• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flocking and clustering in mixtures of selfpropelled particles with or without active reorientation

    2023-12-06 01:43:04LuChenandTu
    Communications in Theoretical Physics 2023年11期

    Lu Chen and Z C Tu

    1 Department of Physics,Beijing Normal University,Beijing 100875,China

    2 Complex Systems Division,Beijing Computational Science Research Center,Beijing 100193,China

    Abstract We study phase behaviors of mixtures comprising active particles with and without active reorientation by varying mixing ratios.We observe that the order parameter characterizing flocking in the steady state exhibits a linear decrease with an increase in mixing ratio.While the order parameter characterizing clustering in the steady state presents a sharp leap as the mixing ratio increases.Particularly,we obtain phase diagrams of flocking under different mixing ratios and observe that the domain corresponding to flocking experiences a contraction with the increase of mixing ratio.Simultaneously,the coordinates of the critical point on the phase boundary between the flocking and the disordered phase decay exponentially with the mixing ratio.

    Keywords: active matter,flocking,clustering,binary system

    1.Introduction

    Active matter,comprising plenty of self-propelled agents that move in fluids or more complex environments [1–3],commonly exists in biological systems and exhibits a variety of exotic collective behaviors,such as traveling wave [4],synchronization [5,6],clustering [7–10],critical coexistence phase [11–13] and so on.Recent advances in the field of active matter have opened up a new realm of research and revealed intriguing phase behaviors in mixtures of active and passive particles [14–20].Dolai et al observed motilityinduced phase separation [14] in binary mixtures of small active and big passive particles with soft repulsive interactions.Wang et al introduced a small number of active particles into a system of passive particles,and then they found that the diffusion of passive particles is enhanced [15].Kolb and Klotsa demonstrated motility-induced phase separation upon varying the activity in binary mixtures of fast and slow self-propelled particles [16].Pearce and Giomi considered an active system consisting of leaders and followers,and investigated how flocks respond to leadership and make decisions [17].Many emergent behaviors of active matter can be well-reproduced by models with an explicit local alignment interaction [21],and an inelastic collision rule [22]between a particle’s orientation and propulsion.However,none of these models explicitly include collision avoidance which is a movement strategy commonly adopted by animals[23–25].In our previous work [26,27],we presented a model of self-propelled disks with active reorientation in analogy to collision avoidance in animal herds.We found the coupling of self-propulsion and active reorientation leads to rich phases including clustering and collective flocking without explicit alignment interaction.

    To the best of our knowledge,there is a lack of investigations on binary mixtures of self-propelled particles with or without active reorientation.In this work,we focus on this kind of binary mixture and study the phase behaviors(flocking and clustering) by varying mixing ratios of particles without active reorientation.We find that the order parameter characterizing flocking in the steady state of the system decreases linearly with the increase in mixing ratio.On the contrary,the order parameter characterizing clustering in the steady state sharply rises with the increase of mixing ratio and then reaches a relatively large level.We obtain phase diagrams in the steady state under different mixing ratios.We observe that the domain corresponding to flocking is contracted with the increase of mixing ratio and that the coordinates of the critical point in the phase boundary between the flocking and the disordered phase decay exponentially with respect to the mixing ratio.

    Figure 1.Collision avoidance of particles with active reorientation.

    The rest of this paper is organized as follows.In section 2,we briefly introduce our model and simulation method.In section 3,we discuss the evolution of order parameters under different mixing ratios.In section 4,we explore phase diagrams in the steady state under different mixing ratios.The last section is a brief summary.

    2.Model and method

    Our study focuses on an active collision avoidance model,which was developed in our previous work [27].This model comprehensively incorporates collision avoidance within interaction rules,which is a common strategy observed in motile animals moving in herds.As shown in figure 1,when two particles imminently collide,they can actively adjust their orientations to avoid collisions.That is,active reorientation only occurs at the moment of collisions.The model consists of self-propelled disks with a diameter d in a two-dimensional square box of length L.The total number of disks is N,and the position of disk i is denoted as ri.The self-propulsion direction of disk i is denoted byni≡(c osθi,sinθi),where θirepresents the angle between the self-propulsion direction of disk i and the x-axis.The motion of the disk i is governed by the following equations:

    The first equation describes the translational motion of disk i.Here,v0denotes the magnitude of self-propelled velocity and μ is the mobility.Fijis the force acting on disk i from disk j,which is expressed as Fij=k(d -rij)ε(rij-d)rij/rij,where rij≡ri-rjand rij≡|ri-rj|.?zis a normal vector of the plane pointing to the reader.ε(·) represents the Heaviside function.Parameter k represents the strength of the two-body interaction between disks.The first term in the right-hand side of equation (1) indicates that when the disk i does not overlap with other disks,it is self-propelled.The second equation describes the rotational motion of disk i.ηi(t) is Gaussian white noise with 〈ηi(t)〉=0 and 〈ηi(t)ηj(t′)〉 =σ2δi jδ(t-t′),where σ represents the strength of noise.αiδ(t) is the angular velocity,generated by active reorientation when two disks get close to each other.This term indicates that active reorientation only occurs at the moment of collisions.Here we consider a mixture with two types of self-propelled particles.One comprises normal particles with active reorientation,while the other consists of abnormal particles without active reorientation.If disk i is a normal particle,αiis assigned to a positive value α.If disk i is an abnormal particle,αiis zero,which means disk i can not actively reorient when it gets close to other disks.

    We investigate phase behaviors in this binary mixture.The proportion of abnormal particles in the mixture is named mixing ratio q.We randomly select abnormal particles for a given q in initial states and observe corresponding steady states.We find two distinctive phases in the steady state under different mixing ratios.One is flocking,where almost all particles move roughly in the same direction.The other is clustering,where a certain amount of particles aggregate together.In figure 2,we present snapshots of initial states and steady states under q=0.01 and q=0.1.

    When a small number of abnormal particles are initially introduced into the system (q is 0.01) withα=0.01,=0.01,starting from a random state [fgiure 2(a)],the system eventually evolves to a flocking state as shown in figure 2(b).Figure 2(c) presents the initial random state with q=0.1.The system finally evolves into a clustering state[(figure 2(d)] rather than a flocking state.For more detailed observations,we find that normal and abnormal particles are still mixed together without separation.And that their distribution appears relatively uniform.

    Figure 2.Snapshots of initial states and steady states of the system under different mixing ratios.Red represents normal particles.Blue represents abnormal particles.Black arrows indicate the direction of particle velocity.(a) initial state (disordered phase) with q=0.01.(b)steady state (flocking) with q=0.01.(c) initial state (disordered phase) with q=0.1.(d) steady state (clustering) with q=0.1.

    3.Evolution of order parameters under different mixing ratios

    In the previous section,we observed that different mixing ratios result in two different phases (flocking and clustering)in the steady state.In this section,we consider the evolution of two order parameters characterizing the flocking and clustering phases from a quantitative point of view.

    The flocking phase is described by an order parameter defnied byM=,where the average 〈〉is taken over all N particles.M ≈0 indicates a disordered phase,whereas M ≈1 indicates perfect flocking.Clustering is characterized by another parameter ρ which is specified as below.We measure the local density for each disk by calculating the Voronoi cell [28].By numerical simulation,we find that when local density is larger than a certain threshold[26],the disk is located in a certain dense cluster.Then ρ is defined by the fraction of particles located in the dense cluster[29].ρ ≈0 indicates no cluster phase,whereas ρ ≈1 perfect cluster phase.

    The evolutions of order parameters M and ρ with α=0.01,=0.01 are shown in figure 3,from which we find that the introduction of abnormal particles hinders flocking while enhancing the formation of clusters.The time evolution of M under different mixing ratios is shown in figure 3(a).When the system starts from a homogeneous state with an initial random distribution of orientation and position,as we can see,for q <1,M exhibits a clear growth with time,then tends to saturation value around 2,000,000 timesteps,and then eventually reaches a steady value.With q increasing,the degree of flocking decreases when the system reaches a steady state.The flocking is suppressed since the abnormal particles disrupt the alignment between the normal particles with active reorientation.Figure 3(b) shows the time evolution of ρ under different mixing ratios.When q is small,ρ develops a peak at the first stage and then goes through a sharp descent.This indicates that clusters are formed and then disintegrated.When q is large enough,ρ still remains a finite value finally.This implies that the clusters robustly exist rather than disappear.

    Figure 3.Time series of order parameters under different mixing ratios: (a) The evolution of M;(b) The evolution of ρ.

    Figure 4.Order parameters in steady states under different mixing ratios.Hollow points: Ms as a function of q;solid points: ρs as a function of q.

    Figure 5.Phase diagrams with different mixing ratios.Mixing ratio q=0.05,0.10,0.15,0.20,0.30 and 0.5,respectively.

    Figure 6.Contour lines with Ms=0.5 and critical points under q=0.05,0.10,0.15,0.20,0.30 and 0.5 in {α,?σ} space.

    Figure 7.The relationship between αc,and q.We show the error bar for αc since the values of αc cannot be accurately extracted from the phase diagram.

    Comparing figure 3(a) and figure 3(b),we observe that the timescale for the formation of flocking states exceeds that for the system reaching a metastable clustering state.The underlying cause for the above phenomenon is that clustering is a relatively rapid process that involves local particle rearrangements,while flocking is comparatively slow due to the negotiation of particle orientations throughout the entire system.

    In figure 3,we specifically present two extreme cases.When q=1 the system exhibits a disordered state (M ≈0)and highly clustering phase (ρ ≈0.8) in the steady state,which is consistent with the results in previous work [7].When q approaches 0,the steady state of the system is highly ordered (M ≈1) without clustering (ρ ≈0) which is consistent with previous work [27].

    4.Steady states under different mixing ratios

    In this section,we focus on steady states of the system.Order parameters in the steady state withα=0.01,=0.01under different mixing ratios (q=0.05,0.1,0.2,0.5,1.0) are presented in figure 4,where Msand ρsrepresent the values of M and ρ in the steady state,respectively.Hollow points in figure 4 imply a pretty good linear relationship between Msand q,which may be expressed as:

    Here, M0should depend on both α and ?σ.In figure 4,the fitted value of M0is 0.98.This linearity is qualitatively understood as follows: the presence of abnormal particles disrupts the alignment between the normal particles with active reorientation,leading to the suppression of flocking.Solid points in figure 4 show ρsversus different mixing ratios,which suggests a behavior of Heaviside-like function.A transition occurs at q=0.1,which indicates that 10% of abnormal particles will lead to a qualitative change in the system.

    Next,we investigate the phase diagram of flocking in the steady state with different mixing ratios.For given q,we calculate Mswith different sets of α and ?σ.The results are shown in figure 5.The phase boundaries between flocking and disordered phases are determined by the contour line corresponding to Ms=0.5 (dash lines shown in figure 5).According to previous studies [8],the steady state of active systems merely with self-propulsion is clustered and disordered.That means when α=0,no matter what the value of ?σis,M should be around 0,which implies that flocking can not appear in the steady state.However,introducing active reorientation allows the system to ultimately evolve to an ordered state (flocking) in the steady state [27].When two particles get close to each other,small active reorientation(α is small) promotes local velocity alignment,while large active reorientation (α is large) makes the orientations of particles adjust too much to align properly.Thus,small α facilitates the formation of flocking,but large α makes the system tend to be disordered.And as we know,it is obvious that large random noise will disrupt flocking and make the system disordered.Therefore,the phase diagram in figure 5 is the result of competition between α (related to scattering) and ?σ(related to self-diffusion).The necessary conditions for the formation of flocking are as follows: (i) α is nonvanishing but not too large;(ii) the noise is relatively small such that α plays a dominant role.Under the constraints of the above conditions,the region of flocking in the phase diagram presents an arched shape as shown in figure 5.When noise is absent,both too small and too large α can not make orientations of two particles align perfectly,so an optimal α exists in the system.Under this optimal α,the system reaches the most ordered state.As the strength of noise increases,the degree of order of the system will gradually decrease.When the strength of noise exceeds a certain threshold,the order is disrupted.This threshold and the optimal α determine the coordinates of the critical point in the phase diagram.

    From figure 5,we find that the domains of flocking shrink with the increase of q.We extract phase boundaries corresponding to different q from phase diagrams and specially mark the coordinates (αc,) of each critical point according to each phase boundary as shown in figure 6.We observe that bothand αcdecrease and move towards the origin with the increase of q.The shrink of the domains of flocking and the movement of the critical point can be intuitively understood as follows: the presence of abnormal particles disrupts the alignment between the normal particles with active reorientation,which is equivalent to reducing the contribution of α.Therefore,the more abnormal particles are introduced,the harder the formation of flocking.In figure 7,we specially demonstrate the relationship between αc,and q.By fitting the data,we find that both αcanddecay exponentially with respect to q,that is,αc=0.11e-5.2qand=0.10e-4.5q.

    5.Conclusion and discussion

    In this paper,we demonstrate the effect of mixing ratio on flocking and clustering.Unlike previous work which focuses on mixtures of passive particles and self-propelled particles[14,15,18],our study concentrates on a mixture of selfpropelled particles with or without active reorientation when two particles get close to each other.Our work reveals a clearly linear decrease in the degree of flocking in the steady state of the system as the mixing ratio increases.We have constructed phase diagrams for the steady state under various mixing ratios.Notably,the coordinate of the critical point on the phase boundary between flocking and disordered phases shows an exponential decay with respect to the mixing ratio.However,we cannot provide a theoretical explanation for these quantitative relations mentioned above at the present stage.We look forward to theoretical explanations and experimental investigations on these compelling findings in the future.

    Acknowledgments

    We wish to acknowledge helpful suggestions from X L Xu.We also thank computational support from the Beijing Computational Science Research Center.The research was supported by the National Natural Science Foundation of China (Grant No.11 975 050).

    亚州av有码| 亚洲经典国产精华液单| 亚洲av不卡在线观看| 嫩草影院入口| 丰满乱子伦码专区| 亚洲精品亚洲一区二区| 可以在线观看毛片的网站| 亚洲四区av| 亚洲av美国av| 1000部很黄的大片| 免费人成在线观看视频色| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美精品综合久久99| 琪琪午夜伦伦电影理论片6080| 大又大粗又爽又黄少妇毛片口| 国产精品美女特级片免费视频播放器| 十八禁网站免费在线| 久久婷婷人人爽人人干人人爱| 不卡视频在线观看欧美| 男女啪啪激烈高潮av片| 最近最新中文字幕大全电影3| 久久午夜福利片| 琪琪午夜伦伦电影理论片6080| 欧美又色又爽又黄视频| 亚洲精品一区av在线观看| av天堂在线播放| 97人妻精品一区二区三区麻豆| 亚洲最大成人中文| 国内久久婷婷六月综合欲色啪| 国内毛片毛片毛片毛片毛片| 久久这里只有精品中国| 国产精品一区二区性色av| 国产在线男女| 亚洲精品456在线播放app | 免费黄网站久久成人精品| 亚洲欧美清纯卡通| 亚洲最大成人av| 日本与韩国留学比较| 特级一级黄色大片| 精品午夜福利视频在线观看一区| 在线观看一区二区三区| 欧美三级亚洲精品| 国产乱人伦免费视频| av黄色大香蕉| 亚洲国产色片| 国模一区二区三区四区视频| 九色成人免费人妻av| 久久久久久久久大av| 久久精品人妻少妇| 少妇的逼水好多| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩卡通动漫| 免费不卡的大黄色大毛片视频在线观看 | 国产一区二区三区视频了| 精品久久久久久久久久免费视频| 色精品久久人妻99蜜桃| 国产精品三级大全| 男人舔女人下体高潮全视频| 亚洲中文字幕一区二区三区有码在线看| 国内久久婷婷六月综合欲色啪| 免费观看的影片在线观看| 免费搜索国产男女视频| 亚洲av一区综合| 最近视频中文字幕2019在线8| 国产 一区精品| 国产高清视频在线播放一区| 亚洲经典国产精华液单| 国产伦在线观看视频一区| 久久久久久久久中文| 亚洲人成网站在线播| 毛片女人毛片| 欧美性猛交╳xxx乱大交人| 少妇被粗大猛烈的视频| 91久久精品电影网| 不卡视频在线观看欧美| 日韩一区二区视频免费看| 国产v大片淫在线免费观看| 极品教师在线视频| 国产人妻一区二区三区在| 偷拍熟女少妇极品色| 精品午夜福利在线看| 热99在线观看视频| 欧美+亚洲+日韩+国产| 精品一区二区三区人妻视频| 国产伦一二天堂av在线观看| 观看免费一级毛片| 中文字幕免费在线视频6| 51国产日韩欧美| 最近在线观看免费完整版| 18禁裸乳无遮挡免费网站照片| 自拍偷自拍亚洲精品老妇| 免费看a级黄色片| 日本免费一区二区三区高清不卡| 精品一区二区三区av网在线观看| bbb黄色大片| 亚洲最大成人手机在线| 午夜激情欧美在线| 一区二区三区免费毛片| 亚洲av熟女| 99九九线精品视频在线观看视频| 国产精品一区二区性色av| 两个人的视频大全免费| 国产伦一二天堂av在线观看| 可以在线观看毛片的网站| 日本三级黄在线观看| 成人二区视频| 一级av片app| 免费看日本二区| 51国产日韩欧美| 国产人妻一区二区三区在| 午夜福利视频1000在线观看| 欧美黑人巨大hd| 日日干狠狠操夜夜爽| 偷拍熟女少妇极品色| 嫩草影院精品99| 中文字幕熟女人妻在线| 国产黄a三级三级三级人| 黄色女人牲交| 亚洲第一电影网av| 极品教师在线视频| 中文字幕免费在线视频6| 日本撒尿小便嘘嘘汇集6| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩卡通动漫| 成年免费大片在线观看| 亚洲国产精品成人综合色| 99在线视频只有这里精品首页| 国产精品人妻久久久影院| 久久精品国产鲁丝片午夜精品 | 国产v大片淫在线免费观看| 国产单亲对白刺激| 中文字幕精品亚洲无线码一区| 亚洲五月天丁香| 色精品久久人妻99蜜桃| 美女高潮的动态| 精品无人区乱码1区二区| 亚洲av免费高清在线观看| 嫁个100分男人电影在线观看| 亚洲精品色激情综合| 亚洲无线在线观看| 欧美精品国产亚洲| 日本 av在线| 国产免费av片在线观看野外av| 久久精品人妻少妇| 亚洲av中文av极速乱 | 99久久精品热视频| 久久久久久九九精品二区国产| av在线老鸭窝| 国内精品久久久久精免费| 联通29元200g的流量卡| 午夜精品一区二区三区免费看| 给我免费播放毛片高清在线观看| 亚洲自偷自拍三级| 精品人妻1区二区| 国产精品99久久久久久久久| 婷婷亚洲欧美| 亚洲av成人精品一区久久| 桃色一区二区三区在线观看| 欧美xxxx黑人xx丫x性爽| 69人妻影院| 亚洲国产精品成人综合色| 欧美zozozo另类| 午夜亚洲福利在线播放| 最后的刺客免费高清国语| 国产三级在线视频| 亚洲精品亚洲一区二区| 国产午夜精品久久久久久一区二区三区 | 国产精品国产高清国产av| 人妻丰满熟妇av一区二区三区| 天天躁日日操中文字幕| 身体一侧抽搐| 国产高清不卡午夜福利| 一级黄色大片毛片| 1000部很黄的大片| 国产一区二区三区av在线 | 狂野欧美激情性xxxx在线观看| 人妻制服诱惑在线中文字幕| 欧美日本视频| 伦理电影大哥的女人| 久久热精品热| 国产主播在线观看一区二区| 高清日韩中文字幕在线| 久久久久久国产a免费观看| 天天躁日日操中文字幕| 麻豆成人午夜福利视频| 免费在线观看成人毛片| 简卡轻食公司| 久久精品国产亚洲av天美| 黄色一级大片看看| 亚洲成人免费电影在线观看| 麻豆久久精品国产亚洲av| 一区二区三区激情视频| 国产精品综合久久久久久久免费| 在线天堂最新版资源| 国产女主播在线喷水免费视频网站 | 精品一区二区三区av网在线观看| 久久久久久久亚洲中文字幕| a级一级毛片免费在线观看| 国语自产精品视频在线第100页| 国产毛片a区久久久久| 在线观看66精品国产| 亚洲中文字幕日韩| 国产精品久久久久久久电影| 日本-黄色视频高清免费观看| 特级一级黄色大片| 国产乱人伦免费视频| 亚洲人成网站在线播放欧美日韩| 国产乱人伦免费视频| 一区二区三区高清视频在线| 色在线成人网| 久久精品久久久久久噜噜老黄 | 久久99热6这里只有精品| 国产精品伦人一区二区| 尤物成人国产欧美一区二区三区| 国产精品一区www在线观看 | 亚洲欧美日韩东京热| 看片在线看免费视频| 欧美日本视频| 欧美日韩瑟瑟在线播放| 免费无遮挡裸体视频| 国产女主播在线喷水免费视频网站 | 精品国内亚洲2022精品成人| 久久久久久久久中文| 十八禁国产超污无遮挡网站| 精品久久久久久久人妻蜜臀av| 国产av一区在线观看免费| 免费观看精品视频网站| 赤兔流量卡办理| 久久久久国产精品人妻aⅴ院| av黄色大香蕉| 赤兔流量卡办理| 亚洲国产精品合色在线| 变态另类成人亚洲欧美熟女| 国产午夜精品久久久久久一区二区三区 | 性插视频无遮挡在线免费观看| 香蕉av资源在线| 欧美一区二区国产精品久久精品| 欧美黑人欧美精品刺激| 欧美一区二区国产精品久久精品| 国产免费av片在线观看野外av| 亚洲美女黄片视频| 国产精品一及| 高清毛片免费观看视频网站| 麻豆成人午夜福利视频| 如何舔出高潮| 国产又黄又爽又无遮挡在线| 在线国产一区二区在线| av天堂中文字幕网| 2021天堂中文幕一二区在线观| 悠悠久久av| 亚洲精品日韩av片在线观看| 麻豆国产97在线/欧美| 天天躁日日操中文字幕| 在线免费观看不下载黄p国产 | 久久久久免费精品人妻一区二区| 国产亚洲精品综合一区在线观看| 日本在线视频免费播放| 精品久久久久久久久久免费视频| 久久精品国产亚洲av天美| 最近在线观看免费完整版| 成人二区视频| 免费看av在线观看网站| 国产v大片淫在线免费观看| 亚洲在线自拍视频| 国产精品99久久久久久久久| 亚洲中文字幕日韩| 亚洲成人中文字幕在线播放| 国产极品精品免费视频能看的| 成人高潮视频无遮挡免费网站| 不卡视频在线观看欧美| 一进一出抽搐gif免费好疼| 一a级毛片在线观看| 亚洲国产欧美人成| 日本一二三区视频观看| 成人鲁丝片一二三区免费| 女的被弄到高潮叫床怎么办 | 日韩在线高清观看一区二区三区 | 又爽又黄无遮挡网站| 国产av麻豆久久久久久久| 日韩,欧美,国产一区二区三区 | 欧美潮喷喷水| av福利片在线观看| av中文乱码字幕在线| 97人妻精品一区二区三区麻豆| 又紧又爽又黄一区二区| 午夜福利在线在线| 国产精品日韩av在线免费观看| 国产黄色小视频在线观看| 乱系列少妇在线播放| 欧美国产日韩亚洲一区| 99久久九九国产精品国产免费| 全区人妻精品视频| 免费电影在线观看免费观看| 亚洲狠狠婷婷综合久久图片| 91久久精品国产一区二区成人| 91在线精品国自产拍蜜月| 欧美色视频一区免费| 麻豆av噜噜一区二区三区| 日本一本二区三区精品| 日韩,欧美,国产一区二区三区 | av在线老鸭窝| 亚洲三级黄色毛片| 国产精品久久久久久久电影| 在线免费观看的www视频| 少妇猛男粗大的猛烈进出视频 | 色综合站精品国产| 亚洲国产色片| 国产成人a区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 欧美三级亚洲精品| 午夜a级毛片| 听说在线观看完整版免费高清| 国产真实伦视频高清在线观看 | 一个人观看的视频www高清免费观看| 成人av在线播放网站| 亚洲,欧美,日韩| 国产三级在线视频| 九色成人免费人妻av| 99久久精品国产国产毛片| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 午夜福利高清视频| avwww免费| 欧美黑人巨大hd| 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 97人妻精品一区二区三区麻豆| 波多野结衣高清作品| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 色综合婷婷激情| 国产三级中文精品| 美女xxoo啪啪120秒动态图| 国产亚洲欧美98| 国产毛片a区久久久久| 深夜a级毛片| 欧美性猛交╳xxx乱大交人| 好男人在线观看高清免费视频| 观看免费一级毛片| 欧美+亚洲+日韩+国产| 天堂动漫精品| 男插女下体视频免费在线播放| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 丰满人妻一区二区三区视频av| 亚洲七黄色美女视频| 欧美中文日本在线观看视频| 国产亚洲精品综合一区在线观看| 国产亚洲精品久久久久久毛片| 在线观看一区二区三区| 午夜亚洲福利在线播放| 午夜激情欧美在线| 看片在线看免费视频| av在线蜜桃| 精品午夜福利在线看| 在现免费观看毛片| 精品久久久久久久久久免费视频| 日韩精品中文字幕看吧| 日本五十路高清| 极品教师在线免费播放| 欧美成人免费av一区二区三区| 午夜视频国产福利| 美女大奶头视频| 啪啪无遮挡十八禁网站| 久久久国产成人免费| 精品人妻一区二区三区麻豆 | 欧美日韩瑟瑟在线播放| 精品福利观看| 亚洲精品一区av在线观看| 国产精品福利在线免费观看| 神马国产精品三级电影在线观看| 国产午夜精品久久久久久一区二区三区 | 十八禁网站免费在线| 一级黄片播放器| 国产毛片a区久久久久| 国产成人福利小说| 别揉我奶头 嗯啊视频| 五月伊人婷婷丁香| 午夜精品久久久久久毛片777| 日韩一区二区视频免费看| 日本色播在线视频| 中国美女看黄片| 国产精品永久免费网站| 日本免费一区二区三区高清不卡| 琪琪午夜伦伦电影理论片6080| 又爽又黄无遮挡网站| 国产精品久久久久久亚洲av鲁大| 国产主播在线观看一区二区| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| 少妇人妻一区二区三区视频| 日韩精品有码人妻一区| 亚洲欧美精品综合久久99| 日韩欧美在线二视频| 真实男女啪啪啪动态图| 免费黄网站久久成人精品| 最新在线观看一区二区三区| 国产亚洲欧美98| 成人二区视频| 狠狠狠狠99中文字幕| 久久亚洲精品不卡| 日本黄大片高清| 夜夜看夜夜爽夜夜摸| 成人综合一区亚洲| 日韩高清综合在线| 一个人观看的视频www高清免费观看| 久久欧美精品欧美久久欧美| 人人妻,人人澡人人爽秒播| 香蕉av资源在线| 免费无遮挡裸体视频| 黄色日韩在线| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 欧美成人性av电影在线观看| 亚洲国产色片| 精品欧美国产一区二区三| 欧美极品一区二区三区四区| 人妻久久中文字幕网| 久久久久久久亚洲中文字幕| 伦精品一区二区三区| 国产视频一区二区在线看| 日本五十路高清| 国内揄拍国产精品人妻在线| eeuss影院久久| 极品教师在线免费播放| 91在线精品国自产拍蜜月| 毛片一级片免费看久久久久 | 99精品在免费线老司机午夜| 人人妻人人看人人澡| 精品一区二区三区视频在线观看免费| 亚洲精品一区av在线观看| 久久亚洲精品不卡| 久久人人爽人人爽人人片va| 中亚洲国语对白在线视频| 亚洲av不卡在线观看| 亚洲欧美日韩高清在线视频| 亚洲色图av天堂| 男人舔奶头视频| 长腿黑丝高跟| 国产精品一区二区免费欧美| 国内精品一区二区在线观看| 美女免费视频网站| 黄色女人牲交| 亚洲内射少妇av| 国产高清有码在线观看视频| а√天堂www在线а√下载| 天美传媒精品一区二区| 国产免费一级a男人的天堂| 小蜜桃在线观看免费完整版高清| 亚洲av第一区精品v没综合| 国内揄拍国产精品人妻在线| 亚洲中文字幕一区二区三区有码在线看| 国产av一区在线观看免费| 亚洲四区av| 国内毛片毛片毛片毛片毛片| 午夜影院日韩av| 一个人看的www免费观看视频| 国产v大片淫在线免费观看| 亚洲精品影视一区二区三区av| 18禁黄网站禁片免费观看直播| 欧美高清成人免费视频www| 免费看av在线观看网站| 日韩欧美精品免费久久| 成年女人永久免费观看视频| 亚洲精品日韩av片在线观看| 一区二区三区激情视频| 日韩在线高清观看一区二区三区 | 亚洲久久久久久中文字幕| 伦精品一区二区三区| 午夜精品久久久久久毛片777| 最新中文字幕久久久久| 永久网站在线| 国产单亲对白刺激| 国产精品女同一区二区软件 | 高清日韩中文字幕在线| 乱人视频在线观看| 男插女下体视频免费在线播放| 麻豆成人午夜福利视频| 欧美成人免费av一区二区三区| 最近中文字幕高清免费大全6 | a级毛片a级免费在线| 一边摸一边抽搐一进一小说| 三级毛片av免费| 禁无遮挡网站| 美女高潮的动态| 人妻丰满熟妇av一区二区三区| 亚洲第一电影网av| 91狼人影院| 男人舔奶头视频| 88av欧美| 少妇猛男粗大的猛烈进出视频 | 午夜亚洲福利在线播放| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清专用| 国产又黄又爽又无遮挡在线| 中文字幕久久专区| 一区二区三区高清视频在线| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清专用| 中文字幕久久专区| 亚洲成人久久性| 深夜精品福利| 日本 欧美在线| 免费看av在线观看网站| 久久精品国产亚洲av涩爱 | 欧美日韩精品成人综合77777| 波多野结衣高清作品| 久久久色成人| 国产探花在线观看一区二区| ponron亚洲| 露出奶头的视频| 亚洲成a人片在线一区二区| 亚洲最大成人av| 亚洲在线自拍视频| 久久99热这里只有精品18| 中文字幕熟女人妻在线| 精品无人区乱码1区二区| 九色国产91popny在线| 亚洲,欧美,日韩| 国产 一区精品| 我要看日韩黄色一级片| 禁无遮挡网站| av在线老鸭窝| ponron亚洲| 国产成人福利小说| 精品一区二区三区视频在线| 啦啦啦韩国在线观看视频| 欧美最新免费一区二区三区| 日韩精品有码人妻一区| 亚洲国产精品成人综合色| 日本在线视频免费播放| 婷婷亚洲欧美| 一a级毛片在线观看| 欧美一区二区国产精品久久精品| 亚洲18禁久久av| 午夜精品在线福利| 国产久久久一区二区三区| 免费看光身美女| 国产精品久久久久久亚洲av鲁大| 91麻豆精品激情在线观看国产| 午夜福利欧美成人| 深夜精品福利| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 国内少妇人妻偷人精品xxx网站| 国产午夜精品论理片| 亚洲 国产 在线| 精品国产三级普通话版| 天天躁日日操中文字幕| 男女那种视频在线观看| 亚洲性久久影院| 在线观看av片永久免费下载| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 免费在线观看日本一区| 国产爱豆传媒在线观看| 狂野欧美激情性xxxx在线观看| 国产精品精品国产色婷婷| 欧美色欧美亚洲另类二区| 中文字幕av在线有码专区| 神马国产精品三级电影在线观看| 男人舔女人下体高潮全视频| av视频在线观看入口| 国产色婷婷99| 在线观看av片永久免费下载| 91久久精品国产一区二区三区| 一个人免费在线观看电影| 狂野欧美白嫩少妇大欣赏| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 午夜亚洲福利在线播放| 久久人妻av系列| 免费在线观看影片大全网站| 久久久久久国产a免费观看| 狂野欧美白嫩少妇大欣赏| 国产精品98久久久久久宅男小说| 99久久精品热视频| 国产单亲对白刺激| av福利片在线观看| 少妇裸体淫交视频免费看高清| 麻豆精品久久久久久蜜桃| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 成人二区视频| 成人毛片a级毛片在线播放| 亚洲精品久久国产高清桃花| 久久精品国产亚洲av涩爱 | 国产美女午夜福利| 亚洲国产精品成人综合色| 欧美另类亚洲清纯唯美| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 直男gayav资源| 又紧又爽又黄一区二区| 久久人人精品亚洲av| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 夜夜看夜夜爽夜夜摸| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 免费在线观看日本一区| 国产欧美日韩精品亚洲av| 欧美高清性xxxxhd video| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 精品人妻视频免费看| 午夜爱爱视频在线播放| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 日本 欧美在线| 在线播放无遮挡| 久久久精品欧美日韩精品| 国内精品久久久久精免费|