• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stochastic responses of tumor immune system with periodic treatment?

    2017-08-30 08:25:00DongXiLi李東喜andYingLi李穎
    Chinese Physics B 2017年9期
    關(guān)鍵詞:李穎

    Dong-Xi Li(李東喜)and Ying Li(李穎)

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    Stochastic responses of tumor immune system with periodic treatment?

    Dong-Xi Li(李東喜)1,?and Ying Li(李穎)2

    1 College of Data Science,Taiyuan University of Technology,Taiyuan 030024,China

    2 College of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China

    We investigate the stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,a mathematical model describing the interaction between tumor cells and immune system under external fluctuations and periodic treatment is established based on the stochastic differential equation.Then,sufficient conditions for extinction and persistence of the tumor cells are derived by constructing Lyapunov functions and Ito’s formula.Finally,numerical simulations are introduced to illustrate and verify the results.The results of this work provide the theoretical basis for designing more effective and precise therapeutic strategies to eliminate cancer cells,especially for combining the immunotherapy and the traditional tools.

    stochastic responses,environmental noise,tumor–immune system,extinction

    1.Introduction

    Cancer is becoming the leading cause of death around the world.Traditional cancer treatments include surgery,radiation therapy,and chemotherapy.Cancer immunotherapy has recently gained exciting progress.Studies of tumor and immune system have largely been inspired by the works in Refs.[1] and[2],the authors showed that the immune system can recognize and eliminate malignant tumors.So immunotherapy, such as the cellular immunotherapy,[3]has been studied by researchers.And a number of tumor–immune system competition models have been proposed,such as Kuznetsov–Taylor model[4]and Kirschner–Panetta model.[5]In fact,tumor mi-croenvironment is inevitably affected by environmental noise in realism.Nowadays,noise dynamics have been widely studied in different fields such as metapopulation system[6]and Van der Pol oscillator.[7]In the last years,researchers have studied stochastic growth models of cancer cells,[8–11]using the Lyapunov exponent method and the Fokker–Planck equation method to investigate the stability of the stochastic model. Moreover,from a biological or a clinical point of view,investigations including treatments such as periodic ones are important for a successful treatment,e.g.,Thibodeaux and Schlittenhard[12]investigated the effect of a periodic treatment in the within-hostdynamics of malaria infection and suggested that synchronization with the intrinsic oscillation of infected erythrocytes takes place,leading to an optimal treatment.Sotolongo et al.[13]investigated the effect of immunotherapy under periodic treatment on a deterministic model of tumor– immune system and considered the possibility of suppression of tumor growth.Ideta et al.[14]considered the intermittent hormonal therapy in a model of prostate cancer and they suggested the existence of an optimal protocol to the intermittent therapy.Up to now,the effect of noise and cyclic treatment in the tumor dynamics has been widely studied.And fluctuations induced extinction and stochastic resonance in a model of tumor growth with periodic treatment have been studied.[15]Aisu and Horita[16]numerically investigated the stochastic extinction of tumor cells due to the synchronization effect through a time periodic treatment in a tumor–immune interaction model.

    The aim of this paper is to explore the dynamics of a simplified Kuznetsov–Taylor model[17]with both environmental noise and periodic treatment,especially the extinction and persistence.One of the advantages of our study is that we make use of the methods of It?o’s stochastic integral and Lyapunov function to derive and analyze the properties of the stochastic tumor–immune system competition model,which is different from the approaches of Fokker–Planck equation and effective potential function used in the existing literature.The other advantage is that the conditions for extinction and strong persistence in the mean of tumor cells are obtained by the strict mathematical proofs.The sufficient conditions for extinction and persistence could provide us a more effective and precise therapeutic schedule to eliminate tumor cells and improve the treatment of cancer.

    This paper is organized as follows.In Section 2,thestochastic tumor–immune model with periodic treatment is derived.In Section 3,we establish the sufficient conditions for extinction and strong persistence in the mean of tumor cells. Numerical simulations are presented in Section 4,which are used to verify and illustrate the theorems of Section 3.In Section 5,we present the conclusion and discuss future directions of this research.

    2.Stochastic tumor–immune system with periodic treatment

    In this section,the Kuznetsov–Taylor model[4]and its modified version by Galach[17]are introduced.The Kuznetsov–Taylor model describes the response of effector cells to the growth of tumor cells and takes into account the penetration of tumor cells by effector cells,which simultaneously causes the inactivation of effector cells.The Kuznetsov–Taylor model reads

    where s is the normal(i.e.,not increased by the presence of the tumor)rate of the flow of adult effector cells into the tumor site in units of cells per day,p and g are positive constants in the function F(E,T)=pE T/(g+T)that describes the accumulation of effector cells in the tumor site,p is in units of day?1and g is in units of cells.m denotes the coefficient of inactivation of effector cells during the formation and decomposition of EC-TC compounds and is in units of day?1·cells?1. d is the coefficient of the destruction and migration of effector cells and is in units of day?1.a is the coefficient of the maximal growth of tumor and is in units of day?1.b?1is the environment capacity,and b is in units of cells?1.n represents the inactivation rate of tumor cells due to the immune system response and is in units of day?1·cells?1.The dimensionless form of the model is

    where x=E/E0,y=T/T0,ε=s/(nE0T0),ρ=p/(nT0), η=g/T0,μ=m/n,δ=d/(nT0),α=a/(nT0),β=bT0,and E0=T0=106cells.

    In 2003,Galach proposed the modified version of model (1),which reads

    where x denotes the dimensionless density of effector cells;y stands for the dimensionless density of the population of tumor cells;ε,δ,α,1/β have the same meanings as those in Eq.(1),and ω represents the immune response to the appearance of the tumor cells(i.e.,immune coefficient).In this paper, we consider the case of ω>0,which means that the immune response is positive.

    System(2)always has the equilibrium

    If ω>0 and αδ<ε,then P0is the unique equilibrium of model(2)and it is globally stable.If ω>0 and αδ>ε,then P0is unstable and there is an equilibrium

    which is globally stable.Here Δ=α2(βδ?ω)2+4αβεω.

    In fact,the growth of tumor cells is influenced by many environmental factors,[18]e.g.,the supply of oxygen and nutrients,the degree of vascularization of tissues,the immunological state of the host,chemical agents,temperature,etc.So, it is inevitable to consider the tumor–immune system competition model with environmental noises.In this paper,taking into account the effect of randomly fluctuating environment, we assume that the fluctuations in the environment mainly affect the immune coefficient ω,

    where B(t)is the standard Brownian motion with B(0)=0, and the intensity of white noise σ2>0.We are interested in the stochastic responses of the tumor immune system driven by a controllable therapy.Here,the influence of the therapeutic factors is studied by considering a periodic treatment (chemo-or radiation-therapy).The treatment scheme[19]can be expressed as

    Here Φ stands for the Heaviside function reflecting the on-off switch of the cyclic treatment performed with the intensity A and frequency f.Now the tumor–immune system competition model with environmental noise and periodic treatment can be rewritten as

    where all the parameters are positive and bounded.For convenience,we define the following notions:

    3.Theoretical analysis of extinction and persistence under periodic treatment

    Our primary interests in tumor dynamics are the extinction and survival of tumors.In order to study the extinction and survival,we need some appropriate definitions about extinction and persistence.Here we adopt the concepts of extinction and strong persistence in the mean.[20]In addition,some of our proofs are motivated by the works of Liu,[20]Mao,[21]and Jiang.[22]Some useful definitions are as follows:

    1)The tumor cells y(t)will go to extinction a.s.if limt→+∞y(t)=0.

    2)The tumor cells y(t)will be strongly persistent in the mean a.s.if〈y(t)〉?>0.

    Next we establish the sufficient conditions of extinction and persistence for our model.

    Lemma 1 For any positive initial value(x0,y0),if 0<x0<1/β,the solution of Eq.(4)obeys

    Proof According to the second equation of model(4),we have

    Firstly,we discuss y for x in different value ranges.

    Consequently,we have proved y(t)≤max{y0,1/β}.Then we will show that x(t)is bounded.Applying the Ito’s formula[23]to the first equation of model(4),

    Integrating both sides from 0 to t,we obtain

    where

    Therefore,

    That is to say if x0<1/β,then x(t)<1/β for all t>0.

    Lemma 2 Let f∈C[[0,∞)×?,(0,∞)]and F(t)∈C([0,∞)×?,R).If there exist positive constants λ0,λ,and T such that

    for all t≥T,and limt→∞F(t)/t=0 a.s.,then

    Proof The proof is similar to that of lemma in Ref.[22]. Note that limt→∞F(t)/t=0 a.s.;then for arbitrary k>0,there exists a T0=T0(ω)>0 and a set ?ksuch that P(?k)≥1?k and F(t)/t≤k for all t≥T0,ω∈?k.LetˉT=max{T,T0} and

    Since f∈C[[0,∞)×?,(0,∞)],then ?(t)is differentiable ona.s.,and

    Taking the limit inferior of both sides and applying L’Hospital’s rule on the right-hand side of this inequality,we obtain

    Letting k→0 yields

    Theorem 1 For any positive initial value(x0,y0),particularly,when x0<1/β,equation(4)has a positive unique global solution(x(t),y(t))on t≥0 a.s.

    Proof To obtain a unique global solution for any given initial value,the coefficients of the equation are generally required to satisfy the linear growth condition and local Lipschitz condition.[24]However,the coefficients of model(4)do not satisfy the linear growth condition,so the solution may explode in a finite time.Since the coefficients of Eq.(4)are locally Lipschitz continuous for any given initial value(x0,y0)∈,there is a unique maximal local solution(x(t),y(t))on t∈[0,τe],where τeis the explosion time.[24]To show that this solution is global,we only need to show τe=∞.To this end,let k0>0 be sufficiently large so that x0,y0all lie within the interval[1/k0,k0].For each integer k≥k0,we define the stopping time τk=inf{t∈[0,τe]:min{x(t),y(t)}≤1/k or max{x(t),y(t)}≥k}.Clearly,τkis increasing as k→∞.Set τ∞=limk→+∞τk,thus τ∞≤τea.s.In other words,we only need to prove τ∞=∞.If this statement is false,there exists constants T>0 and ε∈(0,1)such that P{τ∞<∞}>ε. Thus there is an integer k1>k0such that

    Define a C2-function V:→R+by V(x,y)=(x?1?ln x)+ (y?1?ln y).The nonnegativity of this function can be seen from u?1?ln u≥0,?u>0.Let k≥k0and T>0 be arbitrary.Applying the It?o’s formula,we have

    Here,L is a positive constant and in the proof of the last inequality,we have used Lemma 3(i.e.,for?t≥0,x(t)and y(t) are bounded).The inequality(9)implies

    Taking expectation on both sides of the above inequality,we can obtain

    Let ?k={τk∧T},then by inequality(8),we have P(?k)≥ε. Note that for any ω∈?k,x(τk,ω),y(τk,ω)equals either k or 1/k,hence V(x(τk,ω),y(τk,ω))is no less than min{2(k?1?ln k),2(1/k?1+ln k),k+1/k?2)}.By formula(10)we have

    where 1?kis the indicator function of ?k.Let k→∞,there exists the contradiction∞>V(x0,y0)+LT=∞,which completes the proof.

    Remark 1 In order to guarantee the existence and uniqueness of the solution of model(4),we discuss the extinction and persistence of y(t)under the condition x0<1/β below.

    Theorem 2 Let(x(t),y(t))be the solution of system(4) with positive initial value(x0,y0),if αδ?ε<A/2,then

    Proof An integration of the first equation of model(4) yields

    We compute

    where

    which is a local continuous martingale and N1(0)=0.Moreover

    By strong law of large numbers for local martingales,[24]we obtain

    Taking the limit inferior of both sides of inequality(12),we have

    Applying the It?o’s formula to the second equation of model(4) yields

    Integrating this from 0 to t and dividing by t on both sides,we have

    Taking the limit superior of both sides of inequality(15)and substituting inequality(14)into inequality(15)yield

    If the condition αδ?ε<A/2 is satisfied,then

    which implies

    Applying the It?o’s formula to the first equation of model(4) leads to

    Integrating this from 0 to t,we have

    By virtue of the exponential martingale inequality,[24]for any positive constants T,a,and b,we have

    Choosing T=n,a=1,and b=2ln n,we obtain

    An application of Borel–Cantelli lemma[22]yields that for almost all ω∈?,there is a random integer n0=n0(ω)such that for n≥n0,

    That is to say,

    for all 0≤t≤n,n≥n0a.s.Substituting the above inequality into inequality(17)leads to

    Theorem 3 If δα?ε>A/2,then the tumor cells y(t) will be almost surely strong persistent in the mean.

    Proof An integration of system(4)is

    Substituting Eq.(20)to Eq.(21)yields

    Consequently,we can derive that if δα?ε>A/2,then〈y(t)〉?>0 a.s.

    4.Simulations and discussion

    In this section,we use the Euler–Maruyama numerical algorithm mentioned by Higham[25]to support our results.The parameters in model(4)are chosen as α=1.636,β=0.002, δ=0.3743,ε=0.5181,and ω=0.0115,which are approximated to the experimental values.[4,17]

    Figure 1 shows the simulation results of Theorem 2. Clearly,the parameters satisfy the condition αδ?ε<A/2.In view of Theorem 2,the tumor cells y(t)will go to extinction, and the effector cells x(t)have the property limt→+∞〈x(t)〉= (ε+A/2)/δ=1.785.Figure 1 confirms the results of Theorem 2.

    Fig.1.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.3,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 2 shows the simulation results of Theorem 2.In Fig.2,it is clear that the parameters of the example meet the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be almost surely strongly persistent in the mean. It can be seen from Fig.2 that the tumor cells will decrease firstly and then exhibit a period-like evolution at a relative low concentration under periodic treatment,but do not tend to zero.This phenomenon implies that the tumor cells could be suppressed by the periodic treatment but not be completely eliminated when the intensity of the treatment is not enough to cure the tumor,i.e.,the tumor cells could be controlled and will not deteriorate in this case.Moreover,it can be seen that as long as the conditions of persistence δα?ε>A/2 are satisfied,the tumor cell will be strongly persistent in the mean almost surely when the model is with noise.And,the tumor cells will also be persistent or survival when the model is without noises.The difference is that the persistence of the former is in the sense of the mean,which is random;while the persistence of the latter is expressed as persistence or survival, which is deterministic.

    Fig.2.(color online)Solutions of model(4)with periodic treatment s(t)=A[1?Φ(cos(2π ft))]for A=0.07,σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(1.5,25).

    Figure 3 shows the evolution of tumor cells y(t)as a function of time t for three different values of A=0.07,0.3,3. Clearly,when A is 0.07,it satisfies the condition δα?ε>A/2.According to Theorem 2,the tumor cells y(t)will be strongly persistent in the mean.With increasing strength of the treatment,A is taken as 0.3 or 3,they satisfy the condition αδ?ε<A/2.According to Theorem 2,the tumor cells y(t) will tend to be extinction.Moreover,by comparing curves(ii) and(iii),we find that the tumor cells will be extinct faster with the increase of the treatment intensity A.This behavior indicates that increasing the intensity of the treatment is beneficial to accelerate the extinction of the tumor cells.

    Fig.3.(color online)Solutions of tumor cells for σ=0.03,f=0.05,step size Δt=0.01,and initial value(x(0),y(0))=(2.6,25).

    5.Conclusion

    We study stochastic responses of a tumor–immune system competition model with environmental noise and periodic treatment.Firstly,the environmental noise(Gaussian white noise)is taken into account and the periodic treatment is regarded as a Heaviside function.Then,sufficient conditions for extinction and strong persistence in the mean of tumor cells are derived by constructing Lyapunov functions.The detail results and biological significance are as follows:

    (A)If αδ?ε<A/2,then the effector cells x(t)have property limt→+∞〈x(t)〉=(ε+A/2)/δ,and the tumor cells y(t)will go to extinction a.s.

    (B)If αδ?ε>A/2,then the tumor cells y(t)will be strongly persistent in the mean a.s.

    According to the theorems and figures,the extinction and survival of the tumor cells rely on the strength of the periodic treatment.With the increasing intensity of the periodic treatment,the tumor cells will experience the process from strongly persistence in the mean to extinction.In addition,the synchronization effect between the environmental noises and the periodic treatment on the tumor–immune system competition model is obtained by strict proof and simulation.Our theoretical results will be beneficial to design more effective and feasible treatment therapies.

    Some interesting questions deserve further investigations. For example,in our model,we assume that fluctuations in the environment mainly affect the immune coefficient ω.It is interesting to study what happens if it affects other parameters of the tumor–immune system.Another question of interest is to consider the stability in distribution(e.g.,Refs.[26]and[27]) and time delay(e.g.Ref.[28])of the tumor–immune system.

    [1]Parish C R 2003 Immunol.Cell.Biol 81 106

    [2]Smyth M J,Godfrey D I and Trapani J A 2001 Nat.Immunol.2 293

    [3]Rosenberg S A,Spiess P and Lafreniere R 1986 Science 233 1318

    [4]Kuznetsoz V A,Makalkin I A,Taylor M A and Perelson A S 1994 Bull. Math.Biol 56 295

    [5]Kirschner D and Panetta J C 1998 J.Math.Biol 37 235

    [6]Wang K K and Liu X B 2013 Chin.Phys.Lett 30 070504

    [7]Yang Y G,Xu W,Sun Y H and Gu X D 2016 Chin.Phys.B 25 020201

    [8]Zhong W R,Shao Y Z and He Z H 2006 Phys.Rev.E 73 060902

    [9]Albano G and Giorno V 2006 J.Theor Biol 242 329

    [10]Lenbury Y,Triampo Wannapong,Tang IMand Picha P 2006 J.Korean. Phys.Soc 49 1652

    [11]Ferrante L,Bompadre S,Possati L and Leone L 2000 Biometrics 56 1076

    [12]Thibodeaux J J and Schlittenhardt T P 2011 Bull.Math.Biol.73 2791

    [13]Sotolongo-Costam O,Molina L M,Perez D R,Antranz J C and Reys M C 2003 Physica D 178 242

    [14]Ideta A M,Tanaka G,Takeuchi T and Aihara K 2008 J.Nonlinear Sci. 18 593

    [15]Li D X,Xu W,Guo Y and Xu Y 2011 Phys.Lett.A 375 886

    [16]Aisu R and Horita T 2012 Nonlinear Theory and Its Applications,IEICE 3 191

    [17]Galach M 2003 Int.J.Appl.Math.Comput.Sci.13 395

    [18]Fiasconaro A,Spagnolo B,Ochabmarcinek A and Gudowskanowak E 2006 Phys.Rev.E 74 041904

    [19]Fiasconaro A,Ochab-Marcinek A,Spagnolo B and Gudowska-Nowak E 2008 Eur.Phys.J.B 65 435

    [20]Liu M and Wang K 2011 J.Math.Anal.Appl.375 443

    [21]Mao X,Marion G and Renshaw E 2002 Stoch.Proc.Appl.97 95

    [22]Zhao Y,Jiang D and O’Regan D 2013 Physica A 392 4916

    [23]Evans L C 2013 An Introduction to Stochastic Differential Equations (New York:Amer Mathematical Society)pp.77–79

    [24]Mao X 1997 Stochastic Differential Equations and Applications (Chichester:Horwood)pp.31–84

    [25]Higham D J 2001 SIAM Rev.43 525

    [26]Liu M and Bai C 2016 Appl.Math.Comput.284 308

    [27]Liu M and Bai C 2016 Appl.Math.Comput.276 301

    [28]Jin Y F and Xie W X 2015 Chin.Phys.B 24 110501

    26 February 2017;revised manuscript

    9 May 2017;published online 24 July 2017)

    10.1088/1674-1056/26/9/090203

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.11402157 and 11571009),Shanxi Scholarship Council of China(Grant No.2015-032),Technological Innovation Programs of Higher Education Institutions in Shanxi,China(Grant No.2015121),and Applied Basic Research Programs of Shanxi Province,China(Grant No.2016021013).

    ?Corresponding author.E-mail:dxli0426@126.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    李穎
    An overview of quantum error mitigation formulas
    Effect of astrocyte on synchronization of thermosensitive neuron–astrocyte minimum system
    《二次根式》拓展精練
    Assessment of cortical bone fatigue using coded nonlinear ultrasound?
    完形填空專練(三)
    Ultrasonic backscatter characterization of cancellous bone using a general Nakagami statistical model?
    李穎、李鳳華作品
    Human body
    一雉雞翎的傷痛
    小說月刊(2017年8期)2017-08-16 22:34:39
    李穎、李鳳華作品
    精品久久久久久久末码| 夜夜爽天天搞| 91久久精品国产一区二区成人| 久久午夜福利片| 乱系列少妇在线播放| 一级黄片播放器| 色视频www国产| 九九爱精品视频在线观看| 国产精品麻豆人妻色哟哟久久 | 国产探花极品一区二区| 亚洲欧美日韩东京热| 两个人的视频大全免费| 麻豆久久精品国产亚洲av| 色哟哟哟哟哟哟| 只有这里有精品99| 免费电影在线观看免费观看| 一边亲一边摸免费视频| 日韩强制内射视频| 亚洲五月天丁香| 一本一本综合久久| 欧美另类亚洲清纯唯美| 免费人成在线观看视频色| 国产在线男女| 观看免费一级毛片| 99热这里只有是精品50| 青春草视频在线免费观看| 久久精品国产亚洲av涩爱 | 男插女下体视频免费在线播放| 日本撒尿小便嘘嘘汇集6| 亚洲第一电影网av| 久久人妻av系列| 日韩一区二区视频免费看| 亚洲精品乱码久久久v下载方式| 高清毛片免费看| a级毛色黄片| 在线免费观看不下载黄p国产| 亚洲内射少妇av| 国产精品福利在线免费观看| 日韩欧美 国产精品| 搞女人的毛片| 国产黄片美女视频| 九草在线视频观看| 久久久欧美国产精品| 国产成人一区二区在线| 日韩欧美在线乱码| 亚洲精华国产精华液的使用体验 | 久久婷婷人人爽人人干人人爱| 少妇的逼好多水| 亚洲五月天丁香| 亚洲精品粉嫩美女一区| 午夜老司机福利剧场| 午夜精品在线福利| 成人亚洲精品av一区二区| 国产乱人偷精品视频| 成人欧美大片| 午夜久久久久精精品| 韩国av在线不卡| 天堂√8在线中文| av在线天堂中文字幕| 一本久久精品| 高清毛片免费观看视频网站| 久99久视频精品免费| 春色校园在线视频观看| 综合色丁香网| 深夜精品福利| 久久人人精品亚洲av| 久久婷婷人人爽人人干人人爱| 国产乱人视频| 久久久久久久久久久免费av| 看片在线看免费视频| 99久久成人亚洲精品观看| 久久精品国产亚洲网站| 春色校园在线视频观看| а√天堂www在线а√下载| 亚洲欧美清纯卡通| а√天堂www在线а√下载| 国产精品三级大全| 久久久久久久久大av| 中文欧美无线码| 国内精品美女久久久久久| 内射极品少妇av片p| 欧美最黄视频在线播放免费| 国产精品久久久久久久久免| 简卡轻食公司| 99riav亚洲国产免费| 国产黄色小视频在线观看| 国产av不卡久久| 久久久成人免费电影| 成人三级黄色视频| 成年女人永久免费观看视频| 不卡视频在线观看欧美| 欧美+亚洲+日韩+国产| 日日撸夜夜添| 淫秽高清视频在线观看| 亚洲五月天丁香| 国产美女午夜福利| 精品99又大又爽又粗少妇毛片| 一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜 | 五月玫瑰六月丁香| 97热精品久久久久久| 国产69精品久久久久777片| 美女被艹到高潮喷水动态| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说 | 国产亚洲5aaaaa淫片| 91麻豆精品激情在线观看国产| 亚洲av一区综合| 可以在线观看的亚洲视频| 国产高清三级在线| 国产在线男女| 偷拍熟女少妇极品色| 亚洲av免费高清在线观看| 女人被狂操c到高潮| 看片在线看免费视频| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 欧美在线一区亚洲| 亚洲国产色片| 老司机福利观看| 国产伦理片在线播放av一区 | 国产亚洲av嫩草精品影院| 日本爱情动作片www.在线观看| 嫩草影院入口| 国产高清视频在线观看网站| 男女边吃奶边做爰视频| 免费电影在线观看免费观看| 国产av不卡久久| 天美传媒精品一区二区| 欧美色视频一区免费| 亚洲av不卡在线观看| 99久久精品一区二区三区| 国产白丝娇喘喷水9色精品| 久久99精品国语久久久| 丰满人妻一区二区三区视频av| 日韩欧美一区二区三区在线观看| 草草在线视频免费看| 麻豆国产97在线/欧美| 免费人成视频x8x8入口观看| 国产真实乱freesex| 国产91av在线免费观看| 成人欧美大片| 在线观看免费视频日本深夜| 国产高潮美女av| 亚洲美女视频黄频| 欧美性猛交╳xxx乱大交人| 欧美成人一区二区免费高清观看| 国产视频内射| 亚洲三级黄色毛片| 亚洲经典国产精华液单| 国产真实伦视频高清在线观看| 韩国高清视频一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产精品熟女久久久久浪| 久久99热6这里只有精品| 国产高清三级在线| 久久久精品免费免费高清| 国产熟女欧美一区二区| 大香蕉久久成人网| a级毛片免费高清观看在线播放| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 免费观看在线日韩| 一区二区三区精品91| 日韩三级伦理在线观看| 大片免费播放器 马上看| 久久精品国产亚洲网站| 日韩欧美一区视频在线观看| 男女免费视频国产| 少妇人妻久久综合中文| 91久久精品国产一区二区成人| 久久久精品区二区三区| 在线亚洲精品国产二区图片欧美 | 久久影院123| 男女国产视频网站| 天天躁夜夜躁狠狠久久av| 日本wwww免费看| 热re99久久国产66热| 99热6这里只有精品| 亚洲性久久影院| 日韩av在线免费看完整版不卡| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 午夜影院在线不卡| 中文字幕人妻丝袜制服| 日韩大片免费观看网站| 91精品国产国语对白视频| 一级黄片播放器| 三上悠亚av全集在线观看| 免费高清在线观看视频在线观看| 久久人人爽人人爽人人片va| 99久国产av精品国产电影| 国产深夜福利视频在线观看| 在线观看免费视频网站a站| 纵有疾风起免费观看全集完整版| 亚洲综合色网址| 在现免费观看毛片| 黄色欧美视频在线观看| 我的老师免费观看完整版| 高清av免费在线| 国语对白做爰xxxⅹ性视频网站| 黑人巨大精品欧美一区二区蜜桃 | 国产毛片在线视频| 欧美精品一区二区免费开放| 中国国产av一级| 久久人人爽人人片av| 三上悠亚av全集在线观看| 91成人精品电影| 国产av精品麻豆| 亚洲一级一片aⅴ在线观看| 中文字幕精品免费在线观看视频 | 亚洲av成人精品一区久久| 久久精品国产a三级三级三级| 在线播放无遮挡| 大话2 男鬼变身卡| 亚洲国产av新网站| 91精品伊人久久大香线蕉| 又黄又爽又刺激的免费视频.| 伊人久久精品亚洲午夜| 亚洲av中文av极速乱| 97超视频在线观看视频| 亚洲成人手机| 亚洲人成网站在线播| 国产欧美亚洲国产| 3wmmmm亚洲av在线观看| 人人妻人人添人人爽欧美一区卜| 久久精品夜色国产| 日韩,欧美,国产一区二区三区| 最新中文字幕久久久久| av卡一久久| 亚洲三级黄色毛片| 日韩制服骚丝袜av| 在线亚洲精品国产二区图片欧美 | 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 日韩中字成人| 一级毛片我不卡| 蜜桃在线观看..| 欧美日韩成人在线一区二区| av国产精品久久久久影院| 黑人巨大精品欧美一区二区蜜桃 | 在线天堂最新版资源| 26uuu在线亚洲综合色| 丰满迷人的少妇在线观看| 国产成人aa在线观看| 天天影视国产精品| 老司机影院毛片| 成人国产av品久久久| 少妇人妻久久综合中文| 精品久久久精品久久久| av在线老鸭窝| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 22中文网久久字幕| 老司机亚洲免费影院| 久久久久久久久久久免费av| 日本av手机在线免费观看| 秋霞伦理黄片| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 国产黄色免费在线视频| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 久久国产亚洲av麻豆专区| 另类亚洲欧美激情| 夫妻午夜视频| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 制服人妻中文乱码| av视频免费观看在线观看| 免费不卡的大黄色大毛片视频在线观看| 嘟嘟电影网在线观看| 日韩av不卡免费在线播放| 午夜老司机福利剧场| 久久鲁丝午夜福利片| 精品一区在线观看国产| 国产av一区二区精品久久| 免费不卡的大黄色大毛片视频在线观看| 中文字幕亚洲精品专区| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 婷婷色综合www| 免费大片黄手机在线观看| 色哟哟·www| 精品人妻一区二区三区麻豆| 亚洲伊人久久精品综合| 99久久人妻综合| 午夜av观看不卡| 亚洲精品第二区| 免费观看在线日韩| 99久久精品国产国产毛片| 日本黄色日本黄色录像| 免费观看性生交大片5| 国产不卡av网站在线观看| 国产男人的电影天堂91| 精品一区二区三卡| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 搡女人真爽免费视频火全软件| 亚洲成人一二三区av| 亚洲精品乱码久久久久久按摩| 热99国产精品久久久久久7| 夫妻性生交免费视频一级片| 亚洲成人手机| 精品酒店卫生间| 18禁在线播放成人免费| 国产不卡av网站在线观看| 亚洲综合色网址| av黄色大香蕉| 亚洲av.av天堂| 国产欧美日韩一区二区三区在线 | 欧美成人午夜免费资源| 搡女人真爽免费视频火全软件| 麻豆精品久久久久久蜜桃| 亚洲av日韩在线播放| 日韩免费高清中文字幕av| 免费看光身美女| 成人漫画全彩无遮挡| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 国产亚洲av片在线观看秒播厂| 少妇人妻 视频| 国产精品蜜桃在线观看| 少妇丰满av| 美女视频免费永久观看网站| 日本午夜av视频| 欧美丝袜亚洲另类| 亚洲天堂av无毛| 丰满饥渴人妻一区二区三| 日韩一本色道免费dvd| 亚洲国产精品成人久久小说| 母亲3免费完整高清在线观看 | 亚洲精品日韩av片在线观看| 欧美成人精品欧美一级黄| 91国产中文字幕| 国产精品国产三级国产专区5o| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 亚洲国产精品一区二区三区在线| 热99国产精品久久久久久7| 狠狠婷婷综合久久久久久88av| 好男人视频免费观看在线| 女人久久www免费人成看片| 国产高清有码在线观看视频| 女人久久www免费人成看片| 亚洲精品av麻豆狂野| 国产探花极品一区二区| 久久 成人 亚洲| 岛国毛片在线播放| av卡一久久| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| av有码第一页| 亚洲国产最新在线播放| 全区人妻精品视频| 99久国产av精品国产电影| 亚洲欧美精品自产自拍| 亚洲国产精品成人久久小说| 色94色欧美一区二区| 国产高清国产精品国产三级| 97在线人人人人妻| 日韩一本色道免费dvd| 黄色毛片三级朝国网站| 一级毛片aaaaaa免费看小| 精品国产一区二区久久| 国产黄色视频一区二区在线观看| 免费看光身美女| av免费在线看不卡| 最近的中文字幕免费完整| 日韩成人伦理影院| 亚洲av.av天堂| 久久人人爽人人片av| 免费av不卡在线播放| 91久久精品国产一区二区三区| 国产欧美日韩一区二区三区在线 | 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 日本av免费视频播放| 国产精品熟女久久久久浪| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产三级国产专区5o| 九草在线视频观看| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 国产精品偷伦视频观看了| 丝袜脚勾引网站| a级毛片在线看网站| 午夜激情福利司机影院| 超色免费av| 国产精品久久久久久精品古装| 男女免费视频国产| 一级毛片我不卡| 亚洲成色77777| 最后的刺客免费高清国语| 日韩在线高清观看一区二区三区| 精品午夜福利在线看| 男女无遮挡免费网站观看| 免费久久久久久久精品成人欧美视频 | 自拍欧美九色日韩亚洲蝌蚪91| 男女无遮挡免费网站观看| 男女高潮啪啪啪动态图| 精品少妇黑人巨大在线播放| 好男人视频免费观看在线| 一级毛片黄色毛片免费观看视频| 国产片特级美女逼逼视频| 亚洲精品aⅴ在线观看| 久久精品夜色国产| 日本色播在线视频| 亚洲国产精品国产精品| 亚洲av福利一区| 欧美变态另类bdsm刘玥| xxxhd国产人妻xxx| www.av在线官网国产| 99久久综合免费| 肉色欧美久久久久久久蜜桃| 国产精品99久久99久久久不卡 | 超碰97精品在线观看| 国产熟女午夜一区二区三区 | 久久人人爽人人爽人人片va| 日韩在线高清观看一区二区三区| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 国产精品熟女久久久久浪| 日韩人妻高清精品专区| 在线观看www视频免费| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 少妇的逼好多水| 国产伦理片在线播放av一区| 久久韩国三级中文字幕| 大话2 男鬼变身卡| 国产视频内射| 亚洲美女视频黄频| 青春草视频在线免费观看| 中文字幕最新亚洲高清| 国产精品.久久久| 插阴视频在线观看视频| 人妻夜夜爽99麻豆av| 一边摸一边做爽爽视频免费| 3wmmmm亚洲av在线观看| videos熟女内射| 久久久国产一区二区| 91精品一卡2卡3卡4卡| 久久97久久精品| 国产av码专区亚洲av| 美女国产高潮福利片在线看| 国产精品国产三级专区第一集| 女的被弄到高潮叫床怎么办| 少妇人妻 视频| 老女人水多毛片| 午夜久久久在线观看| 国产成人一区二区在线| 热re99久久国产66热| 免费观看av网站的网址| 亚洲精品成人av观看孕妇| 日韩中字成人| 免费少妇av软件| 中国国产av一级| 看十八女毛片水多多多| 日韩欧美精品免费久久| 欧美精品人与动牲交sv欧美| 香蕉精品网在线| 十分钟在线观看高清视频www| 99久久精品一区二区三区| 色视频在线一区二区三区| 久久久久久久久久人人人人人人| 熟女人妻精品中文字幕| av福利片在线| 夜夜爽夜夜爽视频| 天堂8中文在线网| 亚洲av二区三区四区| 亚洲国产色片| 五月伊人婷婷丁香| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 国产免费现黄频在线看| 熟女人妻精品中文字幕| 26uuu在线亚洲综合色| 在线观看一区二区三区激情| 久久ye,这里只有精品| 日韩熟女老妇一区二区性免费视频| 免费日韩欧美在线观看| 亚洲美女黄色视频免费看| 伊人久久国产一区二区| a级毛片免费高清观看在线播放| 久久午夜综合久久蜜桃| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 国产色婷婷99| 久久综合国产亚洲精品| 熟女电影av网| 久久99热6这里只有精品| 精品久久久久久电影网| 80岁老熟妇乱子伦牲交| 久久韩国三级中文字幕| 22中文网久久字幕| 熟妇人妻不卡中文字幕| 国产精品三级大全| 成人免费观看视频高清| 亚洲欧美中文字幕日韩二区| 精品久久久久久久久亚洲| 久久国产精品男人的天堂亚洲 | 大香蕉97超碰在线| 欧美日韩在线观看h| 丝袜喷水一区| 毛片一级片免费看久久久久| 欧美精品人与动牲交sv欧美| 久久久久久久国产电影| 少妇的逼好多水| 成年人免费黄色播放视频| 国内精品宾馆在线| 亚洲天堂av无毛| 亚洲第一av免费看| 久久青草综合色| 制服丝袜香蕉在线| 香蕉精品网在线| 啦啦啦在线观看免费高清www| 麻豆成人av视频| 一本大道久久a久久精品| 一区二区三区精品91| 乱码一卡2卡4卡精品| 久久ye,这里只有精品| 国产男女超爽视频在线观看| 国产黄色视频一区二区在线观看| av免费观看日本| 男人添女人高潮全过程视频| 啦啦啦中文免费视频观看日本| 三级国产精品欧美在线观看| 女的被弄到高潮叫床怎么办| 国产男女内射视频| 久久久国产精品麻豆| 久久久久国产精品人妻一区二区| 极品人妻少妇av视频| 蜜桃在线观看..| av国产精品久久久久影院| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 久久99一区二区三区| 最近的中文字幕免费完整| 这个男人来自地球电影免费观看 | 国产欧美日韩一区二区三区在线 | 啦啦啦啦在线视频资源| 哪个播放器可以免费观看大片| 蜜桃国产av成人99| 美女主播在线视频| 免费黄网站久久成人精品| 亚洲国产精品专区欧美| 国产亚洲精品第一综合不卡 | 黄片播放在线免费| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 精品少妇黑人巨大在线播放| 亚洲精品av麻豆狂野| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 亚洲精品aⅴ在线观看| 亚洲人与动物交配视频| 国产精品成人在线| 18禁动态无遮挡网站| 国产免费现黄频在线看| 人妻少妇偷人精品九色| 国产 一区精品| 在线观看一区二区三区激情| 国产av国产精品国产| 日韩人妻高清精品专区| 亚洲国产精品国产精品| 亚洲情色 制服丝袜| 日本黄大片高清| 国产欧美日韩一区二区三区在线 | 伊人久久精品亚洲午夜| 午夜激情av网站| 久久久久久久久大av| 91精品三级在线观看| 国产 精品1| 色婷婷av一区二区三区视频| 国产伦理片在线播放av一区| 国产老妇伦熟女老妇高清| 精品国产一区二区久久| 日日摸夜夜添夜夜添av毛片| 99久国产av精品国产电影| 免费播放大片免费观看视频在线观看| 久久久欧美国产精品| 99久久精品国产国产毛片| 久久精品久久久久久噜噜老黄| 亚洲精华国产精华液的使用体验| 国产精品久久久久成人av| 少妇丰满av| 国产精品不卡视频一区二区| 日韩亚洲欧美综合| 日韩不卡一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 国产片特级美女逼逼视频| 亚洲伊人久久精品综合| 十八禁网站网址无遮挡| 免费黄色在线免费观看| 精品久久蜜臀av无| 亚洲经典国产精华液单| 妹子高潮喷水视频| 夫妻午夜视频| 狠狠婷婷综合久久久久久88av| 精品99又大又爽又粗少妇毛片| 国产视频首页在线观看| 在线看a的网站| 内地一区二区视频在线|