• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of irradiation on superconducting properties of small-grained MgB2 thin films

    2023-12-15 11:48:14LiLiu劉麗JungMinLeeYoonseokHanJaeguSongChorongKimJaekwonSukWonNamKangJieLiu劉杰SoonGilJungandTusonPark1
    Chinese Physics B 2023年12期
    關鍵詞:劉麗劉杰

    Li Liu(劉麗), Jung Min Lee, Yoonseok Han, Jaegu Song, Chorong Kim,Jaekwon Suk, Won Nam Kang,?, Jie Liu(劉杰), Soon-Gil Jung, and Tuson Park1,,?

    1Center for Quantum Materials and Superconductivity(CQMS),Sungkyunkwan University,Suwon 16419,Republic of Korea

    2Department of Physics,Sungkyunkwan University,Suwon 16419,Republic of Korea

    3Institute of Modern Physics,Chinese Academy of Sciences(CAS),Lanzhou 730000,China

    4School of Nuclear Science and Technology,University of Chinese Academy of Sciences(UCAS),Beijing 100049,China

    5Korea Multi-purpose Accelerator Complex,Korea Atomic Energy Research Institute,Gyeongju,Gyeongbuk 38180,Republic of Korea

    6Department of Physics Education,Sunchon National University,Suncheon 57922,Republic of Korea

    Keywords: MgB2 films,grain boundaries,flux pinning,low-energy ion irradiation

    1.Introduction

    MgB2has tremendous potential for practical applications owing to its excellent superconducting properties.For instance,the superconducting critical temperature(Tc)of MgB2is approximately 40 K, which makes it a promising material for use in liquid-helium-free apparatus.[1]Its high upper critical field(Hc2)makes MgB2a suitable alternative for commercial superconductors in high-field magnet applications.[2-4]Moreover, from the aspect of radioactivity, MgB2is one of the promising materials in neutron irradiation environment,such as fusion reactor,because of its shorter half-life of the induced activity than Nb-based superconducting alloys.[5]Grain boundaries (GBs) in MgB2function as a strong pinning site owing to its large coherence length (ξ).In addition, no weak link behavior across GBs is observed in MgB2, which is in contrast to the weak link behavior in high-Tccuprate superconductors.[6]Therefore,a kilometer-long MgB2superconducting wire used in real systems can be fabricated using a simple powder-in-tube technique, thus considerably reducing the manufacturing cost.[7,8]

    The high current-carrying capability for superconductors necessary for practical applications in magnetic field environment can be achieved by introducing artificial defects.[9]Particle irradiation is a suitable method for producing defects in superconducting materials and has been successfully used in roll-to-roll 80-m long YBa2Cu3O7-δcoated conductors.[10,11]The effect of irradiation on MgB2has been widely studied since it discovered in 2001.[12]Neutron has been suggested as a potential irradiating source for MgB2due to the large thermal neutron capture cross section of the10B atom(~20%in natural B), which causes defects through the10B(n,α)7Li reaction.[13]The self-shielding effect of the10B atoms induces inhomogeneous defects around the surface.However, homogeneous damage can be achieved by replacing10B with11B isotope.[14,15]

    The GBs in metals are known to act as an effective sink for irradiation-induced defects.[16]Irradiation-induced defects, such as vacancies and interstitials, including injected ions can easily migrate into the GBs because the defect diffusion barrier near GBs is considerably lower than the defect diffusion barrier within the grains.[17,18]Moreover, the process of absorbing irradiation-induced defect clusters around GBs has also been observed byin situtransmission electron microscope.[19,20]Hence,the radiation tolerance of nanocrystalline materials is larger than that of coarse-grained samples,which can be improved as the density of GBs increases.[21,22]

    Considering the metallic characteristics of MgB2superconductors,[23]it can be assumed that ion irradiation has a significant influence on grain boundary pinning of MgB2with small grain sizes.In this study, we irradiated 120-keV Mn ions on MgB2thin films with nanoscale grain sizes.The critical current density(Jc)of the pristine MgB2samples was rapidly decreased with the increase in magnetic field owing to a good inter-grain connectivity.However, the field performance ofJcof the irradiated films was significantly improved with the change of the flux pinning mechanism from weak to strong pinning.The scaling behavior of the flux pinning is consistent with the dominance of surface pinning in the irradiated films, underpinning that GBs in MgB2can act as an effective sink of irradiation-induced defects.

    2.Material and methods

    Thec-axis-oriented MgB2thin films with grain sizes of approximately 122 nm and 140 nm were fabricated using a hybrid physical-chemical vapor deposition(HPCVD)system,and the details of the fabrication condition and quality of films were described everywhere.[24-26]Thec-cut Al2O3substrate of 10 mm×10 mm in size was placed on the susceptor filled with 99.99% purity Mg pieces.The carrier gas was H2at a flow rate of 80 sccm,and the susceptor was heated to 700?C in a total pressure of 100 Torr(1 Torr=1.33322×102Pa).Subsequently,5%B2H6in H2gas(20 sccm)was introduced into the chamber to grow the MgB2thin films.The growth rate of the films was approximately 2.5 nm/s.

    Ion irradiation was performed at the Korea Multi-purpose Accelerator Complex (KOMAC).The prepared MgB2films were cut into several pieces for irradiation at each fluence,and each MgB2film with thicknesses of 250 nm (MB250)and 430 nm(MB430)were irradiated at room temperature using Mn ions with a beam energy of 120 keV and fluences of 1×1013(1E13),5×1013(5E13),and 1×1014(1E14)ions/cm2.The direction of the incident ions was tilted by 7?from thecaxis to minimize the channeling effect.The damage events produced in the MgB2thin films by 120-keV Mn ions were determined using the Monte Carlo simulation program, the stopping and range of ions in matter(SRIM).[27]

    The crystal phases and orientations of the prepared films were checked by x-ray diffraction (XRD), and average grain sizes of the films were evaluated by counting the number of grains in the area through the surface morphology observed by scanning electron microscopy (SEM).The zero-field-cooled(ZFC)and field-cooled(FC)dc magnetization(M)as well as magnetization hysteresis (M-B) loops were measured by using magnetic property measurement system (MPMS, Quantum Design) equipped with a 5-T superconducting magnet.The direction of the magnetic field was parallel to thec-axis direction of the film.TheJcvalue was calculated from theM-Bloops using the Bean critical-state modelJc=15?M/r,where ?Mis the width of theM-Bloops per volume(in units of emu/cm3)andris the radius corresponding to the total area(S)of the film surface,i.e.,S=πr2.[28,29]

    3.Results and discussion

    The displacements per atom(dpa)produced in the MgB2by 120-keV Mn-ion irradiation with fluences of 1E13,5E13,and 1E14 ions/cm2was simulated using the transport of ions in matter(TRIM)code in the SRIM software,[27,30]as shown in Fig.1.The inset in Fig.1 is a schematic diagram of the MgB2thin film with a thickness of 250 nm (MB250) after 120-keV Mn-ion irradiation,divided into two regions,namely irradiated and unirradiated regions.The thickness of the irradiated region(tD)was determined at the dpa=0.001 because this value has an impact on the field performance ofJcof MgB2,[31]and thetDfor 1E13,5E13,and 1E14 Mn ions/cm2were approximately 136 nm,160 nm,and 170 nm,as indicated by the arrows in Fig.1.

    Fig.1.Displacements per atom(dpa)as a function of MgB2 depth,generated by 120-keV Mn-ion irradiation with fluences of 1E13,5E13,and 1E14 ions/cm2.Inset illustrates the schematic view of irradiated and unirradiated areas in 250-nm-thick MgB2 thin film,where the depth of irradiated region(tD)is determined at 0.001 dpa,as indicated by the red solid line and arrows.

    Figure 2(a)shows XRD pattern ofθ-2θscan for pristine MB250(MB250-PRI)deposited onc-cut Al2O3substrate,indicating a highlyc-axis orientation.Figure 2(b)is the surface morphology of MB250 observed by SEM.The estimated average grain diameter of MB250 was approximately 122 nm.The magnetic field dependence of critical current density(Jc)of MB250-PRI at 5 K and 20 K is illustrated in Fig.2(c).A large self-fieldJc≈19 MA/cm2at 20 K and its rapid reduction in magnetic field indicate the high quality of the fabricated films.[32]The self-fieldJcis lower at 5 K than at 20 K due to a large flux jump at low fields,as shown in inset of Fig.2(c),which is known as a result of thermomagnetic instability.[33]The flux pinning force density (Fp) as a function of the magnetic field presented in Fig.2(d) reflects the high quality of MB250.Here,Fpwas calculated using the relationFp=Jc×B.The sharp peak ofFp(B)curves at low fields is thought to be caused by the rapid decrease inJc(B)due to the lack of effective pinning sites.[34]

    Fig.2.(a)XRD pattern of a θ-2θ scan for MB250-PRI deposited on a c-cut Al2O3 substrate.(b)SEM surface morphology of MB250-PRI where the average grain diameter is approximately 122 nm.(c)Semi-logarithmic Jc-B curves at 5 K and 20 K for MB250-PRI.Inset shows the M-B hysteresis curves at 5 K and 20 K,indicating a presence of large flux jump at 5 K.(d)Magnetic field dependence of volume flux pinning force density(Fp)at 5 K and 20 K for MB250-PRI.

    Fig.3.(a) Enlarged view of (0002) peak of MB250 before and after 120-keV Mn-ion irradiation.For the sample irradiated with a fluence of 5×1013 ions/cm2, the small broad peak near (0002) peak was related to the remaining unirradiated layer.(b) Changes in c-axis lattice constant of MB250 films as a function of ion fluence.

    The changes inc-axis lattice parameter before and after irradiation was characterized by XRD.After irradiation, the(000l) peaks of MB250 shift toward lower angle.For the sake of clarity, an enlarged view of (0002) peak is shown in Fig.3(a).The existence of a broad peak in the sample irradiated at a fluence of 5×1013ions/cm2is due to the unirradiated layer, as shown in schematic diagram of Fig.1.Thec-axis parameter calculated from (0002) peak of MB250 increases monotonically with increasing ion fluence,as shown in Fig.3(b),reaching the increment of about 1.53%compared to the pristine sample at a maximum fluence of 1×1014ions/cm2.

    The superconducting transition temperature (Tc) of MB250 was gradually decreased by increasing the amount of irradiated Mn ions.Figure 4 shows the zero-field-cooled(ZFC)and field-cooled(FC)dc magnetization(M)at 5 Oe as a function of temperature for MB250 before and after 120-keV Mn-ion irradiation with fluences of 1E13, 5E13, and 1E14 ions/cm2.The MB250-PRI shows aTcof 38.7 K(corresponding to the transition of 10%in ZFCM(T)curve)with a sharp transition width ?Tc=1.8 K determined using the transition of 90%to 10%of the superconducting diamagnetic signal in the ZFCM(T) curve, as presented in Fig.4.TheTcgradually decreased whereas ?Tcincreased as the fluence level increases,and at the highest fluence level of 1E14 ions/cm2,Tcand ?Tcwere 28.2 K and 6.9 K,respectively.

    The reduction ofTcby low-energy ion irradiations can be understood due to the formation of point defects and lattice distortions in MgB2.[35,36]The irradiation-induced disorder can act as impurity scattering centers, thus enhancing inter-band scattering and suppressingTc.[15,37,38]In addition,a decrease in the electron-phonon coupling constant with increasing dpa leads to a suppression ofTc.[39,40]

    The magnetic field dependence ofJcat 5 K and 20 K for MB250 before and after 120-keV Mn-ion irradiation is shown in Figs.5(a) and 5(b), respectively.TheJcat low fields is decreased gradually with increasing fluence, associated with a suppression ofTc, and at both temperatures, the magnitude of the self-fieldJcwas suppressed by approximately a factor of 10 at the highest fluence of 1E14 Mn ions/cm2.However,the field performance ofJcwas significantly improved after irradiation.For MB250 irradiated with 1E13 Mn ions/cm2,theJcvalue increased more than 10-fold from approximately 0.02 for the pristine sample to 0.26 MA/cm2at 5 K and 2.4 T.Figures 5(c) and 5(d) plot the flux pinning force density (Fp)as a function of the magnetic field, calculated from theJc(B)curves in Figs.5(a)and 5(b),respectively.For the sample irradiated with 1E13 Mn ions/cm2,Fpat 5 K and 20 K obviously increased at high fields larger thanB>1 T,indicating that the number of effective pinning sites for high fields was increased by irradiation.The significantly decreasedFpat low fields was caused by the decrease inJcwith the suppression ofTcafter irradiation.

    Fig.4.Temperature dependence of ZFC and FC M at 5 Oe for pristine(PRI)and 120-keV Mn-ion irradiated MB250,where the M(T)values were normalized by the absolute ZFC M value at 5 K for comparisons.Superconducting transition width (?Tc) was defined as the difference between the 10% and 90% transitions of the diamagnetic signal from the normal state and denoted by the arrows with a red color.

    Fig.5.Semi-logarithmic Jc-B curves at(a)5 K and(b)20 K for MB250 before and after irradiation.The field performance of Jc is improved by Mn ion irradiation, while the Jc at low fields decreases gradually as the fluence level increases.Magnetic field dependence of Fp is plotted at(c)5 K and(d)20 K.

    The scaling behavior of the normalized flux pinning force density(fp=Fp/Fp,max)with respect to the reduced magnetic field (b=B/Birr) for irradiated MB250 was studied, whereFp,maxis the maximumFpandBirris the irreversible magnetic field.Since theJcandFpvalues of type-II superconductors approach zero when the magnetic field is equal toBirr, if theBirrvalue is not close toBc2,Birris more suitable for describing thebvalue to investigate the scaling behavior of flux pinning force.[41,42]TheBirrvalue of the pristine and irradiated MB250 was estimated using the Kramer plot ofJc0.5B0.25∝(Birr-B),[43,44]as described in Figs.6(a)and 6(b).Figures 6(c) and 6(d) show thefpversus bcurve for MB250 at 5 K and 20 K,respectively.

    In the scaling law of flux pinning force,fp(b)∝bp(1-b)q, the peak position offp(b) together with parameterspandqis dependent on the characteristics of the dominant pinning source of superconducting samples.[44-46]According to Dew-Hughes(DH)model,thefp(b)peak is located atb=0.2(p=0.5 andq=2) for surface pinning andb=0.33 (p=1 andq=2)for normal point pinning,as shown in Fig.6(c).[46]Thefp(b)curves for MB250-PRI cannot be explained by any pinning models, to the best of our knowledge, because of the low density of effective pinning centers, as discussed in Fig.2(d).However, the flux pinning mechanism of the irradiated MB250 samples showed the predominance of surface pinning.In contrast,since low-energy ion irradiation primarily produces homogeneously distributed point defects caused by nuclear stopping of energetic ions, as depicted in the inset of Fig.6(d),[47]in general,single-crystalline MgB2films showed the dominance of normal point pinning after low-energy ion irradiation.[48,49]

    The effect of GBs on the irradiation-induced defects in the relatively thicker MgB2films with a thickness of 430 nm(MB430) was additionally studied in comparison with the thickness of the irradiated regions.The XRD results of the MB430 are shown in Fig.7(a).The(0002)peak clearly splitting into two peaks for the fluence level>1×1013ions/cm2due to the presence of thicker unirradiated layer compared to MB250.Thec-axis lattice parameter corresponding to the 2nd peak (irradiated layer) increases with increasing fluence,whereas that of the 1st peak(unirradiated layer)in MB430 is hardly changed, as shown in Fig.7(b).Figures 7(c) and 7(d)show the magnetic field dependence ofJcfor MB430 at 5 K and 20 K,respectively,and the inset in Fig.7(d)is a top SEM view of MB430, indicating small grains with an average size of approximately 140 nm.The improvement in the field performance ofJcfor the irradiated MB430 showed similar feature to that in case of the irradiated MB250, whereas the decrease inJcat low fields was comparatively small.The small decrease in low-fieldJcfor irradiated MB430 can be thought to be due to the giant proximity effect between the irradiated and unirradiated layers.[50,51]

    Fig.6.Kramer plots for pristine and 120-keV Mn-ion-irradiated MB250 at(a)5 K and(b)20 K to evaluate irreversible field(Birr)indicated by arrows.Normalized flux pinning force density(fp)with respect to reduced magnetic field(b)at(c)5 K and(d)20 K for pristine and 120-keV Mn-ion-irradiated MB250.The red solid line and the red dashed line represent the fitting curves for surface pinning and normal point pinning,respectively.Inset of Fig.5(d)illustrates the schematic view of the distribution of irradiation-induced defects in single crystals and the films with small grains.

    Fig.7.(a) XRD patterns of MB430 around the (0002) peak of MgB2.(b) Variation of c-axis lattice constant of MB430 with fluence.(c)-(d)Magnetic field dependence of critical current density(Jc)at(c)5 K and(d)20 K for 430-nm-thick MgB2 films(MB430)before and after 120-keV Mn-ion irradiation.The inset in(d)is the top SEM view for MB430 with an average grain diameter of approximately 140 nm.

    The Kramer plots for MB430 at 5 K and 20 K are shown in Figs.8(a)and 8(b),respectively,and theBirrfor each sample was indicated by arrows.Figures 8(c) and 8(d) show normalized flux pinning force as a function of the reduced magnetic field for MB430 at 5 K and 20 K,respectively.Thefp(b)at high fields forb>0.2 and at 5 K overlapped accurately with surface pinning.Although thefp(b)curve exhibits a slight deviation at 20 K,the flux pinning by GBs is still effective even when the thickness of MgB2films is relatively larger than that of the irradiated layertD.These results further support the improvement of the flux pinning effect by GBs in MgB2thin films after irradiation.The sharp peak in thefp(b)curve at low fields was almost suppressed in the irradiated MB250,as shown in Fig.6,indicating that the residual sharp peak offp(b)at low fields in the irradiated MB430 is associated with the unirradiated region.Our findings can provide useful information for designing radiation resistant MgB2because grain boundaries in metallic MgB2superconductors can be acted as an effective sink of irradiation-induced defects,thus irradiation tolerance of MgB2can be enhanced by decreasing grain size.

    Fig.8.Kramer plots for pristine and 120-keV Mn-ion-irradiated MB430 at (a) 5 K and (b) 20 K.Here, Birr is indicated by arrows.Scaling behavior of the flux pinning force for MB430 at(c)5 K and(d)20 K indicates that the effect of surface pinning is enhanced significantly after ion irradiation.

    4.Conclusions

    In summary, we observed that the pinning effect by GBs in MgB2thin films can be improved by ion irradiation.The MgB2thin films with nanoscale grains of approximately 122 nm and 140 nm were irradiated with 120-keV Mn ions leading to a significant increase in the field performance ofJcfor all films as compared with that ofJcfor pristine films.Although the GBs of pristine films were not effective for flux pinning,the scaling behavior of the flux pinning force showed that the surface pinning,i.e.,grain boundary pinning,became dominant after ion irradiation.These findings underpin that MgB2superconductors with small grains can be a good candidate for application in irradiation environments,such as nuclear fusion reactor.

    Acknowledgements

    We wish to acknowledge the support of the accelerator group and operators of KOMAC (KAERI (C.K., J.S.)).Project supported by the National Research Foundation(NRF)of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T.P., Y.H., J.S.)); the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284(J.M.L.,W.N.K.)and NRF-2021R1I1A1A01043885 (S.G.J., Y.H.)), the National Natural Science Foundation of China (Grant Nos.12035019 (J.L.)).Moreover,L.L.would like to acknowledge the Chinese Scholarship Council(CSC)for fellowship support.

    猜你喜歡
    劉麗劉杰
    Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
    Real-time programmable coding metasurface antenna for multibeam switching and scanning
    Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
    劉麗作品
    李梅梅、劉杰作品
    DIGITIZING THE OROQEN
    DIGITIZING THE OROQEN
    漢語世界(2017年5期)2017-09-21 07:44:39
    開啟密碼鎖
    去郊游
    親情讓愛走開
    青春(2009年3期)2009-04-01 02:58:04
    国产69精品久久久久777片| 制服人妻中文乱码| 亚洲国产av新网站| av天堂久久9| 欧美人与性动交α欧美软件 | 精品国产一区二区久久| 99久久综合免费| 久久精品久久久久久久性| 精品一品国产午夜福利视频| 欧美精品一区二区大全| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频 | 亚洲成国产人片在线观看| 最近中文字幕高清免费大全6| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 天天操日日干夜夜撸| 日韩大片免费观看网站| av电影中文网址| 欧美成人午夜免费资源| 日韩熟女老妇一区二区性免费视频| 91aial.com中文字幕在线观看| 97在线视频观看| 男人爽女人下面视频在线观看| 国产一区有黄有色的免费视频| 大陆偷拍与自拍| 久久久久精品久久久久真实原创| 国精品久久久久久国模美| 晚上一个人看的免费电影| 国产伦理片在线播放av一区| 香蕉丝袜av| 99re6热这里在线精品视频| 九色亚洲精品在线播放| 午夜老司机福利剧场| 久久青草综合色| 免费播放大片免费观看视频在线观看| 午夜日本视频在线| 国产国语露脸激情在线看| 大片电影免费在线观看免费| 伦理电影免费视频| 黑人欧美特级aaaaaa片| 多毛熟女@视频| 少妇的丰满在线观看| 精品一区二区免费观看| 一二三四中文在线观看免费高清| 亚洲av在线观看美女高潮| 国产成人精品福利久久| 草草在线视频免费看| 国产1区2区3区精品| 晚上一个人看的免费电影| 亚洲精品美女久久av网站| 黄片无遮挡物在线观看| 亚洲精品av麻豆狂野| 美女视频免费永久观看网站| 人妻一区二区av| 黄片无遮挡物在线观看| 黄色毛片三级朝国网站| 高清毛片免费看| 成人免费观看视频高清| 日韩大片免费观看网站| 丝袜脚勾引网站| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 18禁裸乳无遮挡动漫免费视频| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 免费观看无遮挡的男女| 国产亚洲精品第一综合不卡 | 欧美 亚洲 国产 日韩一| videos熟女内射| 人体艺术视频欧美日本| 免费久久久久久久精品成人欧美视频 | 国产精品蜜桃在线观看| 久久久久久久久久人人人人人人| 日韩中文字幕视频在线看片| 久久久久网色| 亚洲,欧美精品.| av播播在线观看一区| 两个人看的免费小视频| 如何舔出高潮| 久久久国产精品麻豆| 亚洲美女视频黄频| 老司机亚洲免费影院| 天天影视国产精品| 汤姆久久久久久久影院中文字幕| 日日爽夜夜爽网站| 精品人妻一区二区三区麻豆| 男女下面插进去视频免费观看 | 久久精品国产亚洲av涩爱| 国产 一区精品| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 全区人妻精品视频| 97在线视频观看| 国产乱来视频区| 午夜福利,免费看| 日本色播在线视频| 亚洲综合精品二区| 欧美老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 亚洲四区av| 国产淫语在线视频| 男人操女人黄网站| av电影中文网址| 青春草视频在线免费观看| 一级片免费观看大全| 久久午夜综合久久蜜桃| 久久久久久人妻| 免费av不卡在线播放| 女人精品久久久久毛片| 亚洲人与动物交配视频| 国产在线视频一区二区| 最近最新中文字幕免费大全7| 2021少妇久久久久久久久久久| 精品一区二区三卡| 久久久久久久久久久久大奶| 一区二区av电影网| av免费观看日本| av网站免费在线观看视频| 黄片无遮挡物在线观看| 日日撸夜夜添| 国产亚洲午夜精品一区二区久久| 国语对白做爰xxxⅹ性视频网站| 狠狠精品人妻久久久久久综合| 少妇的逼水好多| 午夜福利在线观看免费完整高清在| 欧美bdsm另类| 在线观看美女被高潮喷水网站| 一本久久精品| 午夜精品国产一区二区电影| 国产av一区二区精品久久| 亚洲精品一二三| 夫妻性生交免费视频一级片| 国产免费现黄频在线看| 全区人妻精品视频| 久久99一区二区三区| 在线看a的网站| 国产亚洲欧美精品永久| 如何舔出高潮| 中文天堂在线官网| 免费观看性生交大片5| 老熟女久久久| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 十八禁高潮呻吟视频| 永久免费av网站大全| 一级毛片电影观看| 女性被躁到高潮视频| 男人爽女人下面视频在线观看| 99热6这里只有精品| 日韩在线高清观看一区二区三区| 交换朋友夫妻互换小说| 黄片无遮挡物在线观看| 精品久久国产蜜桃| 高清不卡的av网站| 一二三四中文在线观看免费高清| 在线观看免费高清a一片| a 毛片基地| 国产无遮挡羞羞视频在线观看| 日韩视频在线欧美| 亚洲经典国产精华液单| 99精国产麻豆久久婷婷| 少妇高潮的动态图| 成年动漫av网址| 另类亚洲欧美激情| 搡女人真爽免费视频火全软件| 高清欧美精品videossex| 免费看不卡的av| 美女主播在线视频| 人妻少妇偷人精品九色| 又黄又爽又刺激的免费视频.| 精品国产一区二区三区四区第35| 2021少妇久久久久久久久久久| 久久人人爽av亚洲精品天堂| 日本wwww免费看| 中文精品一卡2卡3卡4更新| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频 | 免费高清在线观看视频在线观看| 夫妻午夜视频| 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 女性生殖器流出的白浆| 国产精品成人在线| 免费av中文字幕在线| 国产精品久久久久久精品电影小说| 亚洲欧美色中文字幕在线| 大陆偷拍与自拍| 亚洲欧洲日产国产| 国产亚洲精品第一综合不卡 | 韩国精品一区二区三区 | 晚上一个人看的免费电影| 久久国产精品大桥未久av| 高清av免费在线| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| √禁漫天堂资源中文www| 狠狠精品人妻久久久久久综合| 国产福利在线免费观看视频| 久久青草综合色| 欧美97在线视频| 亚洲色图 男人天堂 中文字幕 | 女性生殖器流出的白浆| 色哟哟·www| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人 | 亚洲国产欧美日韩在线播放| 永久免费av网站大全| 亚洲精品av麻豆狂野| 成年女人在线观看亚洲视频| 国产一区二区在线观看av| 日韩 亚洲 欧美在线| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 美女视频免费永久观看网站| freevideosex欧美| av女优亚洲男人天堂| 岛国毛片在线播放| 在线观看国产h片| 亚洲av在线观看美女高潮| freevideosex欧美| 下体分泌物呈黄色| 久久久国产精品麻豆| www.熟女人妻精品国产 | 亚洲欧洲日产国产| 午夜影院在线不卡| 亚洲av男天堂| 久久久久久人人人人人| 街头女战士在线观看网站| 免费日韩欧美在线观看| 欧美日本中文国产一区发布| 亚洲内射少妇av| 中文字幕亚洲精品专区| 国产永久视频网站| 亚洲婷婷狠狠爱综合网| 日本黄色日本黄色录像| 亚洲欧洲精品一区二区精品久久久 | 各种免费的搞黄视频| 黄色 视频免费看| 中文字幕人妻丝袜制服| 天堂8中文在线网| 日本欧美视频一区| 色婷婷av一区二区三区视频| 18禁动态无遮挡网站| 交换朋友夫妻互换小说| 亚洲av免费高清在线观看| av有码第一页| 在线观看国产h片| 免费少妇av软件| 日韩伦理黄色片| 国产精品99久久99久久久不卡 | 如何舔出高潮| 日韩av不卡免费在线播放| 中文字幕av电影在线播放| 午夜免费男女啪啪视频观看| 亚洲成国产人片在线观看| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 精品国产国语对白av| 99re6热这里在线精品视频| 亚洲内射少妇av| 亚洲少妇的诱惑av| 国产精品成人在线| 国产日韩欧美视频二区| 伊人亚洲综合成人网| 好男人视频免费观看在线| 欧美老熟妇乱子伦牲交| www.熟女人妻精品国产 | 欧美性感艳星| 午夜免费观看性视频| 精品国产乱码久久久久久小说| 老司机影院成人| 国产一区二区三区综合在线观看 | 伦理电影大哥的女人| 成人漫画全彩无遮挡| av黄色大香蕉| 亚洲国产av影院在线观看| 国产亚洲一区二区精品| 18在线观看网站| 99久国产av精品国产电影| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 在线精品无人区一区二区三| 人人澡人人妻人| 成年女人在线观看亚洲视频| 又粗又硬又长又爽又黄的视频| 高清在线视频一区二区三区| 最黄视频免费看| 99热这里只有是精品在线观看| 国产成人精品久久久久久| 美女福利国产在线| 免费在线观看完整版高清| 2018国产大陆天天弄谢| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久久精品古装| 蜜桃在线观看..| 日本欧美国产在线视频| 亚洲国产成人一精品久久久| 免费观看av网站的网址| av天堂久久9| 国产成人欧美| 精品国产一区二区三区久久久樱花| 久久久精品94久久精品| 飞空精品影院首页| 日本免费在线观看一区| 国产片内射在线| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 免费av中文字幕在线| 黑人巨大精品欧美一区二区蜜桃 | 免费久久久久久久精品成人欧美视频 | 纯流量卡能插随身wifi吗| 国产精品 国内视频| 午夜福利视频精品| 80岁老熟妇乱子伦牲交| 久久精品国产自在天天线| 国产精品女同一区二区软件| 国产无遮挡羞羞视频在线观看| 人体艺术视频欧美日本| 青春草亚洲视频在线观看| 欧美 日韩 精品 国产| 亚洲国产精品一区二区三区在线| 国产片内射在线| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 日韩精品免费视频一区二区三区 | 亚洲 欧美一区二区三区| 午夜福利乱码中文字幕| 欧美人与性动交α欧美精品济南到 | 亚洲精品乱码久久久久久按摩| 美女xxoo啪啪120秒动态图| 国产69精品久久久久777片| 欧美+日韩+精品| 男人操女人黄网站| 丰满少妇做爰视频| 欧美97在线视频| 日韩av在线免费看完整版不卡| 黑人猛操日本美女一级片| 人妻少妇偷人精品九色| 宅男免费午夜| 亚洲美女黄色视频免费看| 亚洲国产精品专区欧美| 久久精品夜色国产| 久久久久精品人妻al黑| 婷婷色麻豆天堂久久| 亚洲欧美日韩卡通动漫| av在线app专区| 国产成人精品无人区| 久久ye,这里只有精品| 丰满乱子伦码专区| 最后的刺客免费高清国语| 日日啪夜夜爽| 夫妻性生交免费视频一级片| 成人国语在线视频| 性色av一级| 成年美女黄网站色视频大全免费| 国产精品一区二区在线不卡| 三上悠亚av全集在线观看| 大话2 男鬼变身卡| 亚洲,一卡二卡三卡| 考比视频在线观看| 看非洲黑人一级黄片| 老司机亚洲免费影院| 精品视频人人做人人爽| 超色免费av| 国产在视频线精品| 青春草视频在线免费观看| 国产一区二区三区av在线| 美女内射精品一级片tv| 亚洲欧美色中文字幕在线| 91aial.com中文字幕在线观看| 一二三四中文在线观看免费高清| 免费人成在线观看视频色| 成人黄色视频免费在线看| 欧美日韩av久久| 国产高清不卡午夜福利| 一区二区三区四区激情视频| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 人妻少妇偷人精品九色| 波野结衣二区三区在线| 中文字幕最新亚洲高清| 飞空精品影院首页| 国产av码专区亚洲av| 国产亚洲欧美精品永久| 激情视频va一区二区三区| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 99久久综合免费| 伦精品一区二区三区| 亚洲伊人久久精品综合| 一边摸一边做爽爽视频免费| 日本免费在线观看一区| 久久久久久久精品精品| 国产又爽黄色视频| 两性夫妻黄色片 | 欧美+日韩+精品| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 性高湖久久久久久久久免费观看| 亚洲精品色激情综合| 亚洲av综合色区一区| a级毛片在线看网站| 日韩免费高清中文字幕av| 精品人妻熟女毛片av久久网站| 国产成人精品婷婷| 99久久人妻综合| 午夜av观看不卡| 97精品久久久久久久久久精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 蜜桃在线观看..| 九色成人免费人妻av| 久久精品国产鲁丝片午夜精品| 18在线观看网站| 国产精品久久久久久精品电影小说| 欧美最新免费一区二区三区| 黑人欧美特级aaaaaa片| 久久这里有精品视频免费| 久久久久视频综合| 久久久久久人妻| a级毛片在线看网站| 99九九在线精品视频| 久久久欧美国产精品| 亚洲一级一片aⅴ在线观看| 国产精品国产三级国产专区5o| 伦理电影大哥的女人| 激情五月婷婷亚洲| 久久狼人影院| 美女xxoo啪啪120秒动态图| 国产欧美亚洲国产| 一本大道久久a久久精品| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 免费播放大片免费观看视频在线观看| 欧美精品高潮呻吟av久久| √禁漫天堂资源中文www| 午夜福利,免费看| 卡戴珊不雅视频在线播放| 你懂的网址亚洲精品在线观看| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 天天躁夜夜躁狠狠躁躁| 亚洲av福利一区| 考比视频在线观看| 国精品久久久久久国模美| 精品国产一区二区三区久久久樱花| 久久久久网色| 亚洲美女黄色视频免费看| 日韩制服丝袜自拍偷拍| 在线观看三级黄色| 人妻一区二区av| 国产精品久久久久久av不卡| 国产福利在线免费观看视频| 国产69精品久久久久777片| 成年美女黄网站色视频大全免费| a 毛片基地| 国产一区二区三区av在线| 国产在线一区二区三区精| 亚洲av福利一区| a级片在线免费高清观看视频| 久久青草综合色| 熟女电影av网| 久久人人爽人人片av| 99热国产这里只有精品6| 新久久久久国产一级毛片| 色哟哟·www| 99re6热这里在线精品视频| videossex国产| 欧美精品人与动牲交sv欧美| 久久人人爽人人片av| 99热国产这里只有精品6| 国产精品久久久av美女十八| 中文字幕最新亚洲高清| 久久精品人人爽人人爽视色| 下体分泌物呈黄色| 欧美日韩精品成人综合77777| 日本91视频免费播放| 激情五月婷婷亚洲| videosex国产| 国产精品一区www在线观看| 一区在线观看完整版| 在线观看人妻少妇| 青春草亚洲视频在线观看| 人人妻人人澡人人爽人人夜夜| 久久久久网色| 国产精品一国产av| 亚洲欧美色中文字幕在线| 中国国产av一级| 精品酒店卫生间| 五月天丁香电影| 日本av免费视频播放| 高清在线视频一区二区三区| av一本久久久久| 黄色配什么色好看| 男人爽女人下面视频在线观看| 制服诱惑二区| 在线观看一区二区三区激情| 青青草视频在线视频观看| 美女脱内裤让男人舔精品视频| 久久久久国产精品人妻一区二区| 欧美bdsm另类| 亚洲精品久久成人aⅴ小说| 综合色丁香网| 成年美女黄网站色视频大全免费| 激情视频va一区二区三区| 国产成人免费观看mmmm| 国产成人午夜福利电影在线观看| 18禁在线无遮挡免费观看视频| 一级片免费观看大全| 狠狠精品人妻久久久久久综合| 久久久国产一区二区| 亚洲久久久国产精品| 一本大道久久a久久精品| 在线观看免费日韩欧美大片| 欧美成人午夜免费资源| 一级毛片电影观看| 老司机影院毛片| 99热6这里只有精品| 精品久久久久久电影网| 午夜视频国产福利| 久久精品久久精品一区二区三区| 天堂中文最新版在线下载| 另类精品久久| 在线观看三级黄色| 看免费成人av毛片| 丝袜脚勾引网站| 免费播放大片免费观看视频在线观看| 欧美97在线视频| 久久97久久精品| 欧美精品一区二区大全| 熟妇人妻不卡中文字幕| 丰满乱子伦码专区| 久久久国产精品麻豆| 51国产日韩欧美| 欧美bdsm另类| 欧美变态另类bdsm刘玥| 99九九在线精品视频| 亚洲精品久久久久久婷婷小说| av黄色大香蕉| av天堂久久9| 你懂的网址亚洲精品在线观看| 热re99久久精品国产66热6| 搡女人真爽免费视频火全软件| 考比视频在线观看| 丝袜美足系列| 亚洲精品日韩在线中文字幕| 国产在线一区二区三区精| av天堂久久9| 一级毛片黄色毛片免费观看视频| 妹子高潮喷水视频| 国产欧美另类精品又又久久亚洲欧美| 日本黄色日本黄色录像| 午夜激情av网站| 菩萨蛮人人尽说江南好唐韦庄| 考比视频在线观看| 美女内射精品一级片tv| 欧美日韩成人在线一区二区| 又黄又爽又刺激的免费视频.| 亚洲精品久久午夜乱码| av网站免费在线观看视频| 久久精品国产亚洲av天美| av一本久久久久| 五月开心婷婷网| 性色avwww在线观看| 制服丝袜香蕉在线| 丝袜脚勾引网站| 欧美亚洲 丝袜 人妻 在线| 韩国高清视频一区二区三区| 欧美人与性动交α欧美精品济南到 | 国产国语露脸激情在线看| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 人妻 亚洲 视频| 丰满迷人的少妇在线观看| 国产精品.久久久| 日韩免费高清中文字幕av| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区| 国产精品一国产av| 精品亚洲乱码少妇综合久久| 欧美精品国产亚洲| 国产成人一区二区在线| 嫩草影院入口| 久久99精品国语久久久| 精品一区二区三卡| 好男人视频免费观看在线| 欧美精品一区二区免费开放| 日韩精品免费视频一区二区三区 | 久久久久精品人妻al黑| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 亚洲国产日韩一区二区| 少妇 在线观看| 亚洲精品色激情综合| 成人免费观看视频高清| 国产亚洲一区二区精品| 一边亲一边摸免费视频| 大陆偷拍与自拍| 如何舔出高潮| 欧美精品av麻豆av| 欧美日韩一区二区视频在线观看视频在线| 热re99久久精品国产66热6| 国产成人精品婷婷| 国产男女超爽视频在线观看| 999精品在线视频| 男女国产视频网站| 国产成人精品久久久久久| 99久久人妻综合|