• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collective motion of active particles in environmental noise?

    2017-08-30 08:26:58QiushiChen陳秋實(shí)andMingJi季銘
    Chinese Physics B 2017年9期

    Qiu-shi Chen(陳秋實(shí))and Ming Ji(季銘)

    National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    Collective motion of active particles in environmental noise?

    Qiu-shi Chen(陳秋實(shí))?and Ming Ji(季銘)

    National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    We study the collective motion of active particles in environmental noise,where the environmental noise is caused by noise particles randomly diffusing in two-dimensional space.We show that active particles in a noisy environment can self organize into three typical phases:polar liquid,band,and disordered gas states.In our model,the transition between band and disordered gas states is discontinuous.Giant number fluctuation is observed in the polar liquid phase.We also compare our results with the Vicsek model and show that the interaction with noise particles can stabilize the band state to very low noise condition.This band structure could recruit most of the active particles in the system,which greatly enhances the coherence of the system.Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors,which may further contribute to improving the design of collective migration and navigation strategies.

    active matter,soft matter,self-organization

    1.Introduction

    Collective behavior of active matter has attracted many physicists’attention recently.It displays various fascinating patterns at every scale,down to molecular motors in the cell, up to large animal groups.[1]For example,actin filaments perform persistent random walk,wave-like structures,spirals and swirls,[2–5]the bacillus subtilis grows a peculiar concentric ring-like pattern,[6,7]E.coli in the lab self organizes into a highly ordered phase through growth and division in a dense colony.[8]Similarly,large living organisms such as locusts perform a disorder to order transition,[9]fish schools and bird flocks provide some complex patterns such as travelling band, milling,and cluster.[10–13]The reason why active matters form evolutionary patterns remains unclear.One possible explanation would be that there exists some inherent benefit to overcome environmental perturbations or other distractions.[14–17]However,there is scarce empirical information about the precise interaction rules between the components of active matters because of the technological difficulties.[18]Physicists are trying to find a minimal model to study these unexpected collective properties.[19,20]

    Vicsek and collaborators provided a metric interaction self-propelled particles model that exhibits a disorder to order phase transition.[21]In this model,particles move in a constant speed and interact locally with their neighbors within a certain radius to keep alignment with the group members.It is interesting that a collective pattern occurs with large particle density and small noise intensity.Some theoretical description of the dynamics of the flocking behavior for self-propelled particles was proposed by Toner and Tu.[22,23]Beyond the previous investigation on the nature of the original Vicsek model,people proposed many variants to describe other kinds of active matter systems.Most of these models only change the angular interaction rules with their neighbors,and usually these models can exhibit spectacular collective behaviors that are reminiscent to fascinating dynamic patterns.[24–33]Indeed,the collective behavior of organisms is responsive to two kinds of interactions:social interaction with their neighbors and interactions with the surrounding environment.[14,15]However, most previous studies in literature mainly focus on the collective motion in response to nearby neighbors,less concentrating on the environmental factor.Individuals may adopt appropriate moving patterns that facilitate group motion in an environmentally dependent way.[15]For example,under environmental stimuli or threat,bird flocks would align more strongly with their neighbors to keep cohesion.[14]Fish schools form a large size group in the alarm treatment and a small one in the food treatment.[34]Bacteria in colonies forms various patterns on artificial surfaces.[35]In particular,E.coli.employs run and tumble locomotion upon environmental stimuli.[36–38]In summary,environmental factors have a great effect on individual and collective behaviors.

    In this paper,we introduce a Vicsek-like model that contains two kinds of particles to investigate the collective motion of the system:active particles that keep alignment with their neighbors and the noise particles randomly diffusing in two dimensional space that lead to the environmental noise introduced here.We study the generic phase behavior of the active particles interacting with the noise particles,in competition with inherent noise and alignment interaction.We show that,under a noisy environment,the system exhibits three typical phases:polar liquid,band and disordered gas states.We also compare our results with the original Vicsek model.In our system,the band state can exist even in a relative low noise region.This effect could help to increase the spatial coherence in collective motion.

    2.Methods and models

    We consider a modified version of the Vicsek model for Naactive particles moving off lattice in a two-dimensional space of linear size L,with periodic boundary conditions,interacting via polar alignment with their neighbors[21]in competition with environmental noise.The noise intensity is proportional to the local density of noise particles.The form of environmental noise in the update rule is analogous to the vector noise introduced in Ref.[39]and inherent scalar noise is also considered.We express the evolution of the j-th particle according to

    3.Results

    Here,we mostly report on the system with v=0.5, ρa(bǔ)=Na/L2=1,R=1,γ=5,and time interval Δt=1. To characterize the global degree of orientational order,we consider the following order parameter,which is defined aswhere Nais the total number of active particles in the system.

    Fig.1.(color online)Phase diagram in the(ρnη)plane.The red region corresponds to the polar liquid state.The blue region corresponds to the band state.The green region corresponds to the disordered gas state.

    As we change the noise level η and noise particles’density ρn,we find three typical phases as shown in Fig.1:the polar ordered liquid state with no band structures in the small η and small ρnregion(Fig.2(a)),the band state with the coexistence of a polar liquid band and disordered gas in an intermediate region(Figs.2(b)–2(d)),and the disordered gas state in the large η and large ρnregion.

    We study the phase transition between different phases on the phase diagram in detail.Firstly,we show the phase transition from the band state to the disordered gas state by increasing noise η.The transition could be well characterized by the measurement of the polar order parameter.At the low noise region,as the noise intensity increases,the order parameter decreases slowly.Further increasing the noise intensity,when it is close to the transition point,the order parameter ? drops sharply to zero,as shown in Fig.3(a).This is the famous discontinuous phase transition from band state to disordered gas state in the original Vicsek model because of the existence of band structure.[39,40]For stronger environmental noise,i.e,the density of noise particles increases,the transition line of the order parameter moves down and the transition point moves left.As we show,the environmental noise decreases the polar order of active particles.

    Fig.3.(color online)(a)The time-averaged order parameter ? vs noise strength η for various densities of noise particles.(b)Binder cumulant value G.(c)Piece of order parameter time series around the transition point(ρn=0.3 and η=0.4).(d)Order parameter distribution around the transition point(ρn=0.3).

    We turn our attention to the question whether the order to disorder phase transition is discontinuous,the same as that in the Vicsek model.A direct method to distinguish first-order phase transition and second-order phase transition is to measure Binder cumulant value G,which is defined as G=1?〈?4〉/3〈?2〉2.If the phase transition is of first-order, G exhibits minimum near the threshold,while for the secondorder phase transition,G does not have minimum near the threshold.As we show in Fig.3(b),in different environmental noise conditions,all of the G curves fall to negative values near the transition point,suggesting a discontinuous transition.The minimum points in this figure indicate the transition points.It is interesting that G keeps a constant value of 0.66 in order state and 0.33 in disordered state,for different ρnvalues.This is the property of G distinguishing different states.

    We also show the time series of the order parameter around the transition point in Fig.3(c).The band state and the disordered gas state are bistable near the transition point.?(t) exhibits strong fluctuations between these two states.High ?(t)values correspond to the band state,while low ?(t)valuescorrespond to the disordered gasstate.The system can stay in both states for a long time and suddenly take a transition to the other state.We further characterize the probability distribution function(PDF)of the order parameter ? near the transition point in Fig.3(d).The blue and black curves with one hump indicate the disordered state and the ordered state,respectively.The red ? curve for η=0.4 demonstrates strongly a bimodal distribution,indicating a discontinuous phase transition.

    Secondly,we study the phase transition from the polar ordered liquid state to the band state on the phase diagram.It is difficult to observe this transition in the measurement of the polar order parameter,because both of these states are of high orientational order.The main difference between these two phases is the existence of the well organized band structures.A clear travelling band is observed in the band state in Figs.2(b)–2(d),while in the polar liquid state the particles are homogeneously distributed without any clear band-like structures(Fig.2(a)).We can distinguish these two states by measuring density fluctuationsand order fluctuationswith the increase of noise strength,[40]whereandAs we show in Figs.4(a)and 4(b),the polar liquid state in the small η region has relative small density fluctuations and order fluctuations with the change of η.When η>0.22,both density and order fluctuations grow rapidly with the increase of η.As we show in Fig.2(a),near the transition,the system has no clear band structures but are globally polar ordered.Further increasing the noise strength η,the system self-organizes into high density and high order band structures(Figs.2(b)–2(d)).We locate the transition point as the point that the fluctuations curve starts to increase;however,this point is hard to locate accurately.For the lower η region,the density fluctuation slowly increases,indicating strong density inhomogeneity created by non-band structures.While the order fluctuation decreases to zero,suggesting a homogeneous profile of order parameterfield.The decouple of density and polar fluctuations is because of the formation of many dense clusters which increases the inhomogeneity of the number density.At the same time, the system is highly ordered with small fluctuation of order parameter.

    Fig.4.(color online)(a)The time-averaged variances of density profiles as a function of noise strength η.(b)The time-averaged variances of order parameter profiles as a function of η.(c)The density profile in the band state.(d)Local order parameter profiles for panel(c).Only active particles are shown.Parameters:L=128,ρn=1,and η=0.3.

    For larger noise strength near η=0.33,robust band structures lead to strong spatial inhomogeneity.As shown in Figs.4(a)and 4(b),with the increase of η,a collective moving polar band emerges and the density fluctuation increases correspondingly in Fig.4(a).Correspondingly,the fluctuation of order parameter is also strong as shown in Fig.4(b).In this regime,particles inside the high density bands are highly ordered,while they are disordered in the background.That is why the spatial fluctuations of the order parameter follow the trend of fluctuations of density in the region 0.26<η<0.4. We now focus on the internal structure of the travelling band. As we show in Figs.4(c)and 4(d),the band does not consist of a single cluster that all particles inside the band move coherently.In fact,the band is a dynamical object made of many individual clusters.The band continuously absorbs clusters,at the same time,the clusters split and leave the band.The order parameter profile also shows that the local order inside the band is high,while it is lower in the background.

    As we further increase the noise intensity η,the bands vanish,leaving a spatially homogeneous disordered phase (Fig.3(a)).Both density fluctuationsand order fluctuationsdecrease to zero in Figs.4(a)and 4(b).The noise dominates the dynamics of the system.In the polar liquid regime,as shown in Fig.5(a),we measure the number fluctuation in a subsystem of various box sizes.For system sizes L=128 and L=256,we find the relationship Δn∝〈n〉αwith α=0.75,which is greater than a power law relation α=0.5 as expected in the equilibrium state.The giant density fluctuation is a typical phenomenon in an active system. The strong fluctuation is due to the formation of dense-packed clusters.The average-neighbor of each particle increases as we decrease the noise down to the polar liquid region,indi-cating the emergence of locally high packed coherent clusters. The formation of a band structure from the polar liquid state to the band state by increasing noise could be understood as the following process.Strong fluctuation of density breaks the liquid clusters,then these clusters reconnect and stabilize into band structures.We look at the density distribution function in the liquid region as shown in Fig.5(b),the probability distribution of high density clusters decreases as the cluster size increases.At the end of this curve,we observe an approximately exponential tail,which is in agreement with the Vicsek model.[41]

    Fig.5.(color online)(a)Giant number fluctuations that the root mean square Δn as a function of particles n contained in boxes of various linear sizes.The green line is a power-law of slope 0.75(ρn=0.1 and η=0.1).(b)PDF of coarse-grained density ρ with measured box size l=4(ρn=0.1 and η=0.1).

    Finally,we consider the limiting case when ρn=0.In this case our model reduces to the original Vicsek model. Recently,the order–disorder transition in the original Vicsek model could be understood as a liquid–gas transition rather than an order–disorder phase transition.[40]Our findings are in agreement with such a scenario that as the noise intensity η increases,the system exhibits three phases:polar liquid at low noise,micro-phase separation with band structure at mediate noise,disordered gas at high noise.In our simulation,we show a phase transition from a disordered state to an ordered one. This order-disorder transition is also observed in experiments on locusts and fish schools.As the density of noise particles increases,there is a rapid transition from highly synchronized behavior to disordered state.Our model is useful for a qualitative understanding of such phenomena.For a low ρncondition,each particle only interacts with a small number of noise particles.Thus,their behaviors mainly depend on the alignment interaction.As the number of noise particles increases, each particle has more“noise”neighbors rather than“active”neighbors.The noise leads to a lower alignment order.In the band state,the particles form some clusters and rapidly aggregate into ordered bands,travelling in a disordered background. We also show that the band state could be extended into a finite ρnregion,but the polar liquid phase as defined above would shrink with the increase of ρn.In general,the system may stay in the coherent moving band state at very low noise,with the introduction of noise particles.While in the original Vicsek model,the band state at the low noise condition already disappears because of the transition to a polar liquid state.

    4.Conclusion

    In this paper,we study the collective motion of self propelled particles in environmental noise.We explore the (ρn,η)parameters plane and show three typical phases:polar liquid,band,and disordered states.When ρnapproaches zero, the system reduces to the original Vicsek model.In comparison with the phase transition in the Vicsek model,we study the phase transition in noise particles condition and find that the transition from order to disorder state is strongly discontinuous,which is in agreement with the Vicsek model.For finite ρn,the disorder region becomes larger because the noise particle can be regarded as a noise source.At the same time, the transition point from band state to liquid phase also shifts to the low noise region.If η is low enough,for finite density of noise particles,active particles can recruit most of the particles into the band structure.This greatly enhances the spatial coherence of the system in the low η condition.However,in the original Vicsek model,the system is spatially homogeneous because of the transition to the polar liquid state. Our findings of complex collective behaviors in environmental noise help us to understand how individuals modify their self-organization by environmental factors,which may further contribute to improving the design of collective migration and navigation strategies.

    Acknowledgment

    We thank the soft matter laboratory in the department of physics,Nanjing University.

    [1]Vicsek T and Zafeiris A 2012 Physics Reports 517 71

    [2]Schaller V,Weber C Semmrich C,Frey E and Bausch A R 2010 Nature 467 73

    [3]Schaller V,Weber C,Frey E and Bausch A R 2011 Soft Matter 7 3213

    [4]Shi X Q and Ma Y Q 2010 Proc.Natl.Acad.Sci.USA 107 11709

    [5]Chen L M 2016 Acta Phys.Sin.65 186401(in Chinese)

    [6]Czirok A,Matsushita M and Vicsek T 2001 Phys.Rev.E 63 031915

    [7]Yamazaki Y,Ikeda T,Shimada H,Hiramatsu F,Kobayashi N,Wakita J,Itoh H,Kurosu S,Nakatsuchi M,Matsuyama T and Matsushita M 2005 Physica D 205 136

    [8]Chen C,Liu S,Shi X Q,Chaté H and Wu Y 2017 Nature 542 210

    [9]Buhl J,Sumpter D J T,Couzin I D,Hale J J,Despland E,Miller E R and Simpson S J 2006 Science 312 1402

    [10]Ballerini M,Calbibbo N,Candeleir R,Cavagna A,Cisbani E,Giardina I,Lecomte V,Orlandi A,Parisi G,Procaccini A,Viale M and Zdravkovic V 2008 Proc.Natl.Acad.Sci.USA 105 1232

    [11]Cavagna A,Cimarelli A,Giardina I,Parisi G,Santagati G,Stefanini G and Viale M 2010 Proc.Natl.Acad.Sci.USA 107 11865

    [12]Herbert-Read J E,Perna A,Mann R P,Schaerf T M,Sumpter D J T and Ward A J W 2011 Proc.Natl.Acad.Sci.USA 108 18726

    [13]Katz Y,Tunstrom K,Ioannou C C,Huepe C and Couzin I D 2011 Proc. Natl.Acad.Sci.USA 108 18720

    [14]Parrish J K and Edelstein-Keshet L 1999 Science 284 99

    [15]Couzin I 2007 Nature 445 715

    [16]Shi X Q,Chaté H and Ma Y Q 2014 New J.Phys.16 035003

    [17]Shi X Q and Ma Y Q 2007 J.Chem.Phys.126 125101

    [18]Nagy M,Akos Z,Biro D and Vicsek T 2010 Nature 464 890

    [19]Farkas I,Helbing D and Vicsek T 2002 Nature 419 131

    [20]Moussaid M,Helbing D and Theraulaz G 2011 Proc.Natl.Acad.Sci. USA 108 6884

    [21]Vicsek T,Czirok A,Jacob E B,Cohen I and Shochet O 1995 Phys.Rev. Lett.75 1226

    [22]Toner J and Tu Y H 1998 Phys.Rev.E 58 4828

    [23]Toner J and Tu Y H 1995 Phys.Rev.Lett.75 4326

    [24]Strombom D 2011 J.Theor.Biol.283 145

    [25]Shi X Q and Ma Y Q 2013 Nat.Commun.4 3013

    [26]Zhang B K,Li J,Chen K,Tian W D and Ma Y Q 2016 Chin.Phys.B 25 116101

    [27]Gregoire G,Chaté H and Tu Y H 2003 Physica D 181 157

    [28]Henkes S,Fily Y and Marchetti M C 2011 Phys.Rev.E 84 040301

    [29]Peruani F,Klauss T,Deutsch A and Voss-Boehme A 2011 Phys.Rev. Lett.106 128101

    [30]Helbing D,Johansson A and Al-Abideen H Z 2007 Phys.Rev.E 75 046109

    [31]Gopinath A,Hagan M F,Marchetti M C and Baskaran A 2012 Phys. Rev.E 85 061903

    [32]Ginelli F,Peruani F,Baer M and Chaté H 2010 Phys.Rev.Lett.104 184502

    [33]Golestanian R 2009 Phys.Rev.Lett.102 188305

    [34]Hoare D J,Couzin I D,Godin J G J and Krause J 2004 Anim.Behav. 67 155

    [35]Peruani F,Deutsch A and Bar M 2012 Phys.Rev.Lett.108 098102

    [36]Polin M,Tuval I,Drescher K,Gollub J P and Goldstein R E 2009 Science 325 487

    [37]Goldstein R E,Polin M and Tuval I 2009 Phys.Rev.Lett.103 168103

    [38]Tailleur J and Cates M E 2008 Phys.Rev.Lett.100 218103

    [39]Gregoire G and Chaté H 2004 Phys.Rev.Lett.92 025702

    [40]Solon A P,Chaté H and Tailleur J 2015 Phys.Rev.Lett.114 068101

    [41]Chaté H,Ginelli F,Gregoire G and Raynaud F 2008 Phys.Rev.E 77 046113

    26 April 2017;revised manuscript

    16 May 2017;published online 18 July 2017)

    10.1088/1674-1056/26/9/098903

    ?Project supported by the National Natural Science Foundation of China(Grant Nos.91427302,91027040,and 11474155)and the National Basic Research Program of China(Grant No.2012CB821500).

    ?Corresponding author.E-mail:qs chen88926@sina.com

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    国产黄色免费在线视频| 免费高清在线观看视频在线观看| 国产精品.久久久| 精品国产一区二区三区久久久樱花| 成人免费观看视频高清| 人体艺术视频欧美日本| 亚洲一码二码三码区别大吗| 亚洲一码二码三码区别大吗| 亚洲人成电影观看| 日韩伦理黄色片| 69精品国产乱码久久久| 欧美bdsm另类| 中国三级夫妇交换| 黄色怎么调成土黄色| 亚洲四区av| 欧美 日韩 精品 国产| 少妇被粗大的猛进出69影院| 久久免费观看电影| 国产精品欧美亚洲77777| 亚洲av免费高清在线观看| av在线app专区| 日韩熟女老妇一区二区性免费视频| 久久99蜜桃精品久久| 欧美中文综合在线视频| 侵犯人妻中文字幕一二三四区| videos熟女内射| 国产精品.久久久| 欧美日韩一级在线毛片| 99久久综合免费| 中文字幕制服av| 国产乱人偷精品视频| 热re99久久精品国产66热6| 中国国产av一级| 啦啦啦在线免费观看视频4| 午夜久久久在线观看| 97在线视频观看| 日韩av免费高清视频| 夫妻午夜视频| 国精品久久久久久国模美| 又黄又粗又硬又大视频| 欧美日韩精品网址| 999精品在线视频| 91成人精品电影| 国产午夜精品一二区理论片| 捣出白浆h1v1| 最近最新中文字幕大全免费视频 | 一本大道久久a久久精品| 亚洲精品第二区| 丝瓜视频免费看黄片| 久久国产精品男人的天堂亚洲| 欧美黄色片欧美黄色片| 国产欧美亚洲国产| 日韩精品有码人妻一区| 亚洲综合色惰| 久久久国产一区二区| 看免费av毛片| 亚洲欧美中文字幕日韩二区| 老司机亚洲免费影院| 少妇熟女欧美另类| 亚洲美女搞黄在线观看| 欧美激情 高清一区二区三区| 天堂中文最新版在线下载| 欧美精品一区二区免费开放| 桃花免费在线播放| 美女xxoo啪啪120秒动态图| 97在线视频观看| 婷婷色综合www| 狂野欧美激情性bbbbbb| 国产成人欧美| 两个人免费观看高清视频| 亚洲成人av在线免费| 久久99蜜桃精品久久| 午夜久久久在线观看| 最近手机中文字幕大全| 久久久久国产精品人妻一区二区| 一边摸一边做爽爽视频免费| 欧美日韩亚洲高清精品| 久久久a久久爽久久v久久| 精品视频人人做人人爽| 精品少妇黑人巨大在线播放| 91午夜精品亚洲一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 午夜久久久在线观看| 嫩草影院入口| 丝袜在线中文字幕| 久久婷婷青草| 精品国产一区二区三区久久久樱花| 亚洲人成77777在线视频| 交换朋友夫妻互换小说| 一区二区三区精品91| 又大又黄又爽视频免费| 国产麻豆69| 18禁裸乳无遮挡动漫免费视频| 丰满乱子伦码专区| 色播在线永久视频| 侵犯人妻中文字幕一二三四区| 亚洲精品一区蜜桃| 精品一品国产午夜福利视频| 日韩熟女老妇一区二区性免费视频| 久久久久久久久久久久大奶| 少妇人妻久久综合中文| 中国国产av一级| 欧美人与性动交α欧美软件| 韩国高清视频一区二区三区| 午夜影院在线不卡| 国产在线免费精品| 街头女战士在线观看网站| 午夜激情久久久久久久| 热re99久久国产66热| 亚洲av免费高清在线观看| 麻豆精品久久久久久蜜桃| 一级爰片在线观看| 捣出白浆h1v1| 一级片免费观看大全| 七月丁香在线播放| 看免费av毛片| 少妇 在线观看| av在线app专区| 亚洲经典国产精华液单| 久久99精品国语久久久| av网站在线播放免费| 嫩草影院入口| 激情视频va一区二区三区| 欧美在线黄色| 国产精品.久久久| 只有这里有精品99| 中文精品一卡2卡3卡4更新| 国产av国产精品国产| 秋霞在线观看毛片| 久久久a久久爽久久v久久| 中文字幕另类日韩欧美亚洲嫩草| 在线观看国产h片| 另类精品久久| 亚洲第一区二区三区不卡| 午夜久久久在线观看| 在线观看www视频免费| 国产在线免费精品| 成人国语在线视频| 777久久人妻少妇嫩草av网站| 1024香蕉在线观看| 美女国产视频在线观看| 韩国av在线不卡| 久久鲁丝午夜福利片| 国产精品秋霞免费鲁丝片| 婷婷色综合www| 免费不卡的大黄色大毛片视频在线观看| 女性被躁到高潮视频| 久久久精品免费免费高清| 大香蕉久久成人网| 美国免费a级毛片| 日韩电影二区| 国产极品粉嫩免费观看在线| 美国免费a级毛片| 久久精品aⅴ一区二区三区四区 | av网站在线播放免费| 国产日韩欧美视频二区| 亚洲男人天堂网一区| 最近的中文字幕免费完整| 最黄视频免费看| 日日撸夜夜添| av卡一久久| 亚洲av在线观看美女高潮| 精品人妻在线不人妻| 亚洲欧美日韩另类电影网站| videos熟女内射| www.av在线官网国产| 免费人妻精品一区二区三区视频| 激情五月婷婷亚洲| 人妻系列 视频| 久久久久精品人妻al黑| 如日韩欧美国产精品一区二区三区| 国产男女内射视频| 黄色配什么色好看| 视频在线观看一区二区三区| 美女xxoo啪啪120秒动态图| 狂野欧美激情性bbbbbb| 波多野结衣av一区二区av| 99re6热这里在线精品视频| 久久久亚洲精品成人影院| 街头女战士在线观看网站| 七月丁香在线播放| 国产av国产精品国产| 久久久久久久久免费视频了| 最黄视频免费看| 一级片'在线观看视频| 男男h啪啪无遮挡| 国产欧美日韩一区二区三区在线| 午夜免费男女啪啪视频观看| 男女下面插进去视频免费观看| 各种免费的搞黄视频| av国产久精品久网站免费入址| 伊人久久大香线蕉亚洲五| 国产一区二区激情短视频 | 久久99蜜桃精品久久| 伦理电影免费视频| 不卡av一区二区三区| 久久亚洲国产成人精品v| 精品久久久久久电影网| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| √禁漫天堂资源中文www| 熟妇人妻不卡中文字幕| 1024视频免费在线观看| 亚洲综合精品二区| 日韩,欧美,国产一区二区三区| 久久久久国产一级毛片高清牌| 国产亚洲一区二区精品| 成年美女黄网站色视频大全免费| 国产av国产精品国产| 久久久国产欧美日韩av| 国产一区二区三区av在线| 国产精品久久久久成人av| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| www.自偷自拍.com| 制服诱惑二区| 97人妻天天添夜夜摸| 国产在线免费精品| 青青草视频在线视频观看| 久久久国产欧美日韩av| 国产欧美日韩综合在线一区二区| 欧美成人午夜精品| 国产福利在线免费观看视频| 午夜91福利影院| 国产不卡av网站在线观看| 日本vs欧美在线观看视频| 少妇人妻精品综合一区二区| 国产成人精品无人区| 日韩成人av中文字幕在线观看| 国产精品久久久av美女十八| 日韩伦理黄色片| 欧美日韩av久久| 色94色欧美一区二区| 多毛熟女@视频| 久久人人97超碰香蕉20202| 日韩人妻精品一区2区三区| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 桃花免费在线播放| 中文字幕制服av| 久久久亚洲精品成人影院| 丰满少妇做爰视频| 五月开心婷婷网| 欧美国产精品一级二级三级| 亚洲欧美色中文字幕在线| 制服诱惑二区| 三级国产精品片| 你懂的网址亚洲精品在线观看| 9色porny在线观看| 亚洲三级黄色毛片| 国产精品亚洲av一区麻豆 | 老汉色av国产亚洲站长工具| 久久ye,这里只有精品| 亚洲少妇的诱惑av| 亚洲美女黄色视频免费看| 老司机影院成人| 免费大片黄手机在线观看| 免费av中文字幕在线| 亚洲少妇的诱惑av| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| 久久人人爽av亚洲精品天堂| 天天影视国产精品| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 国产 一区精品| 男人爽女人下面视频在线观看| 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 91aial.com中文字幕在线观看| 老司机亚洲免费影院| 色94色欧美一区二区| 国产一区二区 视频在线| 欧美97在线视频| 日本wwww免费看| 亚洲精品中文字幕在线视频| 汤姆久久久久久久影院中文字幕| 下体分泌物呈黄色| 满18在线观看网站| 中文字幕精品免费在线观看视频| 色婷婷久久久亚洲欧美| 欧美最新免费一区二区三区| 免费观看无遮挡的男女| 亚洲在久久综合| www.精华液| 在线观看人妻少妇| 性少妇av在线| 日韩制服丝袜自拍偷拍| 国产欧美日韩综合在线一区二区| 久热久热在线精品观看| 两性夫妻黄色片| 日韩 亚洲 欧美在线| 香蕉丝袜av| 亚洲精品av麻豆狂野| 欧美老熟妇乱子伦牲交| av一本久久久久| 国产成人精品一,二区| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 欧美日韩成人在线一区二区| 秋霞在线观看毛片| 国产福利在线免费观看视频| 久久久久网色| 99国产综合亚洲精品| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲 | 成人黄色视频免费在线看| 97精品久久久久久久久久精品| 肉色欧美久久久久久久蜜桃| 日韩免费高清中文字幕av| 日韩熟女老妇一区二区性免费视频| 美女xxoo啪啪120秒动态图| 精品人妻在线不人妻| 最近最新中文字幕免费大全7| 18禁动态无遮挡网站| 2022亚洲国产成人精品| 亚洲五月色婷婷综合| 国产在线免费精品| 又粗又硬又长又爽又黄的视频| 久久99一区二区三区| 亚洲精品久久久久久婷婷小说| 国产一区二区在线观看av| 99久久综合免费| 侵犯人妻中文字幕一二三四区| 久久婷婷青草| 只有这里有精品99| 国产成人免费无遮挡视频| 午夜福利视频在线观看免费| 日韩av不卡免费在线播放| 日本爱情动作片www.在线观看| 日本91视频免费播放| 亚洲精品自拍成人| 男男h啪啪无遮挡| 成年动漫av网址| 亚洲色图 男人天堂 中文字幕| 亚洲国产最新在线播放| 久久久精品免费免费高清| 欧美日韩一级在线毛片| 亚洲av免费高清在线观看| 黄片小视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 女性被躁到高潮视频| 国产成人一区二区在线| 成人国语在线视频| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 欧美日韩亚洲高清精品| 日本av免费视频播放| 一区二区三区激情视频| 街头女战士在线观看网站| 国产精品一二三区在线看| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影 | 亚洲三级黄色毛片| 国产精品免费大片| 80岁老熟妇乱子伦牲交| 一级毛片电影观看| 亚洲欧美成人精品一区二区| 国产精品女同一区二区软件| 伦精品一区二区三区| 久久人人爽av亚洲精品天堂| 国产探花极品一区二区| 久久国产亚洲av麻豆专区| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| www.av在线官网国产| 久久精品久久精品一区二区三区| 在线天堂中文资源库| 日本av手机在线免费观看| 亚洲国产精品999| 青春草亚洲视频在线观看| 久久久欧美国产精品| 国产亚洲最大av| 国产av一区二区精品久久| 色哟哟·www| 欧美变态另类bdsm刘玥| 观看av在线不卡| 侵犯人妻中文字幕一二三四区| 91午夜精品亚洲一区二区三区| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 性色av一级| 91aial.com中文字幕在线观看| 亚洲精品在线美女| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 久久av网站| 亚洲av福利一区| 亚洲国产欧美日韩在线播放| 人体艺术视频欧美日本| 久久影院123| 丁香六月天网| 久久精品亚洲av国产电影网| 毛片一级片免费看久久久久| 一区二区日韩欧美中文字幕| 又大又黄又爽视频免费| 亚洲精品第二区| 熟女电影av网| 日本爱情动作片www.在线观看| 午夜免费观看性视频| 久久这里只有精品19| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 黄色怎么调成土黄色| 秋霞伦理黄片| 亚洲国产av新网站| 少妇人妻精品综合一区二区| 欧美日韩一区二区视频在线观看视频在线| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 国产熟女午夜一区二区三区| 久久久久精品性色| 90打野战视频偷拍视频| 国产人伦9x9x在线观看 | 日韩一卡2卡3卡4卡2021年| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 国产成人a∨麻豆精品| 亚洲,欧美精品.| 精品午夜福利在线看| 久久久久久久国产电影| 这个男人来自地球电影免费观看 | 一二三四在线观看免费中文在| 丝袜美腿诱惑在线| av国产精品久久久久影院| 熟女av电影| 午夜免费鲁丝| 亚洲人成77777在线视频| 欧美人与性动交α欧美软件| 天天躁夜夜躁狠狠久久av| 国产乱来视频区| 如日韩欧美国产精品一区二区三区| 999精品在线视频| 视频区图区小说| 新久久久久国产一级毛片| 亚洲综合色网址| 国产av一区二区精品久久| 久久影院123| 免费大片黄手机在线观看| 青春草亚洲视频在线观看| 两个人免费观看高清视频| 国产97色在线日韩免费| 伊人久久大香线蕉亚洲五| 看非洲黑人一级黄片| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 国产精品国产av在线观看| 中国国产av一级| 黄色配什么色好看| 又黄又粗又硬又大视频| 男的添女的下面高潮视频| 免费黄色在线免费观看| 成人黄色视频免费在线看| 精品少妇一区二区三区视频日本电影 | 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频| 91午夜精品亚洲一区二区三区| 免费黄色在线免费观看| 免费观看性生交大片5| 伦精品一区二区三区| 国产免费视频播放在线视频| 日本-黄色视频高清免费观看| 狂野欧美激情性bbbbbb| 欧美人与性动交α欧美精品济南到 | 久久久久精品人妻al黑| 一级毛片我不卡| 老鸭窝网址在线观看| 国产精品免费视频内射| 男人操女人黄网站| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 久久精品国产亚洲av天美| 国产日韩欧美视频二区| 国产熟女欧美一区二区| 久久99热这里只频精品6学生| 美女中出高潮动态图| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡| 最黄视频免费看| 丰满饥渴人妻一区二区三| 母亲3免费完整高清在线观看 | 丝袜喷水一区| 成人影院久久| 女人久久www免费人成看片| 超碰成人久久| 亚洲人成电影观看| av线在线观看网站| 黑人猛操日本美女一级片| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 中文天堂在线官网| 999精品在线视频| 亚洲av.av天堂| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 亚洲欧美一区二区三区黑人 | 日韩一卡2卡3卡4卡2021年| 久久婷婷青草| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av高清一级| 麻豆精品久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 一区二区日韩欧美中文字幕| 日日摸夜夜添夜夜爱| 高清黄色对白视频在线免费看| 亚洲三区欧美一区| 亚洲伊人久久精品综合| 日韩一区二区视频免费看| 欧美日韩视频高清一区二区三区二| 成人亚洲欧美一区二区av| 亚洲欧美精品综合一区二区三区 | 日韩一区二区三区影片| 日韩一卡2卡3卡4卡2021年| 精品人妻在线不人妻| 亚洲,一卡二卡三卡| 日本-黄色视频高清免费观看| 黄网站色视频无遮挡免费观看| 99热国产这里只有精品6| 国产日韩欧美在线精品| 精品少妇久久久久久888优播| 你懂的网址亚洲精品在线观看| 久久人人爽人人片av| 少妇人妻久久综合中文| 少妇的逼水好多| 高清不卡的av网站| 成人毛片60女人毛片免费| 久热久热在线精品观看| 啦啦啦在线观看免费高清www| 国产探花极品一区二区| 国产精品嫩草影院av在线观看| 欧美日韩视频精品一区| 亚洲第一av免费看| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 香蕉精品网在线| 大码成人一级视频| 亚洲男人天堂网一区| 美国免费a级毛片| 这个男人来自地球电影免费观看 | 精品国产露脸久久av麻豆| 99热全是精品| 久久久久久伊人网av| 午夜免费男女啪啪视频观看| 午夜老司机福利剧场| 最新的欧美精品一区二区| 国产在线一区二区三区精| 成人影院久久| 美女脱内裤让男人舔精品视频| 国产精品国产三级国产专区5o| 七月丁香在线播放| 欧美黄色片欧美黄色片| 国产精品久久久久成人av| 日本色播在线视频| 天天影视国产精品| 亚洲 欧美一区二区三区| 中文天堂在线官网| 韩国精品一区二区三区| 欧美精品av麻豆av| 日本免费在线观看一区| 老汉色∧v一级毛片| 中文精品一卡2卡3卡4更新| 九草在线视频观看| 男人爽女人下面视频在线观看| av福利片在线| 国产午夜精品一二区理论片| 丰满少妇做爰视频| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 1024视频免费在线观看| 亚洲欧洲国产日韩| 人妻少妇偷人精品九色| 天天操日日干夜夜撸| 2021少妇久久久久久久久久久| 伊人亚洲综合成人网| 婷婷成人精品国产| 日本av免费视频播放| 国产无遮挡羞羞视频在线观看| av福利片在线| 亚洲欧美色中文字幕在线| 国产亚洲最大av| 国产在线视频一区二区| 男男h啪啪无遮挡| 国产av精品麻豆| 9热在线视频观看99| 69精品国产乱码久久久| 91成人精品电影| 久久ye,这里只有精品| 成人亚洲精品一区在线观看| 欧美日韩精品网址| 亚洲天堂av无毛| 久久久a久久爽久久v久久| 91久久精品国产一区二区三区| 亚洲国产日韩一区二区| 日本欧美国产在线视频| 边亲边吃奶的免费视频| 超碰成人久久| 精品福利永久在线观看| 亚洲欧美日韩另类电影网站| 国产精品无大码| 天天躁夜夜躁狠狠躁躁| 日本vs欧美在线观看视频| 久久婷婷青草| 美女xxoo啪啪120秒动态图| www.av在线官网国产| 日韩免费高清中文字幕av| 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| 日韩不卡一区二区三区视频在线| 国产亚洲av片在线观看秒播厂| 色哟哟·www| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 欧美精品人与动牲交sv欧美| 亚洲精品在线美女|