• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of irradiation on superconducting properties of small-grained MgB2 thin films

    2023-12-15 11:48:14LiLiu劉麗JungMinLeeYoonseokHanJaeguSongChorongKimJaekwonSukWonNamKangJieLiu劉杰SoonGilJungandTusonPark1
    Chinese Physics B 2023年12期
    關鍵詞:劉麗劉杰

    Li Liu(劉麗), Jung Min Lee, Yoonseok Han, Jaegu Song, Chorong Kim,Jaekwon Suk, Won Nam Kang,?, Jie Liu(劉杰), Soon-Gil Jung, and Tuson Park1,,?

    1Center for Quantum Materials and Superconductivity(CQMS),Sungkyunkwan University,Suwon 16419,Republic of Korea

    2Department of Physics,Sungkyunkwan University,Suwon 16419,Republic of Korea

    3Institute of Modern Physics,Chinese Academy of Sciences(CAS),Lanzhou 730000,China

    4School of Nuclear Science and Technology,University of Chinese Academy of Sciences(UCAS),Beijing 100049,China

    5Korea Multi-purpose Accelerator Complex,Korea Atomic Energy Research Institute,Gyeongju,Gyeongbuk 38180,Republic of Korea

    6Department of Physics Education,Sunchon National University,Suncheon 57922,Republic of Korea

    Keywords: MgB2 films,grain boundaries,flux pinning,low-energy ion irradiation

    1.Introduction

    MgB2has tremendous potential for practical applications owing to its excellent superconducting properties.For instance,the superconducting critical temperature(Tc)of MgB2is approximately 40 K, which makes it a promising material for use in liquid-helium-free apparatus.[1]Its high upper critical field(Hc2)makes MgB2a suitable alternative for commercial superconductors in high-field magnet applications.[2-4]Moreover, from the aspect of radioactivity, MgB2is one of the promising materials in neutron irradiation environment,such as fusion reactor,because of its shorter half-life of the induced activity than Nb-based superconducting alloys.[5]Grain boundaries (GBs) in MgB2function as a strong pinning site owing to its large coherence length (ξ).In addition, no weak link behavior across GBs is observed in MgB2, which is in contrast to the weak link behavior in high-Tccuprate superconductors.[6]Therefore,a kilometer-long MgB2superconducting wire used in real systems can be fabricated using a simple powder-in-tube technique, thus considerably reducing the manufacturing cost.[7,8]

    The high current-carrying capability for superconductors necessary for practical applications in magnetic field environment can be achieved by introducing artificial defects.[9]Particle irradiation is a suitable method for producing defects in superconducting materials and has been successfully used in roll-to-roll 80-m long YBa2Cu3O7-δcoated conductors.[10,11]The effect of irradiation on MgB2has been widely studied since it discovered in 2001.[12]Neutron has been suggested as a potential irradiating source for MgB2due to the large thermal neutron capture cross section of the10B atom(~20%in natural B), which causes defects through the10B(n,α)7Li reaction.[13]The self-shielding effect of the10B atoms induces inhomogeneous defects around the surface.However, homogeneous damage can be achieved by replacing10B with11B isotope.[14,15]

    The GBs in metals are known to act as an effective sink for irradiation-induced defects.[16]Irradiation-induced defects, such as vacancies and interstitials, including injected ions can easily migrate into the GBs because the defect diffusion barrier near GBs is considerably lower than the defect diffusion barrier within the grains.[17,18]Moreover, the process of absorbing irradiation-induced defect clusters around GBs has also been observed byin situtransmission electron microscope.[19,20]Hence,the radiation tolerance of nanocrystalline materials is larger than that of coarse-grained samples,which can be improved as the density of GBs increases.[21,22]

    Considering the metallic characteristics of MgB2superconductors,[23]it can be assumed that ion irradiation has a significant influence on grain boundary pinning of MgB2with small grain sizes.In this study, we irradiated 120-keV Mn ions on MgB2thin films with nanoscale grain sizes.The critical current density(Jc)of the pristine MgB2samples was rapidly decreased with the increase in magnetic field owing to a good inter-grain connectivity.However, the field performance ofJcof the irradiated films was significantly improved with the change of the flux pinning mechanism from weak to strong pinning.The scaling behavior of the flux pinning is consistent with the dominance of surface pinning in the irradiated films, underpinning that GBs in MgB2can act as an effective sink of irradiation-induced defects.

    2.Material and methods

    Thec-axis-oriented MgB2thin films with grain sizes of approximately 122 nm and 140 nm were fabricated using a hybrid physical-chemical vapor deposition(HPCVD)system,and the details of the fabrication condition and quality of films were described everywhere.[24-26]Thec-cut Al2O3substrate of 10 mm×10 mm in size was placed on the susceptor filled with 99.99% purity Mg pieces.The carrier gas was H2at a flow rate of 80 sccm,and the susceptor was heated to 700?C in a total pressure of 100 Torr(1 Torr=1.33322×102Pa).Subsequently,5%B2H6in H2gas(20 sccm)was introduced into the chamber to grow the MgB2thin films.The growth rate of the films was approximately 2.5 nm/s.

    Ion irradiation was performed at the Korea Multi-purpose Accelerator Complex (KOMAC).The prepared MgB2films were cut into several pieces for irradiation at each fluence,and each MgB2film with thicknesses of 250 nm (MB250)and 430 nm(MB430)were irradiated at room temperature using Mn ions with a beam energy of 120 keV and fluences of 1×1013(1E13),5×1013(5E13),and 1×1014(1E14)ions/cm2.The direction of the incident ions was tilted by 7?from thecaxis to minimize the channeling effect.The damage events produced in the MgB2thin films by 120-keV Mn ions were determined using the Monte Carlo simulation program, the stopping and range of ions in matter(SRIM).[27]

    The crystal phases and orientations of the prepared films were checked by x-ray diffraction (XRD), and average grain sizes of the films were evaluated by counting the number of grains in the area through the surface morphology observed by scanning electron microscopy (SEM).The zero-field-cooled(ZFC)and field-cooled(FC)dc magnetization(M)as well as magnetization hysteresis (M-B) loops were measured by using magnetic property measurement system (MPMS, Quantum Design) equipped with a 5-T superconducting magnet.The direction of the magnetic field was parallel to thec-axis direction of the film.TheJcvalue was calculated from theM-Bloops using the Bean critical-state modelJc=15?M/r,where ?Mis the width of theM-Bloops per volume(in units of emu/cm3)andris the radius corresponding to the total area(S)of the film surface,i.e.,S=πr2.[28,29]

    3.Results and discussion

    The displacements per atom(dpa)produced in the MgB2by 120-keV Mn-ion irradiation with fluences of 1E13,5E13,and 1E14 ions/cm2was simulated using the transport of ions in matter(TRIM)code in the SRIM software,[27,30]as shown in Fig.1.The inset in Fig.1 is a schematic diagram of the MgB2thin film with a thickness of 250 nm (MB250) after 120-keV Mn-ion irradiation,divided into two regions,namely irradiated and unirradiated regions.The thickness of the irradiated region(tD)was determined at the dpa=0.001 because this value has an impact on the field performance ofJcof MgB2,[31]and thetDfor 1E13,5E13,and 1E14 Mn ions/cm2were approximately 136 nm,160 nm,and 170 nm,as indicated by the arrows in Fig.1.

    Fig.1.Displacements per atom(dpa)as a function of MgB2 depth,generated by 120-keV Mn-ion irradiation with fluences of 1E13,5E13,and 1E14 ions/cm2.Inset illustrates the schematic view of irradiated and unirradiated areas in 250-nm-thick MgB2 thin film,where the depth of irradiated region(tD)is determined at 0.001 dpa,as indicated by the red solid line and arrows.

    Figure 2(a)shows XRD pattern ofθ-2θscan for pristine MB250(MB250-PRI)deposited onc-cut Al2O3substrate,indicating a highlyc-axis orientation.Figure 2(b)is the surface morphology of MB250 observed by SEM.The estimated average grain diameter of MB250 was approximately 122 nm.The magnetic field dependence of critical current density(Jc)of MB250-PRI at 5 K and 20 K is illustrated in Fig.2(c).A large self-fieldJc≈19 MA/cm2at 20 K and its rapid reduction in magnetic field indicate the high quality of the fabricated films.[32]The self-fieldJcis lower at 5 K than at 20 K due to a large flux jump at low fields,as shown in inset of Fig.2(c),which is known as a result of thermomagnetic instability.[33]The flux pinning force density (Fp) as a function of the magnetic field presented in Fig.2(d) reflects the high quality of MB250.Here,Fpwas calculated using the relationFp=Jc×B.The sharp peak ofFp(B)curves at low fields is thought to be caused by the rapid decrease inJc(B)due to the lack of effective pinning sites.[34]

    Fig.2.(a)XRD pattern of a θ-2θ scan for MB250-PRI deposited on a c-cut Al2O3 substrate.(b)SEM surface morphology of MB250-PRI where the average grain diameter is approximately 122 nm.(c)Semi-logarithmic Jc-B curves at 5 K and 20 K for MB250-PRI.Inset shows the M-B hysteresis curves at 5 K and 20 K,indicating a presence of large flux jump at 5 K.(d)Magnetic field dependence of volume flux pinning force density(Fp)at 5 K and 20 K for MB250-PRI.

    Fig.3.(a) Enlarged view of (0002) peak of MB250 before and after 120-keV Mn-ion irradiation.For the sample irradiated with a fluence of 5×1013 ions/cm2, the small broad peak near (0002) peak was related to the remaining unirradiated layer.(b) Changes in c-axis lattice constant of MB250 films as a function of ion fluence.

    The changes inc-axis lattice parameter before and after irradiation was characterized by XRD.After irradiation, the(000l) peaks of MB250 shift toward lower angle.For the sake of clarity, an enlarged view of (0002) peak is shown in Fig.3(a).The existence of a broad peak in the sample irradiated at a fluence of 5×1013ions/cm2is due to the unirradiated layer, as shown in schematic diagram of Fig.1.Thec-axis parameter calculated from (0002) peak of MB250 increases monotonically with increasing ion fluence,as shown in Fig.3(b),reaching the increment of about 1.53%compared to the pristine sample at a maximum fluence of 1×1014ions/cm2.

    The superconducting transition temperature (Tc) of MB250 was gradually decreased by increasing the amount of irradiated Mn ions.Figure 4 shows the zero-field-cooled(ZFC)and field-cooled(FC)dc magnetization(M)at 5 Oe as a function of temperature for MB250 before and after 120-keV Mn-ion irradiation with fluences of 1E13, 5E13, and 1E14 ions/cm2.The MB250-PRI shows aTcof 38.7 K(corresponding to the transition of 10%in ZFCM(T)curve)with a sharp transition width ?Tc=1.8 K determined using the transition of 90%to 10%of the superconducting diamagnetic signal in the ZFCM(T) curve, as presented in Fig.4.TheTcgradually decreased whereas ?Tcincreased as the fluence level increases,and at the highest fluence level of 1E14 ions/cm2,Tcand ?Tcwere 28.2 K and 6.9 K,respectively.

    The reduction ofTcby low-energy ion irradiations can be understood due to the formation of point defects and lattice distortions in MgB2.[35,36]The irradiation-induced disorder can act as impurity scattering centers, thus enhancing inter-band scattering and suppressingTc.[15,37,38]In addition,a decrease in the electron-phonon coupling constant with increasing dpa leads to a suppression ofTc.[39,40]

    The magnetic field dependence ofJcat 5 K and 20 K for MB250 before and after 120-keV Mn-ion irradiation is shown in Figs.5(a) and 5(b), respectively.TheJcat low fields is decreased gradually with increasing fluence, associated with a suppression ofTc, and at both temperatures, the magnitude of the self-fieldJcwas suppressed by approximately a factor of 10 at the highest fluence of 1E14 Mn ions/cm2.However,the field performance ofJcwas significantly improved after irradiation.For MB250 irradiated with 1E13 Mn ions/cm2,theJcvalue increased more than 10-fold from approximately 0.02 for the pristine sample to 0.26 MA/cm2at 5 K and 2.4 T.Figures 5(c) and 5(d) plot the flux pinning force density (Fp)as a function of the magnetic field, calculated from theJc(B)curves in Figs.5(a)and 5(b),respectively.For the sample irradiated with 1E13 Mn ions/cm2,Fpat 5 K and 20 K obviously increased at high fields larger thanB>1 T,indicating that the number of effective pinning sites for high fields was increased by irradiation.The significantly decreasedFpat low fields was caused by the decrease inJcwith the suppression ofTcafter irradiation.

    Fig.4.Temperature dependence of ZFC and FC M at 5 Oe for pristine(PRI)and 120-keV Mn-ion irradiated MB250,where the M(T)values were normalized by the absolute ZFC M value at 5 K for comparisons.Superconducting transition width (?Tc) was defined as the difference between the 10% and 90% transitions of the diamagnetic signal from the normal state and denoted by the arrows with a red color.

    Fig.5.Semi-logarithmic Jc-B curves at(a)5 K and(b)20 K for MB250 before and after irradiation.The field performance of Jc is improved by Mn ion irradiation, while the Jc at low fields decreases gradually as the fluence level increases.Magnetic field dependence of Fp is plotted at(c)5 K and(d)20 K.

    The scaling behavior of the normalized flux pinning force density(fp=Fp/Fp,max)with respect to the reduced magnetic field (b=B/Birr) for irradiated MB250 was studied, whereFp,maxis the maximumFpandBirris the irreversible magnetic field.Since theJcandFpvalues of type-II superconductors approach zero when the magnetic field is equal toBirr, if theBirrvalue is not close toBc2,Birris more suitable for describing thebvalue to investigate the scaling behavior of flux pinning force.[41,42]TheBirrvalue of the pristine and irradiated MB250 was estimated using the Kramer plot ofJc0.5B0.25∝(Birr-B),[43,44]as described in Figs.6(a)and 6(b).Figures 6(c) and 6(d) show thefpversus bcurve for MB250 at 5 K and 20 K,respectively.

    In the scaling law of flux pinning force,fp(b)∝bp(1-b)q, the peak position offp(b) together with parameterspandqis dependent on the characteristics of the dominant pinning source of superconducting samples.[44-46]According to Dew-Hughes(DH)model,thefp(b)peak is located atb=0.2(p=0.5 andq=2) for surface pinning andb=0.33 (p=1 andq=2)for normal point pinning,as shown in Fig.6(c).[46]Thefp(b)curves for MB250-PRI cannot be explained by any pinning models, to the best of our knowledge, because of the low density of effective pinning centers, as discussed in Fig.2(d).However, the flux pinning mechanism of the irradiated MB250 samples showed the predominance of surface pinning.In contrast,since low-energy ion irradiation primarily produces homogeneously distributed point defects caused by nuclear stopping of energetic ions, as depicted in the inset of Fig.6(d),[47]in general,single-crystalline MgB2films showed the dominance of normal point pinning after low-energy ion irradiation.[48,49]

    The effect of GBs on the irradiation-induced defects in the relatively thicker MgB2films with a thickness of 430 nm(MB430) was additionally studied in comparison with the thickness of the irradiated regions.The XRD results of the MB430 are shown in Fig.7(a).The(0002)peak clearly splitting into two peaks for the fluence level>1×1013ions/cm2due to the presence of thicker unirradiated layer compared to MB250.Thec-axis lattice parameter corresponding to the 2nd peak (irradiated layer) increases with increasing fluence,whereas that of the 1st peak(unirradiated layer)in MB430 is hardly changed, as shown in Fig.7(b).Figures 7(c) and 7(d)show the magnetic field dependence ofJcfor MB430 at 5 K and 20 K,respectively,and the inset in Fig.7(d)is a top SEM view of MB430, indicating small grains with an average size of approximately 140 nm.The improvement in the field performance ofJcfor the irradiated MB430 showed similar feature to that in case of the irradiated MB250, whereas the decrease inJcat low fields was comparatively small.The small decrease in low-fieldJcfor irradiated MB430 can be thought to be due to the giant proximity effect between the irradiated and unirradiated layers.[50,51]

    Fig.6.Kramer plots for pristine and 120-keV Mn-ion-irradiated MB250 at(a)5 K and(b)20 K to evaluate irreversible field(Birr)indicated by arrows.Normalized flux pinning force density(fp)with respect to reduced magnetic field(b)at(c)5 K and(d)20 K for pristine and 120-keV Mn-ion-irradiated MB250.The red solid line and the red dashed line represent the fitting curves for surface pinning and normal point pinning,respectively.Inset of Fig.5(d)illustrates the schematic view of the distribution of irradiation-induced defects in single crystals and the films with small grains.

    Fig.7.(a) XRD patterns of MB430 around the (0002) peak of MgB2.(b) Variation of c-axis lattice constant of MB430 with fluence.(c)-(d)Magnetic field dependence of critical current density(Jc)at(c)5 K and(d)20 K for 430-nm-thick MgB2 films(MB430)before and after 120-keV Mn-ion irradiation.The inset in(d)is the top SEM view for MB430 with an average grain diameter of approximately 140 nm.

    The Kramer plots for MB430 at 5 K and 20 K are shown in Figs.8(a)and 8(b),respectively,and theBirrfor each sample was indicated by arrows.Figures 8(c) and 8(d) show normalized flux pinning force as a function of the reduced magnetic field for MB430 at 5 K and 20 K,respectively.Thefp(b)at high fields forb>0.2 and at 5 K overlapped accurately with surface pinning.Although thefp(b)curve exhibits a slight deviation at 20 K,the flux pinning by GBs is still effective even when the thickness of MgB2films is relatively larger than that of the irradiated layertD.These results further support the improvement of the flux pinning effect by GBs in MgB2thin films after irradiation.The sharp peak in thefp(b)curve at low fields was almost suppressed in the irradiated MB250,as shown in Fig.6,indicating that the residual sharp peak offp(b)at low fields in the irradiated MB430 is associated with the unirradiated region.Our findings can provide useful information for designing radiation resistant MgB2because grain boundaries in metallic MgB2superconductors can be acted as an effective sink of irradiation-induced defects,thus irradiation tolerance of MgB2can be enhanced by decreasing grain size.

    Fig.8.Kramer plots for pristine and 120-keV Mn-ion-irradiated MB430 at (a) 5 K and (b) 20 K.Here, Birr is indicated by arrows.Scaling behavior of the flux pinning force for MB430 at(c)5 K and(d)20 K indicates that the effect of surface pinning is enhanced significantly after ion irradiation.

    4.Conclusions

    In summary, we observed that the pinning effect by GBs in MgB2thin films can be improved by ion irradiation.The MgB2thin films with nanoscale grains of approximately 122 nm and 140 nm were irradiated with 120-keV Mn ions leading to a significant increase in the field performance ofJcfor all films as compared with that ofJcfor pristine films.Although the GBs of pristine films were not effective for flux pinning,the scaling behavior of the flux pinning force showed that the surface pinning,i.e.,grain boundary pinning,became dominant after ion irradiation.These findings underpin that MgB2superconductors with small grains can be a good candidate for application in irradiation environments,such as nuclear fusion reactor.

    Acknowledgements

    We wish to acknowledge the support of the accelerator group and operators of KOMAC (KAERI (C.K., J.S.)).Project supported by the National Research Foundation(NRF)of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T.P., Y.H., J.S.)); the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284(J.M.L.,W.N.K.)and NRF-2021R1I1A1A01043885 (S.G.J., Y.H.)), the National Natural Science Foundation of China (Grant Nos.12035019 (J.L.)).Moreover,L.L.would like to acknowledge the Chinese Scholarship Council(CSC)for fellowship support.

    猜你喜歡
    劉麗劉杰
    Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
    Real-time programmable coding metasurface antenna for multibeam switching and scanning
    Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
    劉麗作品
    李梅梅、劉杰作品
    DIGITIZING THE OROQEN
    DIGITIZING THE OROQEN
    漢語世界(2017年5期)2017-09-21 07:44:39
    開啟密碼鎖
    去郊游
    親情讓愛走開
    青春(2009年3期)2009-04-01 02:58:04
    久久久久国内视频| 日韩高清综合在线| 狠狠狠狠99中文字幕| 国产三级黄色录像| 亚洲欧美日韩高清专用| 国产精品亚洲av一区麻豆| 国产探花在线观看一区二区| 动漫黄色视频在线观看| 亚洲,欧美精品.| 男女视频在线观看网站免费 | 91大片在线观看| 韩国av一区二区三区四区| 不卡一级毛片| 亚洲精品色激情综合| 69av精品久久久久久| 俺也久久电影网| 狂野欧美白嫩少妇大欣赏| 免费高清视频大片| av片东京热男人的天堂| 99精品欧美一区二区三区四区| 国产午夜福利久久久久久| 老司机深夜福利视频在线观看| 久久久精品大字幕| 久久久国产成人精品二区| 777久久人妻少妇嫩草av网站| 日日夜夜操网爽| 在线观看舔阴道视频| 岛国在线观看网站| av福利片在线观看| 999精品在线视频| 国产亚洲精品久久久久久毛片| 757午夜福利合集在线观看| 一级黄色大片毛片| 一区二区三区高清视频在线| 欧美又色又爽又黄视频| 精品国产超薄肉色丝袜足j| 午夜福利高清视频| 久久久久亚洲av毛片大全| 免费看a级黄色片| 黄色 视频免费看| 午夜免费成人在线视频| 亚洲美女黄片视频| 亚洲av成人不卡在线观看播放网| 成人特级黄色片久久久久久久| 亚洲午夜精品一区,二区,三区| 欧美精品亚洲一区二区| 小说图片视频综合网站| 欧美成人午夜精品| 亚洲国产欧美网| 国内久久婷婷六月综合欲色啪| 成人三级做爰电影| 最新在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 色精品久久人妻99蜜桃| www.999成人在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 丰满人妻一区二区三区视频av | 成人特级黄色片久久久久久久| 亚洲男人的天堂狠狠| 两人在一起打扑克的视频| 毛片女人毛片| 精品福利观看| 国产精品香港三级国产av潘金莲| 最近最新免费中文字幕在线| 精品久久久久久久久久免费视频| 又粗又爽又猛毛片免费看| 亚洲男人天堂网一区| 1024视频免费在线观看| 精品国产乱子伦一区二区三区| 在线观看www视频免费| 国产欧美日韩一区二区三| a在线观看视频网站| 国产人伦9x9x在线观看| 久久婷婷成人综合色麻豆| 国产精品一区二区三区四区久久| 可以在线观看的亚洲视频| 一级毛片精品| 日韩欧美精品v在线| 嫩草影院精品99| 亚洲成人久久爱视频| 成人精品一区二区免费| 亚洲国产精品999在线| 亚洲精品中文字幕一二三四区| 中出人妻视频一区二区| 国产精品一区二区精品视频观看| 香蕉av资源在线| 桃红色精品国产亚洲av| 人人妻人人看人人澡| 亚洲真实伦在线观看| 俄罗斯特黄特色一大片| 国产成人欧美在线观看| 国产精品98久久久久久宅男小说| 久久这里只有精品中国| 在线观看免费日韩欧美大片| 真人做人爱边吃奶动态| av国产免费在线观看| 亚洲国产精品成人综合色| 国产精品 欧美亚洲| 久久香蕉精品热| 美女高潮喷水抽搐中文字幕| 亚洲国产精品成人综合色| 男人的好看免费观看在线视频 | 国产片内射在线| 伦理电影免费视频| 制服人妻中文乱码| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 成年免费大片在线观看| 曰老女人黄片| 亚洲熟妇熟女久久| 久久精品国产99精品国产亚洲性色| 超碰成人久久| 欧美黄色片欧美黄色片| 免费人成视频x8x8入口观看| 天天躁夜夜躁狠狠躁躁| 在线观看免费日韩欧美大片| 精品免费久久久久久久清纯| 国产成人精品无人区| 午夜精品久久久久久毛片777| 中出人妻视频一区二区| 男女那种视频在线观看| 欧美绝顶高潮抽搐喷水| 国产精品综合久久久久久久免费| 午夜福利欧美成人| 19禁男女啪啪无遮挡网站| 日本 欧美在线| 亚洲免费av在线视频| 亚洲av成人精品一区久久| 国产精品乱码一区二三区的特点| 欧美精品亚洲一区二区| av中文乱码字幕在线| 他把我摸到了高潮在线观看| 操出白浆在线播放| 国产精品一区二区三区四区免费观看 | 欧美日韩中文字幕国产精品一区二区三区| 精品午夜福利视频在线观看一区| 亚洲精品中文字幕在线视频| а√天堂www在线а√下载| 欧美中文综合在线视频| 国产高清视频在线播放一区| cao死你这个sao货| 丁香六月欧美| 亚洲欧美日韩无卡精品| 给我免费播放毛片高清在线观看| 欧美乱色亚洲激情| www.999成人在线观看| 很黄的视频免费| 不卡av一区二区三区| 久久精品国产亚洲av香蕉五月| 制服诱惑二区| 欧美日韩瑟瑟在线播放| 99在线人妻在线中文字幕| aaaaa片日本免费| 亚洲一区中文字幕在线| 亚洲男人天堂网一区| 久久久精品国产亚洲av高清涩受| 麻豆成人av在线观看| 日韩欧美三级三区| 精品国产乱码久久久久久男人| 久久精品91无色码中文字幕| 91国产中文字幕| 亚洲色图 男人天堂 中文字幕| 给我免费播放毛片高清在线观看| 亚洲精品国产一区二区精华液| 国产精品久久久久久人妻精品电影| 久久天堂一区二区三区四区| 视频区欧美日本亚洲| 十八禁人妻一区二区| 91老司机精品| 亚洲国产欧美网| www.精华液| xxx96com| 一本综合久久免费| 激情在线观看视频在线高清| 国内精品一区二区在线观看| 精品福利观看| 亚洲精品在线观看二区| 亚洲,欧美精品.| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品一区二区www| 国产真人三级小视频在线观看| 国产亚洲av嫩草精品影院| 久久精品国产综合久久久| 国产精品香港三级国产av潘金莲| 非洲黑人性xxxx精品又粗又长| 岛国在线观看网站| 亚洲精品粉嫩美女一区| 级片在线观看| 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 国产精品99久久99久久久不卡| 国产精品一区二区三区四区久久| 色综合欧美亚洲国产小说| 欧美三级亚洲精品| 色播亚洲综合网| 啦啦啦韩国在线观看视频| 午夜福利18| a在线观看视频网站| 亚洲av成人一区二区三| 在线免费观看的www视频| x7x7x7水蜜桃| 精品国产亚洲在线| 亚洲黑人精品在线| 亚洲av片天天在线观看| 国产91精品成人一区二区三区| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| а√天堂www在线а√下载| 亚洲人成网站高清观看| av欧美777| 国产精品美女特级片免费视频播放器 | 国产激情欧美一区二区| 久久这里只有精品中国| 少妇的丰满在线观看| 全区人妻精品视频| 人成视频在线观看免费观看| 国产熟女xx| 一进一出好大好爽视频| 亚洲一区高清亚洲精品| 一区二区三区高清视频在线| 国产成人影院久久av| 中文资源天堂在线| 亚洲精品色激情综合| 国产精华一区二区三区| 久久久国产成人精品二区| 精品欧美一区二区三区在线| 亚洲欧美日韩高清在线视频| 少妇熟女aⅴ在线视频| 亚洲 欧美 日韩 在线 免费| 国产av一区二区精品久久| 黄色视频,在线免费观看| 桃色一区二区三区在线观看| 欧美性长视频在线观看| 男女床上黄色一级片免费看| 99精品久久久久人妻精品| 波多野结衣巨乳人妻| 不卡一级毛片| 中文字幕人妻丝袜一区二区| 黄色片一级片一级黄色片| 日韩国内少妇激情av| www.自偷自拍.com| 免费观看人在逋| 亚洲国产精品成人综合色| 精品熟女少妇八av免费久了| 国产区一区二久久| 日日夜夜操网爽| 午夜视频精品福利| 久久精品影院6| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多| 国产一级毛片七仙女欲春2| 国产av一区在线观看免费| 又大又爽又粗| 可以在线观看的亚洲视频| 给我免费播放毛片高清在线观看| 美女 人体艺术 gogo| 两性夫妻黄色片| 天堂影院成人在线观看| 精品少妇一区二区三区视频日本电影| 亚洲成人国产一区在线观看| 国产成人影院久久av| 国产伦一二天堂av在线观看| 国产三级黄色录像| 免费在线观看日本一区| 深夜精品福利| 在线播放国产精品三级| 国产高清激情床上av| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 18美女黄网站色大片免费观看| 一本综合久久免费| 久久久精品欧美日韩精品| 国产精品一区二区免费欧美| 免费av毛片视频| 久久精品国产99精品国产亚洲性色| 日韩欧美 国产精品| 老鸭窝网址在线观看| 韩国av一区二区三区四区| 长腿黑丝高跟| 男女那种视频在线观看| 免费av毛片视频| 婷婷丁香在线五月| 一级a爱片免费观看的视频| 99久久国产精品久久久| 999久久久国产精品视频| 桃红色精品国产亚洲av| 女同久久另类99精品国产91| 一个人观看的视频www高清免费观看 | 国产又色又爽无遮挡免费看| 91av网站免费观看| 老司机午夜十八禁免费视频| 麻豆一二三区av精品| 午夜视频精品福利| 亚洲av美国av| 青草久久国产| xxx96com| 日本黄大片高清| 免费高清视频大片| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 非洲黑人性xxxx精品又粗又长| 国产99白浆流出| 欧美成人一区二区免费高清观看 | av在线播放免费不卡| 三级毛片av免费| 757午夜福利合集在线观看| 一二三四社区在线视频社区8| 在线看三级毛片| av福利片在线观看| 欧美性猛交╳xxx乱大交人| 精品第一国产精品| ponron亚洲| 少妇裸体淫交视频免费看高清 | 日日摸夜夜添夜夜添小说| 国产三级在线视频| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| 亚洲国产欧美人成| 亚洲avbb在线观看| av天堂在线播放| 欧美乱妇无乱码| 国产精品国产高清国产av| 女生性感内裤真人,穿戴方法视频| 精品日产1卡2卡| 欧美三级亚洲精品| 国产黄色小视频在线观看| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影| 88av欧美| 午夜激情福利司机影院| 亚洲va日本ⅴa欧美va伊人久久| av在线播放免费不卡| 日日干狠狠操夜夜爽| 日韩欧美国产在线观看| 欧美成人午夜精品| av有码第一页| 亚洲男人的天堂狠狠| 精品人妻1区二区| 18禁美女被吸乳视频| 色噜噜av男人的天堂激情| 国产亚洲精品久久久久久毛片| 变态另类成人亚洲欧美熟女| 精品电影一区二区在线| videosex国产| 美女 人体艺术 gogo| 亚洲va日本ⅴa欧美va伊人久久| 午夜影院日韩av| 久久精品91无色码中文字幕| 最新美女视频免费是黄的| 婷婷六月久久综合丁香| 欧美国产日韩亚洲一区| 香蕉av资源在线| 高清在线国产一区| 男人舔奶头视频| 亚洲五月天丁香| 日韩大尺度精品在线看网址| 老司机在亚洲福利影院| 国产精品一及| 制服诱惑二区| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 国产精品自产拍在线观看55亚洲| 特大巨黑吊av在线直播| 国产精品一区二区精品视频观看| 男女床上黄色一级片免费看| 夜夜夜夜夜久久久久| 老司机在亚洲福利影院| 亚洲精华国产精华精| 日本熟妇午夜| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| 国产精品一及| e午夜精品久久久久久久| 亚洲一区二区三区不卡视频| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 黄色丝袜av网址大全| 2021天堂中文幕一二区在线观| 少妇粗大呻吟视频| 亚洲国产看品久久| 国产av又大| 成人欧美大片| 国产成人系列免费观看| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看| 亚洲精品在线美女| 90打野战视频偷拍视频| 亚洲一区高清亚洲精品| 亚洲一区二区三区色噜噜| 欧美成人性av电影在线观看| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| 黄色成人免费大全| 两性夫妻黄色片| 久久婷婷成人综合色麻豆| 久久香蕉激情| av天堂在线播放| 桃色一区二区三区在线观看| 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| 国产午夜福利久久久久久| 亚洲最大成人中文| 国产又色又爽无遮挡免费看| 欧美人与性动交α欧美精品济南到| 天天一区二区日本电影三级| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 午夜两性在线视频| 男女之事视频高清在线观看| xxx96com| 女人高潮潮喷娇喘18禁视频| 后天国语完整版免费观看| 免费搜索国产男女视频| tocl精华| xxx96com| 国产精品影院久久| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 亚洲专区字幕在线| 日韩欧美一区二区三区在线观看| 亚洲色图 男人天堂 中文字幕| 欧美性长视频在线观看| 精品国产美女av久久久久小说| 操出白浆在线播放| 亚洲美女黄片视频| √禁漫天堂资源中文www| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 欧美一区二区精品小视频在线| 18禁美女被吸乳视频| 精品国产乱子伦一区二区三区| 国产真人三级小视频在线观看| 国产精华一区二区三区| 人人妻人人看人人澡| 国产免费av片在线观看野外av| 两个人视频免费观看高清| 香蕉久久夜色| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| 在线观看日韩欧美| 在线视频色国产色| 国产高清videossex| 黄片小视频在线播放| 精品国产乱子伦一区二区三区| 欧美性猛交黑人性爽| 又黄又粗又硬又大视频| 1024视频免费在线观看| 一区二区三区高清视频在线| 久久久久久亚洲精品国产蜜桃av| 久久亚洲精品不卡| 黄色a级毛片大全视频| 亚洲中文av在线| 国产伦一二天堂av在线观看| 久久精品91无色码中文字幕| 12—13女人毛片做爰片一| 久久这里只有精品19| 少妇人妻一区二区三区视频| 伦理电影免费视频| 国产三级黄色录像| 在线十欧美十亚洲十日本专区| 国模一区二区三区四区视频 | 人人妻人人澡欧美一区二区| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区| 中文字幕久久专区| 免费看美女性在线毛片视频| 在线观看66精品国产| 麻豆国产av国片精品| 波多野结衣高清无吗| www国产在线视频色| 国产精品久久久人人做人人爽| 中文字幕久久专区| 制服丝袜大香蕉在线| 久热爱精品视频在线9| 99riav亚洲国产免费| 国产精品一区二区精品视频观看| 大型av网站在线播放| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 99精品在免费线老司机午夜| 88av欧美| 观看免费一级毛片| 久久精品国产清高在天天线| 欧美大码av| 国产91精品成人一区二区三区| 日本在线视频免费播放| 村上凉子中文字幕在线| 亚洲免费av在线视频| 午夜福利18| xxxwww97欧美| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 国产三级中文精品| 麻豆成人午夜福利视频| 在线观看www视频免费| 久久久久九九精品影院| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区三区在线臀色熟女| 50天的宝宝边吃奶边哭怎么回事| 国产精品一及| 久久久久精品国产欧美久久久| 久久精品夜夜夜夜夜久久蜜豆 | 欧美性长视频在线观看| 黄色视频,在线免费观看| 亚洲国产欧美网| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 亚洲欧美精品综合久久99| 美女大奶头视频| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 国产精品美女特级片免费视频播放器 | 亚洲欧美激情综合另类| 999精品在线视频| 国产av又大| 成人av一区二区三区在线看| 国产真实乱freesex| 午夜视频精品福利| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 日韩欧美精品v在线| 久久人妻av系列| 欧美性猛交╳xxx乱大交人| 三级男女做爰猛烈吃奶摸视频| 18禁黄网站禁片午夜丰满| 男女下面进入的视频免费午夜| 脱女人内裤的视频| 国产成人精品无人区| 久久婷婷成人综合色麻豆| 国产69精品久久久久777片 | 国产亚洲av嫩草精品影院| 国产三级在线视频| 两个人看的免费小视频| 国内毛片毛片毛片毛片毛片| 动漫黄色视频在线观看| www国产在线视频色| 国产成年人精品一区二区| 欧美日本视频| 这个男人来自地球电影免费观看| 久久精品人妻少妇| 国内久久婷婷六月综合欲色啪| 国产午夜精品久久久久久| 婷婷亚洲欧美| 国产精品久久久av美女十八| 精品福利观看| 长腿黑丝高跟| 精品久久久久久成人av| 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| 国产69精品久久久久777片 | 少妇的丰满在线观看| 国产爱豆传媒在线观看 | 中文字幕高清在线视频| 一进一出好大好爽视频| 18禁裸乳无遮挡免费网站照片| 国产一区二区在线av高清观看| 九色国产91popny在线| 亚洲国产精品sss在线观看| 欧美色视频一区免费| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片| 999久久久精品免费观看国产| 热99re8久久精品国产| 午夜免费成人在线视频| 免费在线观看亚洲国产| 好男人电影高清在线观看| 18禁黄网站禁片午夜丰满| 国产男靠女视频免费网站| www国产在线视频色| 草草在线视频免费看| 国产精品一区二区免费欧美| 亚洲国产欧美人成| 国产成+人综合+亚洲专区| 亚洲一码二码三码区别大吗| 女同久久另类99精品国产91| 国产av又大| 精品人妻1区二区| 中出人妻视频一区二区| 国产精品久久久久久精品电影| 亚洲国产欧美网| 成人手机av| 男人舔女人下体高潮全视频| 午夜精品一区二区三区免费看| 久久久久久大精品| 日日摸夜夜添夜夜添小说| 在线十欧美十亚洲十日本专区| 俄罗斯特黄特色一大片| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 12—13女人毛片做爰片一| 热99re8久久精品国产| 亚洲精品在线观看二区| 中文字幕精品亚洲无线码一区| 老汉色∧v一级毛片| 一级作爱视频免费观看| 日韩成人在线观看一区二区三区| 亚洲av电影不卡..在线观看| 国产私拍福利视频在线观看| 国产av麻豆久久久久久久| 精品国产乱码久久久久久男人| 成人精品一区二区免费| 国产黄色小视频在线观看| 在线a可以看的网站| 麻豆国产av国片精品| 日韩欧美国产一区二区入口| e午夜精品久久久久久久| 婷婷六月久久综合丁香| 99热这里只有是精品50| videosex国产| 欧美激情久久久久久爽电影| 成人手机av|