女乱码| 啦啦啦观看免费观看视频高清| 亚洲五月色婷婷综合| 美女大奶头视频| 亚洲av熟女| 一本一本综合久久| 久久热在线av| 老汉色∧v一级毛片| 哪里可以看免费的av片| 久久午夜亚洲精品久久| 91老司机精品| 色婷婷久久久亚洲欧美| 欧美一区二区精品小视频在线| 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 亚洲成国产人片在线观看| 精品卡一卡二卡四卡免费| 大型黄色视频在线免费观看| 啦啦啦 在线观看视频| 好男人在线观看高清免费视频 | 午夜福利一区二区在线看| 母亲3免费完整高清在线观看| 欧美成人免费av一区二区三区| 色播在线永久视频| 自线自在国产av| 亚洲男人天堂网一区| 满18在线观看网站| 久久草成人影院| 亚洲av片天天在线观看| 国产一区二区三区视频了| 欧美激情 高清一区二区三区| 免费搜索国产男女视频| 国产成人啪精品午夜网站| 国产乱人伦免费视频| 日本 av在线| 自线自在国产av| 男女床上黄色一级片免费看| 老鸭窝网址在线观看| 黄频高清免费视频| 日日干狠狠操夜夜爽| 免费看美女性在线毛片视频| 一本一本综合久久| 一级毛片女人18水好多| 成人特级黄色片久久久久久久| 欧美黑人欧美精品刺激| 欧美日韩一级在线毛片| 国产av又大| 午夜日韩欧美国产| 精品人妻1区二区| 最近最新中文字幕大全免费视频| 久久人妻av系列| 亚洲中文字幕一区二区三区有码在线看 | 最近最新中文字幕大全免费视频| 日韩欧美在线二视频| 国产99白浆流出| 天天添夜夜摸| 成人18禁在线播放| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| bbb黄色大片| 欧美性长视频在线观看| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 国产精品永久免费网站| 国产精品亚洲一级av第二区| 久久中文看片网| 国产精品久久视频播放| 国产人伦9x9x在线观看| 国产99白浆流出| 国内精品久久久久精免费| 成年版毛片免费区| 国产欧美日韩一区二区三| 视频在线观看一区二区三区| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 免费av毛片视频| 一本一本综合久久| 黑人操中国人逼视频| 精品久久久久久,| 69av精品久久久久久| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲一区高清亚洲精品| 欧美国产精品va在线观看不卡| 黄色视频,在线免费观看| 18禁裸乳无遮挡免费网站照片 | 日韩中文字幕欧美一区二区| 久久精品人妻少妇| 亚洲精品中文字幕一二三四区| 国产精品美女特级片免费视频播放器 | 亚洲国产看品久久| 99久久无色码亚洲精品果冻| 级片在线观看| 精品国产超薄肉色丝袜足j| 哪里可以看免费的av片| www国产在线视频色| 成年版毛片免费区| 免费av毛片视频| 视频在线观看一区二区三区| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 日韩欧美国产一区二区入口| 88av欧美| 欧美黑人巨大hd| 97超级碰碰碰精品色视频在线观看| 午夜免费鲁丝| 精品一区二区三区视频在线观看免费| 久久精品影院6| 亚洲免费av在线视频| 亚洲av五月六月丁香网| 日本 av在线| 久久精品91无色码中文字幕| 热99re8久久精品国产| 中文字幕高清在线视频| 少妇粗大呻吟视频| 久久久久久国产a免费观看| 美女 人体艺术 gogo| 看免费av毛片| 男人舔女人的私密视频| 女性生殖器流出的白浆| 久久久久久亚洲精品国产蜜桃av| 欧美日本视频| 在线视频色国产色| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 国产精品国产高清国产av| 国产av一区二区精品久久| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 在线国产一区二区在线| 国产又爽黄色视频| 这个男人来自地球电影免费观看| 最近最新中文字幕大全电影3 | 巨乳人妻的诱惑在线观看| 91av网站免费观看| 国产亚洲欧美98| 国产精品一区二区精品视频观看| 久久99热这里只有精品18| 亚洲黑人精品在线| 成人18禁在线播放| 亚洲国产高清在线一区二区三 | 精品久久久久久久末码| 亚洲欧洲精品一区二区精品久久久| 丝袜在线中文字幕| 久久久久久大精品| 可以免费在线观看a视频的电影网站| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 一区二区三区精品91| 波多野结衣巨乳人妻| 侵犯人妻中文字幕一二三四区| 国产高清激情床上av| 老司机午夜十八禁免费视频| 久久欧美精品欧美久久欧美| 久久这里只有精品19| 悠悠久久av| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 欧美黑人巨大hd| 在线十欧美十亚洲十日本专区| 久久久精品欧美日韩精品| 日日夜夜操网爽| 亚洲第一青青草原| 国产精品一区二区免费欧美| 免费电影在线观看免费观看| 久久国产精品人妻蜜桃| 亚洲成人国产一区在线观看| 最近最新中文字幕大全电影3 | 狂野欧美激情性xxxx| 午夜免费成人在线视频| 精品一区二区三区四区五区乱码| 夜夜看夜夜爽夜夜摸| 欧美日韩亚洲综合一区二区三区_| 校园春色视频在线观看| 91字幕亚洲| 1024手机看黄色片| 老汉色∧v一级毛片| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| a在线观看视频网站| 亚洲av五月六月丁香网| 一个人观看的视频www高清免费观看 | a级毛片在线看网站| 99国产精品一区二区三区| 国产精品爽爽va在线观看网站 | 黄片小视频在线播放| www.熟女人妻精品国产| 国产私拍福利视频在线观看| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| www国产在线视频色| 午夜影院日韩av| x7x7x7水蜜桃| av天堂在线播放| 美女 人体艺术 gogo| 天天躁夜夜躁狠狠躁躁| 国内精品久久久久久久电影| 亚洲美女黄片视频| 欧美丝袜亚洲另类 | 亚洲精品国产区一区二| 麻豆国产av国片精品| 国产一级毛片七仙女欲春2 | 丁香欧美五月| 99热这里只有精品一区 | 国产精品99久久99久久久不卡| 大型av网站在线播放| 岛国在线观看网站| 欧美黑人巨大hd| 国产乱人伦免费视频| 亚洲国产精品成人综合色| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 色婷婷久久久亚洲欧美| 日本 欧美在线| 国产精品98久久久久久宅男小说| 麻豆av在线久日| 婷婷精品国产亚洲av| 精品久久久久久久末码| 久久精品91蜜桃| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 国产成人影院久久av| 国产精品亚洲一级av第二区| 香蕉国产在线看| 女同久久另类99精品国产91| 午夜精品在线福利| 91字幕亚洲| 久久这里只有精品19| 婷婷精品国产亚洲av在线| e午夜精品久久久久久久| 国产亚洲精品第一综合不卡| 欧美一级毛片孕妇| 最好的美女福利视频网| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 黄色视频不卡| 91麻豆av在线| 美国免费a级毛片| 99在线人妻在线中文字幕| 欧美中文综合在线视频| 村上凉子中文字幕在线| 制服诱惑二区| 麻豆成人av在线观看| 日本a在线网址| 亚洲av片天天在线观看| 亚洲第一青青草原| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 午夜福利视频1000在线观看| 婷婷亚洲欧美| 精品免费久久久久久久清纯| 99久久99久久久精品蜜桃| 亚洲av成人av| 黄色丝袜av网址大全| 亚洲国产毛片av蜜桃av| 最近在线观看免费完整版| 亚洲五月色婷婷综合| av视频在线观看入口| 日日爽夜夜爽网站| 国产不卡一卡二| 人人妻人人澡人人看| 国产精品99久久99久久久不卡| 黄色视频,在线免费观看| 日本在线视频免费播放| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 久久久久久九九精品二区国产 | 女警被强在线播放| 国产午夜福利久久久久久| 亚洲黑人精品在线| 在线国产一区二区在线| 免费在线观看完整版高清| 丰满人妻熟妇乱又伦精品不卡| av在线播放免费不卡| 国产97色在线日韩免费| 欧美一区二区精品小视频在线| 亚洲精品中文字幕一二三四区| 可以在线观看毛片的网站| 成人三级黄色视频| av福利片在线| 在线十欧美十亚洲十日本专区| 日韩欧美免费精品| 我的亚洲天堂| 久久99热这里只有精品18| 亚洲成国产人片在线观看| 日韩精品青青久久久久久| 99热6这里只有精品| 亚洲国产精品999在线| 欧美日韩亚洲国产一区二区在线观看| 欧美午夜高清在线| 久久 成人 亚洲| 国内毛片毛片毛片毛片毛片| 国产精品1区2区在线观看.| 一本久久中文字幕| 日本免费一区二区三区高清不卡| 少妇的丰满在线观看| 国产av一区二区精品久久| 国产成人av激情在线播放| 女生性感内裤真人,穿戴方法视频| 亚洲,欧美精品.| 亚洲精华国产精华精| 女性被躁到高潮视频| 性色av乱码一区二区三区2| 国产成+人综合+亚洲专区| 国产精品爽爽va在线观看网站 | 色哟哟哟哟哟哟| www.www免费av| 少妇 在线观看| 欧美成人性av电影在线观看| 黄色女人牲交| 十分钟在线观看高清视频www| 日本免费一区二区三区高清不卡| 男人操女人黄网站| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 免费一级毛片在线播放高清视频| 亚洲av美国av| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 日本撒尿小便嘘嘘汇集6| 少妇粗大呻吟视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产超薄肉色丝袜足j| 两性夫妻黄色片| 亚洲熟女毛片儿| 久久久久国内视频| 一级黄色大片毛片| 夜夜爽天天搞| 欧美绝顶高潮抽搐喷水| 亚洲精品国产精品久久久不卡| 国产人伦9x9x在线观看| 亚洲片人在线观看| 很黄的视频免费| 国产免费男女视频| 欧美黄色片欧美黄色片| 国产区一区二久久| 精品少妇一区二区三区视频日本电影| 国产精品精品国产色婷婷| 男女那种视频在线观看| 久热这里只有精品99| 精品欧美一区二区三区在线| 国产av在哪里看| 十分钟在线观看高清视频www| 人人妻人人澡欧美一区二区| 在线观看免费午夜福利视频| 国产视频一区二区在线看| 99久久无色码亚洲精品果冻| 亚洲专区字幕在线| 亚洲无线在线观看| 两个人看的免费小视频| 午夜福利欧美成人| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 99riav亚洲国产免费| 激情在线观看视频在线高清| 亚洲成av片中文字幕在线观看| 久久精品国产99精品国产亚洲性色| 黄色 视频免费看| 欧美乱妇无乱码| 麻豆成人av在线观看| 啪啪无遮挡十八禁网站| 在线十欧美十亚洲十日本专区| 精品久久久久久久毛片微露脸| 看片在线看免费视频| 1024香蕉在线观看| 国产区一区二久久| 国产成人欧美| 久久精品成人免费网站| 亚洲va日本ⅴa欧美va伊人久久| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 午夜福利在线在线| 亚洲人成电影免费在线| 每晚都被弄得嗷嗷叫到高潮| 麻豆成人午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 丝袜在线中文字幕| 久久精品成人免费网站| 久久国产精品影院| 最近最新免费中文字幕在线| 一级黄色大片毛片| 久久性视频一级片| 亚洲av五月六月丁香网| 免费观看人在逋| 亚洲国产日韩欧美精品在线观看 | 国内揄拍国产精品人妻在线 | 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 久久国产亚洲av麻豆专区| 国产精品日韩av在线免费观看| 99国产精品99久久久久| 久久香蕉精品热| 男女视频在线观看网站免费 | 国产精品免费视频内射| 色播亚洲综合网| 欧美激情久久久久久爽电影| 亚洲美女黄片视频| 九色国产91popny在线| 制服丝袜大香蕉在线| 在线观看www视频免费| www国产在线视频色| 亚洲av成人av| 亚洲av五月六月丁香网| 国产成人一区二区三区免费视频网站| 国产精品久久久人人做人人爽| 在线国产一区二区在线| 俺也久久电影网| 波多野结衣av一区二区av| 精品国产乱子伦一区二区三区| 国产高清有码在线观看视频 | 成人av一区二区三区在线看| 黄色片一级片一级黄色片| av中文乱码字幕在线| 国产精品亚洲av一区麻豆| 美女免费视频网站| 国产精品久久电影中文字幕| 午夜福利一区二区在线看| 久久久久久久久免费视频了| 亚洲中文av在线| 韩国av一区二区三区四区| 国产成人精品无人区| 一边摸一边做爽爽视频免费| 久久香蕉激情| 久久国产精品男人的天堂亚洲| 日日摸夜夜添夜夜添小说| 99久久无色码亚洲精品果冻| 午夜免费成人在线视频| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 国产精品久久久久久亚洲av鲁大| 精品第一国产精品| 亚洲av熟女| 此物有八面人人有两片| 欧美久久黑人一区二区| 99国产精品一区二区蜜桃av| 好男人电影高清在线观看| 欧美大码av| 欧美成人性av电影在线观看| www.自偷自拍.com| 男女那种视频在线观看| 人成视频在线观看免费观看| 精品人妻1区二区| 午夜免费鲁丝| a级毛片在线看网站| 亚洲美女黄片视频| 成人欧美大片| 国产成人影院久久av| 精华霜和精华液先用哪个| 成人精品一区二区免费| 91国产中文字幕| 一区福利在线观看| 香蕉久久夜色| 在线观看日韩欧美| 国产91精品成人一区二区三区| 少妇熟女aⅴ在线视频| 无人区码免费观看不卡| 国产精品,欧美在线| 亚洲国产精品合色在线| 精品无人区乱码1区二区| 亚洲国产欧洲综合997久久, | 别揉我奶头~嗯~啊~动态视频| 国产主播在线观看一区二区|