• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thick accretion disk configurations around a compact object in the brane-world scenario

    2023-12-06 01:42:46YunzhuWeiSongbaiChenandJiliangJing
    Communications in Theoretical Physics 2023年11期

    Yunzhu Wei ,Songbai Chen,2,* and Jiliang Jing,2

    1 Department of Physics,Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education,Institute of Interdisciplinary Studies,Synergetic Innovation Center for Quantum Effects and Applications,Hunan Normal University,Changsha,Hunan 410081,China

    2 Center for Gravitation and Cosmology,College of Physical Science and Technology,Yangzhou University,Yangzhou 225009,China

    Abstract We have studied the equipotential surfaces of a thick accretion disk around a Casadio–Fabbri–Mazzacurati compact object in the brane-world scenario,which possesses a mass parameter together with a parameterized post-Newtonian (PPN) parameter.With the increase in the PPN parameter,the size of the thick accretion disk decreases,but the corresponding Roche lobe size increases.Thus,the larger PPN parameter yields the larger region of existing bound disk structures,where the fluid is not accreted into the central wormhole.Moreover,with the increase in the PPN parameter,the position of the Roche lobe gradually moves away from the central compact object,and the thickness of the region enclosed by the Roche lobe decreases near the compact object but increases in the region far from the compact object.Our results also show that the pressure gradient in the disk decreases with the PPN parameter.These effects of the PPN parameter on the thick accretion disk could help one to further understand compact objects in the braneworld scenario.

    Keywords: black hole,brane world,wormhole

    1.Introduction

    A compact object at the center of the Galaxy should possess an accretion disk,in which matter flows spirally into the central celestial body while simultaneously dropping off its initial angular momenta outwards as well as releasing its gravitational potential energy into heat.The analyses of the properties of accretion disks can disclose the motion of matter near the central celestial body,which could offer the opportunity to capture some information from the celestial body because the accretion occurs in the strong gravity region.Therefore,the studies of accretion disks have contributed to the examination of the predictions from various theories of gravity,including general relativity,which may deepen the understanding of the gravitational interaction [1–19].Generally,in terms of their geometrical thickness,accretion disk models can be classified into two types.The first is the socalled geometrically thin model,in which the disk height is much smaller than the characteristic radius of the disk [1–3].The heat generated by stress and dynamic friction in the disk can be effectively dispersed through the radiation over its surface,which leads to the fact that the disk is cool.The other type is the geometrically thick model [4–10],in which the energy conversion into radiation is inefficient and the temperature of the accretion gas is higher than that in the previous thin-disk model.It is widely believed that thick accretion disks exist in the vicinity of many x-ray binaries and active galactic nuclei.

    In real astrophysical systems,matter accretion is a highly complicated dynamic process and its complete description must resort to highly precise numerical calculations,such as general relativistic magnetohydrodynamics simulations.However,in the past few decades,a simple and analytical model of geometrically thick and stationary tori orbiting black holes,known as Polish doughnuts [10],has attracted considerable attention.Although the matter in this model is assumed to be in equilibrium and is not actually accreted by the black hole,the configurations of these geometrically thick equilibrium tori carry a lot of important characteristic information on the spacetime in the strong field regions.Moreover,due to the fluid being in equilibrium,Polish doughnuts are often used as an initial condition for numerical simulations of accretion flows.Thus,the equilibrium tori around black holes have been studied in spacetimes in general relativity and in other alternative theories of gravity (for a review see e.g.[11–13]).Recently,thick accretion disks have been investigated in the background of the spherically symmetric black hole in Born–Infeld teleparallel gravity [20] and probe effects of the teleparallel parameter on the equilibrium tori around the black hole,which show that the size of the disk monotonically decreases with the teleparallel parameter[21].The non-selfgravitating equilibrium tori have also been studied in the background of the parameterized Rezzolla–Zhidenko black hole [22].It is found that standard ‘singletorus’ and non-standard ‘double-tori’ solutions exist within the allowed space of parameters,which means that the parameterized Rezzolla–Zhidenko black hole possesses a much richer class of equilibrium tori.Moreover,the magnetized accretion disks around Kerr black holes with scalar hair have been respectively studied with constant angular momentum [23] and non-constant angular momentum [24],which could help further constrain the no-hair hypothesis by combining with future observations.Stationary and geometrically thick tori with constant angular momentum have been researched in the background of a non-rotating black hole in f (R)-gravity with a Yukawa-like modification to the Newtonian potential [25].Making a comparison with the Kerr black hole in general relativity,it is easy to find that there are notable changes in the configurations of the disks.Moreover,the equilibrium solutions of magnetized geometrically thick accretion disks have also been studied with non-constant specific angular momentum distribution in the Kerr black hole spacetime [26].

    Here,we focus on thick accretion disk configurations around a compact object in the brane-world theory.According to the brane-world scenario [27,28],the usual fourdimensional spacetime might be a three-brane embedded in a five-dimensional spacetime (the bulk).All of the matter fields,including electromagnetic fields,are confined to the threebrane,and only gravity can freely propagate in both brane and bulk.High-energy corrections and Weyl stresses from bulk gravitons mean that a static black hole solution on the brane is no longer the Schwarzschild solution [29].However,the Einstein field equations in five dimensions are found to admit more spherically symmetric solutions on the brane than in four-dimensional general relativity.The first black hole solution on the brane,obtained in [29],has the same form as the usual Reissner–Nordstr?m solution,in which a tidal Weyl parameter plays the role of the electric charge.The star solution with a constant density interior has been studied on the brane [30].The black hole solutions in the brane-world model and the corresponding observable effects have also been widely studied [31–40].The properties of thin accretion disks around a brane-world black hole have been investigated[41],and it is shown that the particular signatures that appeared in the electromagnetic spectrum could offer the possibility to directly test physical models with extra dimension using astrophysical observations from accretion disks.Here,we consider a spherically symmetric solution in the brane world obtained by Casadio,Fabbri and Mazzacurati[42].The properties of thin accretion disks around the Casadio–Fabbri–Mazzacurati (CFM) compact object have also been studied in [41].However,the thick accretion disk configurations around the CFM compact object remain open.The main purpose of this paper is to probe the properties of thick accretion disk configurations around the CFM wormhole.Actually,Casadio,Fabbri and Mazzacurati [42]obtained two analytical solutions of the spherically symmetric vacuum brane world,which are parameterized by the Arnowitt–Deser–Misner (ADM) mass and the parameterized post-Newtonian (PPN) parameters.The first solution is given byandwhere β is a PPN parameter.After a careful analysis,one can find that the PPN parameter β does not affect the thick accretion disk configurations because the potential W (which determines the equipotential surface topology of the disk) does not depend on the metric component grr.This means that the thick accretion disk configurations are the same as in the usual Schwarzschild black hole spacetime.Therefore,here we only consider the second CFM brane-world solution and study the effects of the PPN parameter on the configurations of the thick accretion disk.

    The paper is organized as follows.In section 2,we will briefly review the second CFM brane-world solution [42] and then analyze the changes in the marginally stable orbit and the marginally bound orbit with the PPN parameter for a timelike particle.In section 3,we will investigate thick accretion disk configurations around the CFM brane-world compact object and the probe effects of the PPN parameter on the disk configurations.Finally,we present a summary.

    2.Particle motions in the background of a compact object in the brane-world scenario

    Lets us now briefly review the second CFM brane-world solution in [42] and its metric form is

    which is spherically symmetric since it is invariant under a rotation or reflection transformation.The solution is asymptotically flat and possesses an ADM mass parameter M and a PPN parameter γ.However,the geometric properties of the spacetime (1) depend on the value of γ.As γ=1,it reduces to the usual Schwarzschild black hole spacetime and the event horizon is located at r=2M.As γ >1,one can find that the only singularity in the metric lies at r=r0=2Mγ,where all the curvature invariants are regular.Moreover,r=r0is a turning point for all physical curves.Thus,the metric (1) describes the geometry of a wormhole with a throat radius rthroat=2Mγ in this case.As γ <1,the metric is singular at r0and,at the null surface,r=rs=2M/(2 -γ).Along this null surface,the Ricci scalar R diverges asR~1Specifcially,the metric (1) describes the geometry of a naked singularity with a singular null surface rs=2M/(2 -γ).Therefore,the value of γ plays a key role in the global causal structure of the spacetime (1).The analyses of the structure spacetime show that the solution (1)describes the geometry of a pathological naked singularity as γ <1,or a black hole as γ=1,or a regular wormhole as γ >1 [42,43].As in [16],to visualize the spacetime (1),we present the embedding diagrams in figure 1,where the equatorial slice θ=π/2 at a fixed moment in time t=constant is embedded into three-dimensional Euclidean space ds2=dz2+dr2+r2dφ2withdz=

    To study the thick accretion disk configurations in the background of a compact object in the brane-world scenario(1),one must obtain the radius of the marginally stable orbit rmsand the marginally bound orbit rmbfor a single time-like particle moving in the spacetime,which are two essential quantities for determining thick disk configurations around a compact object.For the spacetime (1),the Lagrangian density of a single time-like particle’s motion

    does not contain the time coordinate t and the angular coordinate φ,so there are two conserved quantities E and L for the particle,which respectively correspond to its energy and angular momentum.With these conserved quantities,the motion equation of the time-like particle moving in the equatorial plane can be further expressed as

    with the effective potential

    From the conditions of circular orbit Veff=E2andV0′eff=[21,44,45],one can obtain that

    Combining E and L in equation (5) with the condition V″eff(r)=0,one can find that

    which gives the radius of the marginally stable orbit

    The marginally bound orbit rmbis the innermost unstable circular orbit for a time-like particle [21,44,45],which can be determined by Veff=1 andV′eff=0,i.e.

    Solving the above equation,we obtain the radius of the marginally bound orbit the azimuthal direction.With these assumptions,the fourvelocity and stress-energy tensor of the perfect fluid can be Figure 2 shows that both the marginally stable orbit radius rmsand the marginally bound orbit radius rmbincrease with the PPN parameter γ of the CFM brane-world compact object.We also present the sizes of the singularity rsand the throat rthroatfor different γ,and show that the marginally stable orbit and the marginally bound orbit are outside the naked singularity as γ <1 or the wormhole throat as γ >1.From equation (5),one can find that the specific angular momentum and energy l for the particle moving along the circular orbit with the radius r can be expressed as

    Figure 1.The embedding diagrams of the metric (1).The left,middle and right panels correspond to γ=0.8,1 and 1.2,respectively.Here,we set M=1.

    Figure 2.Changes in the marginally stable orbit radius rms and the marginally bound orbit radius rmb with the PPN parameter γ.The blue line and the dashed red line denote the radii rms and rmb,respectively.The purple dot–dash line corresponds to the position of the naked singularity rs,and the blue dot–dash line is the throat radius rthroat.Here,we set M=1.

    Figure 3.Changes in the specific angular momentum l2 with the circular orbit radius r for different PPN parameters γ.In the left panel,the blue and red dots indicate the values of and,respectively.In the right panel,the blue line and the dashed red line correspond to the values of l2at the marginally stable orbit rms and the marginally bound orbit rmb,respectively.Here,we set M=1.

    The above equations govern the particle motion.From figure 3,one can find that the specific angular momentum for the particle moving along a circular orbit increases with the spacetime parameter γ.Moreover,we also find that l2(rmb) >l2(rms) for each value of γ.

    3.Thick accretion disk configurations around the brane-world compact object

    Let us now study thick accretion disk configurations around the CFM brane-world compact object (1).As in previous works [4–10,21–26],here we adopt the test-fluid approximation,where the accretion flow in the disk is a barotropic perfect fluid with positive pressure and its self-gravity is negligible so that the influence of the disk on the background spacetime is negligible.We also consider that the fluid is axisymmetric and stationary,which means that the physical variables only depend on the coordinated r and θ.Finally,we assume that the rotation of perfect fluid is restricted to be in expressed as [46]

    where ∈and p are the total energy density and the pressure for a comoving observer,respectively.The corresponding redshift factor in the static spacetime (1) can be given by

    where l is the specific angular momentum.From the conservation for the perfect fulid?νTνμ=0,one can obtain [46]

    where Ω ≡uφ/utis the angular velocity of the fluid.The specific angular momentum l depends on the circular orbit radius of the particle motion,and the covariant derivative ?μl describes the changes in the specific angular momentum l for particles moving along two adjacent circular orbits in the fluid.For a barotropic fluid,∈is a function of p;therefore,the right-hand side of (14) becomes a differential.This implies that either dl=0 or Ω=Ω(l).This result is known as the(relativistic) von Zeipel theorem.For a barotropic fluid,one can obtain a solution of the above equation by integration,i.e.

    The subscript ‘in’ denotes that the quantity is evaluated at the inner edge of the disk.The potential W determines the topologies of equipotential surfaces on the disk.Therefore,once the expression Ω=Ω(l) is given,one can obtain the equipotential surfaces on the disk.However,in real astrophysical situations,l would be given by certain dissipative processes with timescales much longer than the dynamical timescale,such as the possible viscosity.It must be pointed out that the viscosity in astrophysical accretion disks cannot come from ordinary molecular viscosity,since such ordinary viscosity is too weak to explain the observed phenomena.To date,these dissipative processes are not yet fully understood.A possible alternative way of prescribing this unknown dissipative process is to directly set the angular momentum l in the model as a constant [46] or a non-constant angular momentum distribution [47,48].Here,we adopt the model with the constant distribution of angular momentum l=l0to study the equilibrium configurations in the thick disk for different parameters in the CFM brane-world compact object(1).In this model,the potential W can be further simplified as

    The thick disk configurations depend heavily on the specific angular momentum l0.From figure 3,one can obtain that there is a minimum lmsfor the specific angular momentum l0;therefore,the fluid with l0<lmscannot move along a circular orbit and it is not possible for a disk to exist around a CFM brane-world compact object in this case.When l0=lms,only a ring exists around the compact object.As lms<l0<lmb,bound disk structures with a cusp are found to exist.As l0increases to l0=lmb,one can find that the cusp is located at the marginally closed surface that just extends to infinity [21–26].As l0further increases to l0>lmb,one can find that the disk still exists,but not the cusp.

    To probe the dependence of the disk configurations on the spacetime parameter γ,we setl0=(lms+lmb),and ensure lms<l0<lmb.By combining equations (1) with (13)and (16),one can obtain the potential function W and probe the properties of the corresponding equipotential surfaces for different γ.Figure 4 shows the disk configurations around a CFM brane-world compact object (1).In each panel,the blue lines denote possible bound disk structures in which there are no actual accretions and the fluid only rotates around the compact object.The red line corresponds to the equipotential surface with a cusp located at the marginally closed surface,which plays the same role as a Roche lobe,and the matter from a disk outside this surface will flow over the cusp and accrete into the central compact object.The purple lines denote bound structures without an inner edge but with a marginally outer edge,and the black lines denote the cases with open surfaces.The closed equipotential surface at an infinite distance satisfies W=0.With the increase in the parameter γ,we find that the value W of the equipotential surface corresponding to the Roche lobe increases,and the surface of the Roche lobe gradually moves away from the central wormhole.The latter can be explained by the fact that both the marginally stable orbit radius rmsand the marginally bound orbit radius rmbincrease with the parameter γ of the brane-world compact object (1).Moreover,with the increase in γ,the thickness of the region enclosed by the Roche lobe decreases near the compact object and increases for the region far from the compact object,but the area of the total region enclosed by the Roche lobe increases,as shown in figure 5,which means that the region of existing bound disk structures without accretion increases with γ.In figure 5,we also find that the cusp is the point nearest the center of the compact object in the Roche lobe.In table (1),we compare the radial coordinate of this cusp rcuspwith the size of the compact object and find that the Roche lobe is outside the compact object.Figure 6 presents the equipotential surface with W=-0.01 outside the Roche lobe for different γ,where the matter filling in this region can be accreted into the central compact object.It is illustrated that the size of the accretion disk decreases with the PPN parameter of the CFM brane-world compact object,which means that the size of the accretion disk for the CFM brane-world wormhole is less than that for the CFM brane-world naked singularity.

    Table 1.A comparison between the cusp (the nearest point to the center of the compact object in the Roche lobe) and the size of the compact object for different γ.

    Figure 4.Equipotential surfaces for different choices of γ and constant l0=(lmb+lms)/2.The red line indicates the torus with a cuspcorresponding to the maximum of W on the equatorial plane.The blue lines indicate closed tori,the purple lines indicate bound structures without an inner edge and the black lines indicate open surfaces.

    Figure 5.Equipotential surfaces corresponding to the Roche lobe for different choices of γ and constant l0=(lmb+lms)/2.The red,blue and purple lines denote the cases with γ=0.8,1.0 and 1.2,respectively.

    Figure 6.Equipotential surfaces with W=-0.01 outside the Roche lobe for different choices of γ and constant l0=(lmb+lms)/2.The red,blue and purple lines denote the cases with γ=0.8,1.0 and 1.2,respectively.

    The pressure gradient in the thick disk is very important for the fluid to maintain balance with gravitational and centrifugal forces [22–26].Since the pressure gradient is related to the difference δW between different equipotential surfaces,we plot the maximal difference δW between the potential values at the cusp and the center of the disk.Figure 7 illustrates that the different δW and the pressure gradient in the equilibrium thick torus decrease with the PPN parameter γ in the CFM brane-world compact object(1).It is also shown that the pressure gradient in the disk is larger in the CFM brane-world naked singularity,and is smaller in the CFM brane-world wormhole case.These results could help one to further understand compact objects in the brane world.

    Figure 7.The change in δW with the PPN parameter γ for the braneworld compact object (1) for l0=lmb.

    4.Summary

    We have studied the equipotential surfaces in the thick accretion disk around the CFM brane-world compact object with a PPN parameter.It is shown that with the increase in the PPN parameter,the size of the thick accretion disk decreases,but the Roche lobe increases.This implies that the larger PPN parameter results in a larger region of existing bound disk structures in which the fluid is not accreted into the central wormhole.Moreover,with the increase in the parameter γ,the surface of the Roche lobe increases,and the Roche lobe gradually moves away from the central compact object.This can be explained by the fact that both the marginally stable orbit radius rmsand the marginally bound orbit radius rmbincrease with the parameter γ.In addition,the thickness of the region enclosed by the Roche lobe decreases with the parameter γ near the compact object,but increases in the region far from the compact object.Finally,we have also studied the different δW between the potential values at the cusp and the center of the disk,which shows that the pressure gradient in the equilibrium thick torus in the CFM brane-world compact object (1) decreases with the parameter γ.Thus,the pressure gradient in the disk in the background of the CFM braneworld compact object is larger than that in the Schwarzschild background when γ <1,but is smaller when γ >1.These results could help one to understand the CFM brane-world compact object and its thick accretion disk.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China under Grant Nos.12275078,11875026,12035005 and 2020YFC2201400.

    最新美女视频免费是黄的| 国产精品av视频在线免费观看| 成在线人永久免费视频| 无人区码免费观看不卡| 免费一级毛片在线播放高清视频| 久久精品91蜜桃| 草草在线视频免费看| 亚洲av电影在线进入| 香蕉国产在线看| 蜜桃久久精品国产亚洲av| 一区二区三区国产精品乱码| www.自偷自拍.com| 嫩草影院精品99| 亚洲人成电影免费在线| 中文字幕久久专区| 亚洲精品色激情综合| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 成人欧美大片| 成人国产一区最新在线观看| 天天添夜夜摸| 美女高潮的动态| 一级毛片精品| 岛国在线观看网站| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美精品综合一区二区三区| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 午夜激情福利司机影院| 国产成人av教育| 国产成人一区二区三区免费视频网站| 男插女下体视频免费在线播放| a在线观看视频网站| 亚洲五月天丁香| 性色av乱码一区二区三区2| 国产一区二区三区在线臀色熟女| 日本a在线网址| 色视频www国产| 久久精品国产综合久久久| 久久欧美精品欧美久久欧美| 亚洲九九香蕉| 亚洲精品456在线播放app | 国产成人精品无人区| 女人被狂操c到高潮| 国产精品亚洲美女久久久| 午夜福利在线在线| 免费观看人在逋| 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 精品久久久久久,| 午夜亚洲福利在线播放| 日本三级黄在线观看| 欧美日韩精品网址| 国产精品免费一区二区三区在线| 久久九九热精品免费| 国产av在哪里看| 90打野战视频偷拍视频| 精品久久蜜臀av无| 国产精品99久久99久久久不卡| avwww免费| 亚洲黑人精品在线| 校园春色视频在线观看| 夜夜看夜夜爽夜夜摸| 精品乱码久久久久久99久播| 国产美女午夜福利| 国产免费男女视频| 丁香欧美五月| 亚洲精华国产精华精| 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看 | 中出人妻视频一区二区| 欧美日韩精品网址| 国产高清视频在线观看网站| 在线免费观看不下载黄p国产 | 91久久精品国产一区二区成人 | 亚洲 欧美一区二区三区| 亚洲成人久久性| 天堂√8在线中文| 麻豆国产av国片精品| 精品国内亚洲2022精品成人| 一进一出抽搐gif免费好疼| 久久久水蜜桃国产精品网| 欧美日韩一级在线毛片| 成人永久免费在线观看视频| 热99在线观看视频| 成年人黄色毛片网站| 高潮久久久久久久久久久不卡| 麻豆久久精品国产亚洲av| 久久久水蜜桃国产精品网| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 丁香欧美五月| 久久性视频一级片| 色综合婷婷激情| 国产av在哪里看| 视频区欧美日本亚洲| 国产精品爽爽va在线观看网站| 757午夜福利合集在线观看| 日本成人三级电影网站| 一进一出抽搐gif免费好疼| 久久亚洲精品不卡| 美女高潮喷水抽搐中文字幕| 久久久水蜜桃国产精品网| 19禁男女啪啪无遮挡网站| 天天添夜夜摸| 一边摸一边抽搐一进一小说| 男人的好看免费观看在线视频| 黄色片一级片一级黄色片| 日本黄色片子视频| 特大巨黑吊av在线直播| 丰满人妻熟妇乱又伦精品不卡| 日日摸夜夜添夜夜添小说| 国产精品99久久久久久久久| 日韩中文字幕欧美一区二区| 91字幕亚洲| 巨乳人妻的诱惑在线观看| 十八禁网站免费在线| 噜噜噜噜噜久久久久久91| 欧美在线一区亚洲| 成人鲁丝片一二三区免费| 国产欧美日韩精品一区二区| 亚洲成人中文字幕在线播放| 青草久久国产| 免费观看精品视频网站| 91字幕亚洲| 性色av乱码一区二区三区2| 日韩欧美在线二视频| 久久精品91蜜桃| 久久精品综合一区二区三区| 欧美另类亚洲清纯唯美| 日韩欧美 国产精品| 俄罗斯特黄特色一大片| 国产精品永久免费网站| 99久国产av精品| 国产亚洲精品av在线| 巨乳人妻的诱惑在线观看| 免费看十八禁软件| 麻豆一二三区av精品| 日本与韩国留学比较| av视频在线观看入口| 高清在线国产一区| www.自偷自拍.com| 一边摸一边抽搐一进一小说| 丁香六月欧美| 在线观看一区二区三区| 国产成人aa在线观看| 亚洲专区字幕在线| 国产av不卡久久| 久久久久性生活片| 亚洲熟女毛片儿| 19禁男女啪啪无遮挡网站| 亚洲一区高清亚洲精品| 老汉色∧v一级毛片| av在线天堂中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线播放一区| 变态另类丝袜制服| 亚洲欧美日韩高清专用| 国产欧美日韩一区二区精品| www.999成人在线观看| 观看美女的网站| 精品熟女少妇八av免费久了| 亚洲精品乱码久久久v下载方式 | aaaaa片日本免费| 国产在线精品亚洲第一网站| av在线蜜桃| 深夜精品福利| 免费看十八禁软件| 欧美一级毛片孕妇| 无限看片的www在线观看| 老司机深夜福利视频在线观看| 国产黄片美女视频| 91字幕亚洲| 亚洲av成人av| a级毛片在线看网站| 青草久久国产| 精品99又大又爽又粗少妇毛片 | 国语自产精品视频在线第100页| 欧美又色又爽又黄视频| 久久久成人免费电影| 国产精品精品国产色婷婷| 欧美乱妇无乱码| 国产久久久一区二区三区| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 99re在线观看精品视频| 亚洲av日韩精品久久久久久密| 成人av在线播放网站| 99热这里只有是精品50| 日韩成人在线观看一区二区三区| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| 国产主播在线观看一区二区| 国产亚洲欧美98| 小说图片视频综合网站| 亚洲欧美一区二区三区黑人| 国产又黄又爽又无遮挡在线| 午夜免费成人在线视频| 男人和女人高潮做爰伦理| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 最近最新中文字幕大全免费视频| 看黄色毛片网站| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 婷婷亚洲欧美| 国产精品av久久久久免费| 亚洲天堂国产精品一区在线| 国产又色又爽无遮挡免费看| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久国产a免费观看| 日韩欧美在线二视频| 好男人电影高清在线观看| 亚洲国产精品成人综合色| 看免费av毛片| 国产精品,欧美在线| 日本黄色片子视频| 久久精品人妻少妇| 香蕉国产在线看| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 老司机午夜福利在线观看视频| 成年女人看的毛片在线观看| 免费人成视频x8x8入口观看| 午夜日韩欧美国产| 九色成人免费人妻av| 亚洲av电影不卡..在线观看| 国产精品影院久久| 一级作爱视频免费观看| 精品国产亚洲在线| 中亚洲国语对白在线视频| 看黄色毛片网站| 亚洲激情在线av| 色视频www国产| 三级国产精品欧美在线观看 | 亚洲人成网站在线播放欧美日韩| 国产精品一及| avwww免费| 人人妻人人澡欧美一区二区| 亚洲片人在线观看| 国产欧美日韩一区二区三| 国产精品久久久久久人妻精品电影| 国产又黄又爽又无遮挡在线| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 精品一区二区三区av网在线观看| 男女午夜视频在线观看| 欧美xxxx黑人xx丫x性爽| 亚洲av片天天在线观看| 99国产极品粉嫩在线观看| 亚洲国产欧美一区二区综合| 国产精品野战在线观看| 一区二区三区高清视频在线| 综合色av麻豆| 国产单亲对白刺激| 日日摸夜夜添夜夜添小说| 亚洲国产精品合色在线| 国产99白浆流出| 国产三级在线视频| 国产成年人精品一区二区| 国内精品久久久久久久电影| 亚洲自偷自拍图片 自拍| 国产高清视频在线观看网站| 国产精品av视频在线免费观看| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 女人高潮潮喷娇喘18禁视频| 免费大片18禁| 国产97色在线日韩免费| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 国产欧美日韩一区二区精品| 欧美绝顶高潮抽搐喷水| 999久久久国产精品视频| 国产精品日韩av在线免费观看| 两人在一起打扑克的视频| 曰老女人黄片| 亚洲精品美女久久av网站| 美女 人体艺术 gogo| 国产精品电影一区二区三区| 亚洲自拍偷在线| 国产一区二区激情短视频| 97人妻精品一区二区三区麻豆| av视频在线观看入口| 久久热在线av| 老汉色∧v一级毛片| 色综合站精品国产| 中出人妻视频一区二区| 国产高潮美女av| 日韩三级视频一区二区三区| 少妇的丰满在线观看| 国产精品久久久久久久电影 | 美女午夜性视频免费| 麻豆av在线久日| 少妇的逼水好多| 亚洲成人中文字幕在线播放| 男人和女人高潮做爰伦理| 岛国在线观看网站| 久久天堂一区二区三区四区| 嫩草影院入口| 窝窝影院91人妻| 国产av在哪里看| 国产精品 国内视频| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 一个人观看的视频www高清免费观看 | 别揉我奶头~嗯~啊~动态视频| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 给我免费播放毛片高清在线观看| 夜夜夜夜夜久久久久| 九九在线视频观看精品| 亚洲无线在线观看| 国产97色在线日韩免费| 在线a可以看的网站| 美女高潮喷水抽搐中文字幕| 黄片大片在线免费观看| 看片在线看免费视频| 在线视频色国产色| 久久久久久久精品吃奶| 日韩欧美在线二视频| 亚洲专区国产一区二区| 久久久久久久久久黄片| e午夜精品久久久久久久| 黄色成人免费大全| 岛国视频午夜一区免费看| 这个男人来自地球电影免费观看| 精品久久久久久成人av| 熟妇人妻久久中文字幕3abv| 亚洲片人在线观看| 99riav亚洲国产免费| 成人精品一区二区免费| 无遮挡黄片免费观看| 波多野结衣高清作品| 女人高潮潮喷娇喘18禁视频| 国产免费av片在线观看野外av| 亚洲成av人片免费观看| 最新美女视频免费是黄的| 国产极品精品免费视频能看的| 亚洲精品中文字幕一二三四区| 中文字幕久久专区| 色在线成人网| 噜噜噜噜噜久久久久久91| 法律面前人人平等表现在哪些方面| 国产精品亚洲美女久久久| 九九久久精品国产亚洲av麻豆 | 欧美成狂野欧美在线观看| netflix在线观看网站| 午夜福利欧美成人| 桃红色精品国产亚洲av| 一级毛片高清免费大全| 国产精品久久久人人做人人爽| 好男人在线观看高清免费视频| 国产亚洲精品一区二区www| 国产精品一及| 在线看三级毛片| 一二三四在线观看免费中文在| 床上黄色一级片| 成熟少妇高潮喷水视频| 午夜福利在线观看免费完整高清在 | 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 久久亚洲精品不卡| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 国产伦人伦偷精品视频| 精品久久久久久久久久久久久| 精品电影一区二区在线| 亚洲熟妇熟女久久| aaaaa片日本免费| 亚洲自偷自拍图片 自拍| 日韩欧美精品v在线| 国产精品av久久久久免费| 日本黄色片子视频| 一个人看视频在线观看www免费 | 久久久成人免费电影| 久久性视频一级片| www日本在线高清视频| 午夜a级毛片| 毛片女人毛片| 手机成人av网站| 久久久国产欧美日韩av| 精品电影一区二区在线| 制服丝袜大香蕉在线| 久久久国产成人免费| www日本在线高清视频| 精品乱码久久久久久99久播| bbb黄色大片| 黑人操中国人逼视频| 老汉色∧v一级毛片| 成年女人永久免费观看视频| 国产69精品久久久久777片 | 琪琪午夜伦伦电影理论片6080| 亚洲国产中文字幕在线视频| a在线观看视频网站| 欧美绝顶高潮抽搐喷水| www.999成人在线观看| 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 国产成人aa在线观看| 精品国产亚洲在线| 亚洲精华国产精华精| 国产午夜精品论理片| 亚洲中文av在线| 国产日本99.免费观看| 中文在线观看免费www的网站| 啦啦啦观看免费观看视频高清| 亚洲激情在线av| 99久国产av精品| 美女免费视频网站| 成人性生交大片免费视频hd| 99视频精品全部免费 在线 | 天堂影院成人在线观看| 色在线成人网| 久久久国产成人免费| 黄色 视频免费看| 99久久无色码亚洲精品果冻| 亚洲欧洲精品一区二区精品久久久| 亚洲欧洲精品一区二区精品久久久| 国产乱人伦免费视频| 亚洲18禁久久av| 性欧美人与动物交配| 亚洲欧美日韩东京热| 国产午夜精品久久久久久| www国产在线视频色| 免费av不卡在线播放| 亚洲精品国产精品久久久不卡| 法律面前人人平等表现在哪些方面| 一区二区三区高清视频在线| 丝袜人妻中文字幕| 韩国av一区二区三区四区| 亚洲精品色激情综合| 蜜桃久久精品国产亚洲av| 2021天堂中文幕一二区在线观| 精品欧美国产一区二区三| 免费在线观看日本一区| 久久久国产精品麻豆| 国产午夜精品论理片| 免费人成视频x8x8入口观看| 国产一级毛片七仙女欲春2| 黄色片一级片一级黄色片| 久久国产乱子伦精品免费另类| 亚洲avbb在线观看| 亚洲精品色激情综合| 99国产精品99久久久久| 日日干狠狠操夜夜爽| 在线观看66精品国产| 两性夫妻黄色片| 久久久久久人人人人人| 少妇的丰满在线观看| 黄色女人牲交| 丁香六月欧美| 狠狠狠狠99中文字幕| 一级黄色大片毛片| 女警被强在线播放| 巨乳人妻的诱惑在线观看| 色尼玛亚洲综合影院| 一二三四社区在线视频社区8| 日日摸夜夜添夜夜添小说| 91av网站免费观看| 久久香蕉精品热| bbb黄色大片| 五月伊人婷婷丁香| 国产高清三级在线| 听说在线观看完整版免费高清| 婷婷亚洲欧美| 久9热在线精品视频| 日本与韩国留学比较| 国产精品 欧美亚洲| 天堂√8在线中文| 欧美日韩国产亚洲二区| 色精品久久人妻99蜜桃| 999久久久国产精品视频| 成年女人毛片免费观看观看9| 国产欧美日韩一区二区三| 99久久精品一区二区三区| 精品免费久久久久久久清纯| 欧美三级亚洲精品| 日本撒尿小便嘘嘘汇集6| 国产又色又爽无遮挡免费看| 中文字幕久久专区| 精品免费久久久久久久清纯| 欧美三级亚洲精品| 欧美黄色淫秽网站| 亚洲,欧美精品.| 国产亚洲精品综合一区在线观看| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 精品午夜福利视频在线观看一区| 国产高清视频在线观看网站| 熟妇人妻久久中文字幕3abv| 国产亚洲av嫩草精品影院| 午夜免费成人在线视频| 国产高清videossex| 亚洲国产欧洲综合997久久,| 亚洲无线观看免费| 国模一区二区三区四区视频 | 精品欧美国产一区二区三| 亚洲美女黄片视频| 真实男女啪啪啪动态图| 亚洲九九香蕉| 亚洲国产高清在线一区二区三| 免费在线观看亚洲国产| 精品国产美女av久久久久小说| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 欧美日韩黄片免| 可以在线观看的亚洲视频| 国产一区二区在线观看日韩 | 特级一级黄色大片| 久久九九热精品免费| 亚洲自拍偷在线| 真实男女啪啪啪动态图| 我要搜黄色片| 久久精品91蜜桃| 女人被狂操c到高潮| 岛国视频午夜一区免费看| 国产成+人综合+亚洲专区| 这个男人来自地球电影免费观看| 午夜免费成人在线视频| 国产综合懂色| 我要搜黄色片| 999精品在线视频| 精品久久蜜臀av无| 亚洲精品美女久久av网站| 欧美精品啪啪一区二区三区| 别揉我奶头~嗯~啊~动态视频| 99re在线观看精品视频| 一级毛片精品| a级毛片在线看网站| 国产三级中文精品| av黄色大香蕉| 久久久精品欧美日韩精品| 女同久久另类99精品国产91| 桃色一区二区三区在线观看| 岛国视频午夜一区免费看| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩高清专用| 男人舔女人下体高潮全视频| 精品久久久久久久人妻蜜臀av| 日本 欧美在线| 亚洲 国产 在线| 国产高清videossex| 国产精品av久久久久免费| 夜夜看夜夜爽夜夜摸| 久久精品国产99精品国产亚洲性色| 欧美黑人欧美精品刺激| 岛国在线观看网站| 女警被强在线播放| 欧美午夜高清在线| 中文资源天堂在线| 亚洲五月婷婷丁香| 在线视频色国产色| 日日夜夜操网爽| 久久亚洲真实| 嫩草影视91久久| 天堂影院成人在线观看| 免费观看人在逋| 99久久久亚洲精品蜜臀av| 蜜桃久久精品国产亚洲av| 一个人免费在线观看的高清视频| 全区人妻精品视频| 久久久国产成人精品二区| 男女床上黄色一级片免费看| 久久久久国产精品人妻aⅴ院| 1024手机看黄色片| 中文字幕人成人乱码亚洲影| 一区二区三区国产精品乱码| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 午夜福利欧美成人| 亚洲一区高清亚洲精品| 婷婷六月久久综合丁香| 久久草成人影院| 国产精品久久久人人做人人爽| 欧美成人免费av一区二区三区| 国产欧美日韩一区二区三| 精品国产乱子伦一区二区三区| 舔av片在线| 在线观看66精品国产| 国产麻豆成人av免费视频| 在线观看一区二区三区| 淫妇啪啪啪对白视频| 最近视频中文字幕2019在线8| 欧美另类亚洲清纯唯美| 国产高清激情床上av| 99久久综合精品五月天人人| 久久久久久久久久黄片| 久99久视频精品免费| 色哟哟哟哟哟哟| 极品教师在线免费播放| 欧美不卡视频在线免费观看| 91av网站免费观看| 欧美精品啪啪一区二区三区| 精品国产美女av久久久久小说| x7x7x7水蜜桃| 国产男靠女视频免费网站| 日本在线视频免费播放| 深夜精品福利| 成人一区二区视频在线观看| 精品国产乱码久久久久久男人| 亚洲最大成人中文| 国模一区二区三区四区视频 | 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 在线免费观看的www视频| 啦啦啦观看免费观看视频高清|