• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sahlqvist Correspondence Theory for Modal Logic with Quantification over Relations*

    2024-01-10 02:23:26FeiLiangZhiguangZhao
    邏輯學研究 2023年6期

    Fei Liang Zhiguang Zhao

    Abstract. Lehtinen (2008) introduced a new concept of validity of modal formulas,where quantification over binary relations is allowed for the so called “helper modalities”,and the “boss modalities” are similar to ordinary modalities in modal logic in the sense that they are interpreted as a fixed binary relation in a Kripke frame.In the present paper,we study the correspondence theory for this validity notion.We define the class of Sahlqvist formulas for this validity notion,each formula of which has a first-order frame correspondent,and define the algorithm ALBARQ to compute the first-order correspondents of this class.

    1 Introduction

    Lehtinen ([6]) introduced a new concept of validity of modal formulas,which allows,from the perspective of second-order logic,quantification over binary relations.In this definition of validity,if the modal similarity type isτ={◇1,...,◇n},then we say that the modal formulaφisτ-valid in a setW(notationW?τ φ) iff it is valid in each frame F=(W,R1,...,Rn).With the help of the standard translation,assume that onlyp1,...,pkoccur inφ,then theτ-validity in a setWcan be equivalently written as:

    As is shown in[6,Example 5.1.2,5.1.3],this notion of validity can be used to define the size of the domain.Indeed,takeτ={◇},

    In this definition,set validity allows us to talk about the size of a domain,but we lose the possibility to talk about relations.Therefore,Lehtinen proposes a more general perspective by allowing some relations to behelpersand others to bebosses,such that we only quantify over the helpers and keep the bosses similar to the standard Kripke frame validity.

    In the new definition,the similarity typeτis defined to be the disjoint union ofτHandτB,where modalities inare calledhelpers,and modalities inare calledbosses.

    We say that a formula isτH-validin a frame(W,R1,...,Rn),if

    for all helper relationsH1,...,Hm.With the help of the standard translation,theτH-validityin F=(W,R1,...,Rn)can be reformulated as

    With the notion ofτH-validity,we can use modal formulas to define first-order properties of Kripke frames that cannot be defined using standard validity notion.

    Example 1(Example 5.1.7 in[6]).LetτB={◇},τH={◇H},and F=(W,R).Then we have

    In the present paper,we study the Sahlqvist correspondence theory of this validity notion,namely,we define a class of Sahlqvist formulas in the modal language of helpers and bosses,and define an Ackermann Lemma Based Algorithm ALBARQ1Here RQ stands for “relation quantifier”.to compute the first-order correspondents of Sahlqvist formulas.

    The structure of the paper is organized as follows: Section 2 presents preliminaries on modal logic of helpers and bosses.Section 3 defines Sahlqvist formulas and inequalities.Section 4 defines the expanded modal language,the first-order correspondence language and the standard translation,which will be used in the algorithm.Section 5 defines the Ackermann Lemma Based Algorithm ALBARQ.Section 6 proves the soundness of the algorithm.Section 7 shows that ALBARQsucceeds on Sahlqvist formulas.Section 8 gives some examples.Section 9 gives conclusions.

    2 Preliminaries

    In the present section,we collect the preliminaries on modal logic with helpers and bosses.For more details,see[6,Section 5].

    2.1 Language and Syntax

    Definition 1.Given a set Prop of propositional variables,a finite setτH={,...,},a finite setsuch thatτH ∩τB=?,the modal language with helpers and bosses is defined recursively as follows:

    wherep ∈Prop,◇∈τH ∪τB. □and?are defined in the standard way.We call a formulapureif it contains no propositional variables.We useτ:=(τH,τB) to denote thesimilarity typeof the language.Throughout the article,we will also make substantial use of the following expressions:

    (1) Aninequalityis of the formφ ≤ψ,whereφandψare formulas.

    (2) Aquasi-inequalityis of the formφ1≤ψ1& ...&φn ≤ψn ?φ ≤ψ.

    We will find it easy to work with inequalitiesφ ≤ψin place of implicative formulasφψin Section 3.

    2.2 Semantics

    Definition 2.Given a similarity typeτ=(τH,τB),aτ-Kripke frameis a tuple F=(W,R1,...,Rn,H1,...,Hm)whereW≠ ?is thedomainof F,R1,...,Rn,H1,...,Hmareaccessibility relationswhich are binary relations onW,and eachRicorresponds to,eachHicorresponds to.The underlyingτB-Kripke frameof aτ-Kripke frame is a tuple F=(W,R1,...,Rn)where eachRicorresponds torespectively and no relations forare there.τB-Kripke frames are used to define validity.Aτ-Kripke modelis a pair M=(F,V)where F is aτ-Kripke frame andV: Prop(W) is avaluationon F.Now the satisfaction relation is defined as follows2The basic case and the Boolean cases are defined as usual,and here we only give the clauses for the modalities.: given anyτ-Kripke model M=(W,R1,...,Rn,H1,...,Hm,V),anyw ∈W,

    For any formulaφ,we let?φ?M={w ∈W|M,w?φ}denote thetruth setofφin M.The formulaφisglobally trueon M(notation:M ?φ)if?φ?M=W.The crucial difference between modal logic with helpers and bosses and ordinary modal logic is the definition of validity.Validity in the former is only defined onτB-Kripke frames:Aτ-formulaφisvalidon aτB-Kripke frame F=(W,R1,...,Rn)(notation:F ?φ)ifφis globally true on(F,H1,...,Hm,V)for all helper relationsH1,...,Hmand all valuationsV.The semantics of inequalities and quasi-inequalities are given as follows:

    The definitions of validity are similar to formulas.It is easy to see thatt M ?φ ≤ψiff M ?φψ.

    3 Sahlqvist Formulas and Inequalities

    In this section,we define Sahlqvist formulas and inequalities in the similarity typeτ,in the style of unified correspondence[2].We collect preliminaries here.

    Definition 3(Order-type).(cf.[4,p.346])For ann-tuple(p1,...,pn)of propositional variables,an order-typeεis an element in{1,?}n.We say thatpihas ordertype 1(resp.?)with respect toεifεi=1(resp.εi=?),and denoteε(pi)=1(resp.ε(pi)=?).We useε?to denote the order-type whereε?(pi)=1(resp.ε?(pi)=?)iffε(pi)=?(resp.ε(pi)=1).

    Definition 4(Signed generation tree).(cf.[5,Definition 4])Thepositive(resp.negative)generation treeof anyτ-formulaφis defined by first labelling the root of the generation tree ofφwith+(resp.-)and then labelling the children nodes as follows:

    · Assign the same sign to the children nodes of any node labelled with ∨,∧,,

    · Assign the opposite sign to the child node of any node labelled with ?;

    · Assign the opposite sign to the first child node and the same sign to the second child node of any node labelled with;

    Nodes in signed generation trees are calledpositive(resp.negative)if they are signed+(resp.-).

    We give an example of signed generation tree in Figure 1.

    Figure 1: Positive generation tree for (p ∨?□q)◇q

    For anyτ-formulaφ(p1,...pn),any order-typeεovern,and anyi=1,...,n,anε-critical nodein a signed generation tree ofφis a leaf node +piwhenεi=1 or -piwhenεi=?.Anε-critical branchin a signed generation tree is a branch from anε-critical node.Theε-critical occurrences are intended to be those which the algorithm ALBARQwill solve for.

    We use+p?+φ(resp.-p?+φ)to indicate that an occurrence of a propositional variablepinherits the positive(resp.negative)sign from the positive generation tree+φ,and say thatpispositive(resp.negative)inφif+p?+φ(resp.-p?+φ)for all occurrences ofpinφ.

    Definition 5.(cf.[5,Definition 5])Nodes in signed generation trees are calledouternodesandinner nodes,according to Table 1.Here □stands for,◇stands for

    Table 1: Outer and Inner nodes.

    A branch in a signed generation tree isexcellentif it is the concatenation of two pathsP1andP2,one of which might be of length 0,such thatP1is a path from the leaf consisting(apart from variable nodes)of inner nodes only,andP2consists(apart from variable nodes)of outer nodes only.

    Definition 6(Sahlqvist inequalities).(cf.[5,Definition 6]) For any order-typeε,the signed generation tree?φ(where?∈{+,-}) of a formulaφ(p1,...pn) isε-Sahlqvistif

    · for all 1≤i ≤n,everyε-critical branch with leafpiis excellent;

    · for every branch(notice that here it might not beε-critical)with occurrences of+◇Hor-□H,every node from the root to this occurrence of+◇Hor-□Hin the signed generation tree is an outer node.

    An inequalityφ ≤ψisε-Sahlqvistif the signed generation trees+φand-ψareε-Sahlqvist.An inequalityφ ≤ψisSahlqvistif it isε-Sahlqvist for someε.A formulaφψis Sahlqvist if the inequalityφ ≤ψis a Sahlqvist inequality.

    Example 2.An example of Sahlqvist formula in our language is ◇H□Bp □B◇Hp,which is similar to the Geach formula in ordinary modal logic.Notice that here we have position restrictions on the first occurrence of ◇H.

    The classification of outer nodes and inner nodes is based on how different connectives behave in the algorithm.When the input inequality is a Sahlqvist inequality,the algorithm first decompose the outer part of the formula,and then decompose the inner part of the formula,which will be shown in the success proof of the algorithm in Section 7.

    The difference between the present setting and ordinary modal logic is that we have additional requirement of the positions of helper modalities,which will be clear from the execution of the algorithm.

    4 The Expanded Modal Language,First-Order Correspondence Language and Standard Translation

    4.1 The Expanded Modal Language

    In the present subsection,we define the expanded modal language,which will be used in the execution of the algorithm:

    where i∈Nom arenominalsas in hybrid logic which are interpreted as singleton sets,∈τH,∈τB,S={(i1,j1),...,(ik,jk)}for some pairs(i1,j1),...,(ik,jk).

    The reason for introducing the nominals and S-modalities is to compute the minimal valuations for propositional variables and for the H-modalities(which are essentially quantified by second-order quantifiers in the validity definition),therefore we can eliminate them to get a quasi-inequality which is essentially quantified by firstorder quantifiers.

    □Sand ◇Sare interpreted on the relationS:={(V(i1),V(j1)),...,(V(ik),V(jk))}.For ■and ◆,they are interpreted as the box and diamond modality on the inverse relation,S-1,according to the superscipt and subscript,respectively.TheS-modalities are interpreted as the computation result of the minimal relations for the helper modalities,which is similar to the minimal valuations of propositional variables in the algorithm ALBARQ.

    For the semantics of the expanded modal language,the valuation is defined asV: Prop ∪NomP(W)whereV(i)is defined as a singleton as in hybrid logic,and the additional semantic clauses can be given as follows:

    4.2 The first-order correspondence language and the standard translation

    In the first-order correspondence language,we have a binary predicate symbolHicorresponding to the binary relationHi,a binary predicate symbolRjcorresponding to the binary relationRj,a set of constant symbolsicorresponding to each nominal i,a set of unary predicate symbolsPcorresponding to each propositional variablep.Notice that we do not have binary predicate symbols for theSrelations.

    Definition 7.For the standard translation of the expanded modal language,the basic propositional cases and the Boolean cases as well as the modal cases for boss modalities are defined as usual and hence omitted,the other cases are defined as follows:

    It is easy to see that this translation is correct:

    Proposition 1(Folklore.).For any Kripke modelM,any w ∈W and any expanded modal formula φ,

    For inequalities,quasi-inequalities,the standard translation is given in a global way:

    Definition 8.·ST(φ ≤ψ):=?x(STx(φ)STx(ψ));

    ·ST(φ1≤ψ1&...&φn ≤ψn ?φ ≤ψ):=ST(φ1≤ψ1)∧...∧ST(φn ≤ψn)ST(φ ≤ψ).

    Proposition 2(Folklore.).For any Kripke modelM,any inequalityIneq,any quasiinequalityQuasi,

    5 The Algorithm ALBARQ

    In this section,we define the algorithm ALBARQwhich computes the firstorder correspondents of input Sahlqvist formulas,in the style of[3,4].The algorithm receives an input formulaφψand transforms it into an inequalityφ ≤ψ.Then the algorithm goes in three steps.

    1.Preprocessing and first approximation:

    In the generation tree of+φand-ψ3The discussion below relies on the definition of signed generation tree in Section 3.In what follows,we identify a formula with its signed generation tree.,

    (a) Apply the distribution rules:

    (b) Apply the splitting rules: rewriteα ≤β ∧γasα ≤βandα ≤γ;rewriteα ∨β ≤γasα ≤γandβ ≤γ;

    (c) Apply the monotone and antitone variable-elimination rules:

    forβ(p)positive inpandα(p)negative inp.

    We denote by Preprocess(φψ)the finite set{φi ≤ψi}i∈Iof inequalities obtained after the exhaustive application of the previous rules.Then we apply the following first approximation rule to every inequality in Preprocess(φψ):

    Here,i0and i1are special fresh nominals.Now we get a set of inequalities{i0≤φi,ψi ≤?i1}i∈I.

    2.The reduction stage:

    In this stage,for each{i0≤φi,ψi ≤?i1},we apply the following rules to prepare for eliminating all the propositional variables and helper modalities:

    (a) Splitting rules(similar to the splitting rules in Stage 1);

    (b) Approximation rules:

    The nominals introduced by the approximation rules must not occur in the system before applying the rule,and ◇stands for,or ◇S,□stands for,or □S.

    (c) Residuation rules:

    (d) Ackermann rules:

    By the Ackermann rules,we compute the minimal/maximal valuation for propositional variables and minimal valuation for helper modalities and use the Ackermann rules to eliminate all the propositional variables and helper modalities.These three rules are the core of ALBARQ,since their application eliminates propositional variables and helper modalities.In fact,all the preceding steps are aimed at reaching a shape in which the Ackermann rules can be applied.Notice that an important feature of these rules is that they are executed on the whole set of inequalities,and not on a single inequality.

    The right-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis positive inp,and eachγinegative inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The left-handed Ackermann rule for propositional variables:

    where:

    i.Eachβiis negative inp,and eachγipositive inp,for 1≤i ≤m;

    ii.Eachαiis pure.

    The right-handed Ackermann rule for helper modalities:

    where:

    3.Output:If in the previous stage,for some{i0≤φi,ψi ≤?i1},the algorithm gets stuck,i.e.some propositional variables or helper modalities cannot be eliminated by the application of the reduction rules,then the algorithm halts and output “failure”.Otherwise,each initial tuple{i0≤φi,ψi ≤?i1}of inequalities after the first approximation has been reduced to a set of pure inequalities Reduce(φi ≤ψi)without helper modalities,and then the output is a set of quasi-inequalities{&Reduce(φi ≤ψi)?i0≤?i1:φi ≤ψi ∈Preprocess(φψ)}without helper modalities,where &is the big metaconjunction in quasi-inequalities.Then the algorithm use the standard translation to transform the quasi-inequalities into first-order formulas.

    6 Soundness of ALBARQ

    In the present section,we will prove the soundness of the algorithm ALBARQwith respect to Kripke frames.The basic proof structure is similar to[7].

    Theorem 3(Soundness).IfALBARQruns successfully on φψ and outputsFO(φψ),then for any τB-Kripke frameF=(W,R1,...,Rn),

    Proof.The proof goes similarly to [4,Theorem 8.1].Letφi ≤ψi,1≤i ≤ndenote the inequalities produced by preprocessingφψafter Stage 1,and{i0≤φi,ψi ≤?i1}denote the inequalities after the first-approximation rule,Reduce(φi ≤ψi) denote the set of pure inequalities after Stage 2,and FO(φ ■ψ) denote the standard translation of the quasi-inequalities into first-order formulas,then we have the following chain of equivalences:

    · The equivalence between(1)and(2)follows from Proposition 4;

    · the equivalence between(2)and(3)follows from Proposition 5;

    · the equivalence between(3)and(4)follows from Propositions 6,7 and 8;

    · the equivalence between(4)and(5)follows from Proposition 2.□

    In the remainder of this section,we prove the soundness of the rules in Stage 1,2 and 3.

    Proposition 4(Soundness of the rules in Stage 1).For the distribution rules,the splitting rules and the monotone and antitone variable-elimination rules,they are sound in both directions inF,i.e.the inequality before the rule is valid inFiff the inequality(-ies)after the rule is(are)valid inF.

    Proof.The proof is the same as[7,Proposition 6.2].□

    Proposition 5.(2)and(3)are equivalent,i.e.the first-approximation rule is sound inF.

    Proof.The proof is the same as[7,Proposition 6.3].□

    The next step is to show the soundness of each rule of Stage 2.For each rule,before the application of this rule we have a set of inequalitiesS(which we call thesystem),after applying the rule we get a set of inequalitiesS′,the soundness of Stage 2 is then the equivalence of the following two conditions:

    · F ?&S ?i0≤?i1;

    · F ?&S′?i0≤?i1;

    where&Sdenote the meta-conjunction of inequalities ofS.It suffices to show the following property:

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relationsH1,...,Hm,any valuationVon it,if(F,H1,...,Hm,V)?S,then there is a valuationV′and binary relations,...,such thatV′(i0)=V(i0),V′(i1)=V(i1)and(F,,...,,V′)?S′;

    · For anyτB-Kripke frame F=(W,R1,...,Rn),any binary relations,...,,any valuationV′on it,if(F,,...,H′m,V′) ?S′,then there is a valuationVand binary relationsH1,...,Hmsuch thatV(i0)=V′(i0),V(i1)=V′(i1)and(F,H1,...,Hm,V)?S.

    Proposition 6.The splitting rules,the approximation rules for ◇,□,■,the residuation rules for?,◇,□are sound inF.

    Proof.The proof is similar to[7,Proposition 6.4 and 6.11].□

    Proposition 7.The Ackermann rules for propositional variables are sound inF.

    Proof.The proof is similar to[7,Proposition 6.17].□

    Proposition 8.The right-handed Ackermann rule for helper modalities is sound inF.

    This rule is the key rule of the algorithm ALBARQsince it eliminates helper modalities.The proof method is similar to the soundness proof of the right-handed Ackermann rule for propositional variables.Without loss of generality,we assume thatk1=k2=m=1.To prove Proposition 8,it suffices to prove the following right-handed Ackermann lemma for helpers:

    Lemma 1.Assume that β1is positive inand negative inandγ1is negative inand positive inthen for any τB-Kripke frameF=(W,R1,...,Rn),any binary relations H1,...,Hm,any valuation V on it,thefollowing are equivalent

    (1) M:=(F,H1,...,Hm,V)?β1(S/Hi)≤γ1(S/Hi)?

    (2)there is a binary relationsuch thatM′:=(F,H1,...,Hi-1,,Hi+1,...,Hm,V)

    Since helper modalities with subscriptido not occur inβ1(S/Hi)andγ1(S/Hi),we have M ?β1(S/Hi)≤γ1(S/Hi).□

    7 Success

    In this section,we prove that ALBARQsucceeds on all Sahlqvist formulas.The proof structure is similar to[7].

    Theorem 9.ALBARQsucceeds on all Sahlqvist formulas.

    Definition 9(Definiteε-Sahlqvist inequality,similar to Definition 7.2 in[7]).Given any order-typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isdefinite ε-Sahlqvistif there is no+∨,-∧occurring in the outer part on anε-critical branch.An inequalityφ ≤ψis definiteε-Sahlqvist if the trees+φand-ψare both definiteε-Sahlqvist.

    Lemma 2.Let {φi ≤ψi}i∈I=Preprocess(φψ)obtained by exhaustive application of the rules in Stage 1 on an input ε-Sahlqvist formula φψ.Then each φi ≤ψi is a definite ε-Sahlqvist inequality.

    Proof.Same as[7,Lemma 7.3].□

    Definition 10(Innerε-Sahlqvist signed generation tree,similar to Definition 7.4 in[7]).Given an order typeε,?∈{-,+},the signed generation tree?φof the termφ(p1,...,pn)isinner ε-Sahlqvistif its outer partP2on anε-critical branch is always empty,i.e.itsε-critical branches have inner nodes only.

    Lemma 3.Given inequalitiesi0≤φi and ψi ≤?i1obtained from Stage 1 where+φi and-ψi are definite ε-Sahlqvist,by applying the rules in Substage 1 of Stage 2 exhaustively,the inequalities that we get are in one of the following forms:

    1.pure inequalities which does not have occurrences of propositional variables?

    2.inequalities of the formi≤α where+α is inner ε-Sahlqvist?

    3.inequalities of the form β ≤?iwhere-β is inner ε-Sahlqvist.

    Proof.Similar to [7,Lemma 7.5].For the sake of the proof of the next lemma we repeat the proof here.Indeed,the rules in the Substage 1 of Stage 2 deal with outer nodes in the signed generation trees +φiand -ψiexcept +∨,-∧.For each rule,without loss of generality assume we start with an inequality of the form i≤α,then by applying the approximation rules,splitting rules and the residuation rules for negation in Stage 2,the inequalities we get are either a pure inequality without propositional variables,or an inequality where the left-hand side (resp.right-hand side) is i (resp.?i),and the other side is a formulaα′which is a subformula ofα,such thatα′has one root connective less thanα.Indeed,ifα′is on the left-hand side(resp.right-hand side)then-α′(+α′)is definiteε-Sahlqvist.

    By applying the rules in the Substage 1 of Stage 2 exhaustively,we can eliminate all the outer connectives in the critical branches,so for non-pure inequalities,they become of form 2 or form 3.□

    The next two lemmas are crucial to the success of the whole algorithm,which also justify the definition of Sahlqvist formulas and inequalities:

    Lemma 4.In Lemma 3,all the occurrences of+◇H’s and-□H’s are in the form ofi≤◇Hjand □H?j≤?i,and in form 2 and 3,+α and-β only contain positive occurrences of □H’s and negative occurrences of ◇H’s.

    Proof.As we can see from the proof of Lemma 3 and the second item of Definition 6 for Sahlqvist inequalities,during the decomposition of the outer part of the Sahlqvist signed generation trees,all occurrences of+◇H’s and-□H’s are in the outer part of the signed generation tree,hence are treated by the approximation rules.Before the application of the approximation rules,the inequalities are of the form i≤◇Hαor of the form □Hα ≤?i.By applying the approximation rules,they are in the form of i≤◇Hj and □H?j≤?i.For the rest of occurrences of ◇H’s and □H’s,they could only be in form 2 and 3,and ◇H’s occur only negatively and □H’s occur only positively.□

    Lemma 5.Assume we have inequalities of the form as described in Lemma 3 and 4,the right-handed Ackermann rule for helper modalities is applicable and therefore all helper modalities can be eliminated.

    Proof.It is easy to check that the shape of the system exactly satisfies the requirement of the application of the right-handed Ackermann rule for helper modalities.In addition,since in the result of the rule,some inequalities are deleted and the other inequalities have helper modalities replaced by the same kind of modalities(e.g.diamond by diamond,box by box,white connectives by white connectives,black connectives by black connectives),we still have pure inequalities and inequalities of the form 2 and 3 as described in Lemma 3,but now without helper modalities.□

    Lemma 6.Assume we have an inequalityi≤α or β ≤?iwhere+α and-β are inner ε-Sahlqvist,by applying the splitting rules and the residuation rules in Stage 2,we have inequalities of the following form:

    1.α ≤p,where ε(p)=1,α is pure?

    2.p ≤β,where ε(p)=?,β is pure?

    3.α ≤γ,where α is pure and+γ is ε?-uniform?

    4.γ ≤β,where β is pure and-γ is ε?-uniform.

    Proof.The proof is similar to[7,Lemma 7.6].Notice that for each input inequality,it is of the form i≤αorβ ≤?i,where+αand-βare innerε-Sahlqvist.By applying the splitting rules and the residuation rules,it is easy to check that the inequality will have one side pure,and the other side still innerε-Sahlqvist.By applying these rules exhaustively,one will either havepas the non-pure side (with thispon a critical branch),or have an innerε-Sahlqvist signed generation tree with no critical branch,i.e.,ε?-uniform.□

    Lemma 7.Assume we have inequalities of the form as described in Lemma 6,the Ackermann rules for propositional variables are applicable and therefore all propositional variables can be eliminated.

    Proof.Immediate observation from the requirements of the Ackermann rules.□

    Proof of Theorem 9Assume we have an Sahlqvist formulaas input.By Lemma 2,we get a set of definiteε-Sahlqvist inequalities.Then by Lemma 3,we get inequalities as described in Lemma 3 and 4.By Lemma 5,all helper modalities are eliminated.By Lemma 6,we get the inequalities as described.Finally by Lemma 7,the inequalities are in the right shape to apply the Ackermann rules for propositional variables,and thus we can eliminate all the propositional variables and the algorithm succeeds on the input.□

    8 Examples

    In this section we show how to run the algorithm ALBARQon some examples that we give in the introduction.By the Goldblatt-Thomason theorem [1,Theorem 3.19],a first-order definable class of Kripke frames is modally definable iff it is closed under taking bounded morphic images,generated subframes,disjoint unions and reflects ultrafilter extensions.Since|W|≤1 andR=W×Ware not closed under taking disjoint unions,they are not definable by ordinary modal formulas,so our results go beyond Sahlqvist theorem in ordinary modal logic.

    Example 3.We have input formula ◇Hp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:By first approximation,we have:

    Stage 2:By the approximation rule for ◇H,we have:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for ◇Hand □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequalities i≤◇Hk and □H?k′≤?j):

    By the right-handed Ackermann rule forp,we have:

    Stage 3:

    By standard translation,we have:

    By first-order logic,we have:

    By first-order logic,we have:

    which is:

    which is:

    Example 4.We have input formula □Bp□Hp.To make the validity quantification pattern clear,we add quantifiers for the propositional variables,nominals and helper modalities:

    First we transform the input formula into inequality:

    Stage 1:

    By first approximation,we have:

    Stage 2:

    By the approximation rule for □H,we have:

    By the right-handed Ackermann rule for □H,we have(notice that there is no receiving inequalities,so we just eliminate the inequality □H?k≤?j):

    By the left-handed Ackermann rule forp,we have:

    The following are not really obtained by rules in ALBARQ,but they are soundly obtained:

    Stage 3:

    By standard translation we have:

    which is:

    9 Conclusion

    In the present paper,we develop the correspondence theory for modal logic with helpers and bosses,define the Sahlqvist formulas in this setting,give an algorithm ALBARQwhich transforms input Sahlqvist formulas into their first-order correspondents.

    There is one issue remains to be dealt with.In the algorithm ALBARQ,we have the right-handed Ackermann rule for the helper modalities.It seems plausible to also have the left-handed Ackermann rule for the helper modalities,which is more difficult since+□H’s and-◇H’s do not occur in the outer part of the signed generation tree,they cannot be in the form of i ≤◇Hj or □H?j≤?i,which makes it more difficult to compute the corresponding minimal/maximal relation.Therefore we leave it to future work.

    黄色女人牲交| 97碰自拍视频| 午夜免费成人在线视频| 长腿黑丝高跟| 久久性视频一级片| 国内久久婷婷六月综合欲色啪| 国产伦在线观看视频一区| 久久精品91蜜桃| 亚洲第一区二区三区不卡| 在线观看舔阴道视频| 又爽又黄无遮挡网站| 亚洲不卡免费看| 久久99热6这里只有精品| 在现免费观看毛片| 成人av在线播放网站| 精品无人区乱码1区二区| 成年免费大片在线观看| 国产成人欧美在线观看| 精品日产1卡2卡| 欧美xxxx黑人xx丫x性爽| 日韩中字成人| 亚洲成人久久性| 日韩欧美国产一区二区入口| 亚洲一区二区三区色噜噜| 国产熟女xx| 亚洲欧美日韩高清在线视频| 国产又黄又爽又无遮挡在线| 免费人成在线观看视频色| 丰满人妻熟妇乱又伦精品不卡| 天堂网av新在线| 欧美高清成人免费视频www| 欧美不卡视频在线免费观看| 麻豆成人av在线观看| 免费av观看视频| 欧美日本视频| 亚洲,欧美,日韩| 波野结衣二区三区在线| 久久精品91蜜桃| 神马国产精品三级电影在线观看| 久久人人精品亚洲av| 精品国产三级普通话版| 国产精品av视频在线免费观看| 午夜a级毛片| ponron亚洲| 亚洲av五月六月丁香网| 亚洲人成网站在线播放欧美日韩| 999久久久精品免费观看国产| 无遮挡黄片免费观看| 欧美一区二区国产精品久久精品| 国产美女午夜福利| 欧美日本视频| 国产一区二区在线观看日韩| 国产精品久久视频播放| 日本三级黄在线观看| 757午夜福利合集在线观看| 国产精品影院久久| 国内毛片毛片毛片毛片毛片| 亚洲av不卡在线观看| 国产精品99久久久久久久久| 无遮挡黄片免费观看| 偷拍熟女少妇极品色| 一级黄片播放器| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 免费高清视频大片| 亚洲五月天丁香| 简卡轻食公司| 欧美色欧美亚洲另类二区| 在线看三级毛片| 18禁黄网站禁片午夜丰满| 很黄的视频免费| 99热6这里只有精品| 极品教师在线视频| 国产精品嫩草影院av在线观看 | 欧美日韩瑟瑟在线播放| 我的老师免费观看完整版| 精品久久久久久久久亚洲 | 床上黄色一级片| 日韩av在线大香蕉| 麻豆成人午夜福利视频| 亚洲欧美精品综合久久99| 午夜精品一区二区三区免费看| 欧美+日韩+精品| 国内精品美女久久久久久| 精品久久久久久,| 波多野结衣高清作品| 久久6这里有精品| 国产精品久久视频播放| 久久性视频一级片| 欧美丝袜亚洲另类 | 欧美国产日韩亚洲一区| 18+在线观看网站| 国产午夜福利久久久久久| www日本黄色视频网| 丰满的人妻完整版| 国产成年人精品一区二区| 99久久精品热视频| 美女免费视频网站| avwww免费| 美女黄网站色视频| 最近视频中文字幕2019在线8| 精品99又大又爽又粗少妇毛片 | 久久99热6这里只有精品| 麻豆av噜噜一区二区三区| 日本撒尿小便嘘嘘汇集6| 一级a爱片免费观看的视频| 久久久久久久久久黄片| 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 日本一本二区三区精品| 国产三级在线视频| 国模一区二区三区四区视频| 国产大屁股一区二区在线视频| 不卡一级毛片| 一个人免费在线观看的高清视频| 精品久久久久久成人av| 91久久精品电影网| 女人十人毛片免费观看3o分钟| 亚洲美女搞黄在线观看 | 18+在线观看网站| 2021天堂中文幕一二区在线观| 美女xxoo啪啪120秒动态图 | 一二三四社区在线视频社区8| 一进一出抽搐动态| 国产亚洲精品综合一区在线观看| 久久亚洲精品不卡| 久久中文看片网| 色吧在线观看| 真人一进一出gif抽搐免费| 亚洲精品久久国产高清桃花| 国产色婷婷99| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 人妻久久中文字幕网| 9191精品国产免费久久| 高清日韩中文字幕在线| 性色avwww在线观看| 怎么达到女性高潮| 91久久精品电影网| 99久久无色码亚洲精品果冻| 亚洲久久久久久中文字幕| 日韩中文字幕欧美一区二区| 久久99热这里只有精品18| 免费观看的影片在线观看| 国内久久婷婷六月综合欲色啪| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 国产成人aa在线观看| 天堂网av新在线| 免费看a级黄色片| 色吧在线观看| 在线观看美女被高潮喷水网站 | 久久欧美精品欧美久久欧美| 好看av亚洲va欧美ⅴa在| 中文字幕久久专区| 久久久久久久精品吃奶| 国产高清有码在线观看视频| 国产亚洲av嫩草精品影院| 久久精品国产99精品国产亚洲性色| 精品一区二区三区av网在线观看| 伦理电影大哥的女人| 国产免费一级a男人的天堂| 我的老师免费观看完整版| 国内精品美女久久久久久| 99久久九九国产精品国产免费| 91字幕亚洲| 最新中文字幕久久久久| 亚洲av熟女| 日韩欧美精品免费久久 | 国产在视频线在精品| 啦啦啦韩国在线观看视频| 窝窝影院91人妻| 日韩 亚洲 欧美在线| 国产精品久久久久久人妻精品电影| 亚洲熟妇中文字幕五十中出| 中文字幕av成人在线电影| 永久网站在线| 午夜免费成人在线视频| 国产探花极品一区二区| 国产高清有码在线观看视频| 亚洲av成人不卡在线观看播放网| 日韩欧美国产在线观看| 制服丝袜大香蕉在线| 午夜福利在线观看免费完整高清在 | 成人无遮挡网站| 国产午夜精品久久久久久一区二区三区 | 伊人久久精品亚洲午夜| 国产亚洲av嫩草精品影院| 丁香欧美五月| 久久精品综合一区二区三区| 成人国产综合亚洲| xxxwww97欧美| 国产精品久久久久久精品电影| 午夜免费男女啪啪视频观看 | 中亚洲国语对白在线视频| 婷婷精品国产亚洲av在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品影院6| 亚洲中文日韩欧美视频| 毛片一级片免费看久久久久 | 在线观看免费视频日本深夜| 国产69精品久久久久777片| 精品午夜福利在线看| 在线十欧美十亚洲十日本专区| 免费大片18禁| 国产乱人伦免费视频| 午夜福利视频1000在线观看| 每晚都被弄得嗷嗷叫到高潮| 成人鲁丝片一二三区免费| 在线观看一区二区三区| 99久久精品一区二区三区| 嫩草影院入口| 免费看a级黄色片| 九色国产91popny在线| 观看美女的网站| 人人妻,人人澡人人爽秒播| 久久精品国产亚洲av涩爱 | 又爽又黄a免费视频| 久久人人爽人人爽人人片va | 国产单亲对白刺激| 精品人妻视频免费看| 日日摸夜夜添夜夜添小说| 中亚洲国语对白在线视频| 深夜a级毛片| 色综合婷婷激情| 禁无遮挡网站| 精品人妻视频免费看| 乱码一卡2卡4卡精品| 国产精品久久久久久人妻精品电影| 2021天堂中文幕一二区在线观| 在线国产一区二区在线| 欧美日韩福利视频一区二区| 久久久成人免费电影| 亚洲av五月六月丁香网| 亚洲五月婷婷丁香| 色噜噜av男人的天堂激情| 看黄色毛片网站| 桃红色精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲一区二区三区不卡视频| 亚洲人与动物交配视频| 国产欧美日韩一区二区三| 黄色一级大片看看| 日本黄色片子视频| 亚洲成人久久爱视频| 宅男免费午夜| 黄色日韩在线| 欧美3d第一页| 亚洲av成人精品一区久久| 看免费av毛片| 日韩大尺度精品在线看网址| 国产成人啪精品午夜网站| 女人被狂操c到高潮| 1024手机看黄色片| 男人的好看免费观看在线视频| 国产野战对白在线观看| 757午夜福利合集在线观看| 可以在线观看的亚洲视频| 久久国产精品人妻蜜桃| 一本久久中文字幕| 国产高清激情床上av| 网址你懂的国产日韩在线| 特大巨黑吊av在线直播| 国产精品自产拍在线观看55亚洲| 两个人的视频大全免费| 日韩人妻高清精品专区| 国产成+人综合+亚洲专区| 色尼玛亚洲综合影院| 特大巨黑吊av在线直播| 久99久视频精品免费| 欧美成狂野欧美在线观看| 亚洲无线在线观看| 欧美在线黄色| 国产白丝娇喘喷水9色精品| a在线观看视频网站| 在线观看一区二区三区| 国内精品美女久久久久久| 一本精品99久久精品77| 日本一二三区视频观看| 国产精品一及| 12—13女人毛片做爰片一| 在线国产一区二区在线| 美女高潮的动态| 超碰av人人做人人爽久久| av欧美777| 日本黄色视频三级网站网址| 看片在线看免费视频| 97超级碰碰碰精品色视频在线观看| 69人妻影院| 久久精品国产清高在天天线| 色哟哟哟哟哟哟| 成人美女网站在线观看视频| 在线看三级毛片| 日本 欧美在线| 男女床上黄色一级片免费看| 又粗又爽又猛毛片免费看| 亚洲av成人精品一区久久| 99精品久久久久人妻精品| 色哟哟·www| 午夜免费成人在线视频| 成年版毛片免费区| 黄色丝袜av网址大全| 亚洲欧美日韩高清专用| 露出奶头的视频| avwww免费| 久久精品91蜜桃| 搡老熟女国产l中国老女人| 国产精品亚洲av一区麻豆| av视频在线观看入口| 99久久精品热视频| 我的老师免费观看完整版| 久久久久久久久中文| 成年女人毛片免费观看观看9| 免费大片18禁| 婷婷六月久久综合丁香| 亚洲中文字幕一区二区三区有码在线看| 高潮久久久久久久久久久不卡| 三级毛片av免费| 最新在线观看一区二区三区| 狠狠狠狠99中文字幕| 99久久精品热视频| 国产爱豆传媒在线观看| 看片在线看免费视频| 日本三级黄在线观看| 中文字幕精品亚洲无线码一区| 中亚洲国语对白在线视频| 搡女人真爽免费视频火全软件 | 精品福利观看| h日本视频在线播放| 麻豆成人av在线观看| 夜夜看夜夜爽夜夜摸| 久久精品国产亚洲av涩爱 | 夜夜看夜夜爽夜夜摸| 高清在线国产一区| 一本一本综合久久| 中文字幕熟女人妻在线| 午夜福利18| 啦啦啦韩国在线观看视频| 99久久精品国产亚洲精品| 亚洲精华国产精华精| 久久久久久国产a免费观看| 一区二区三区激情视频| 在线播放无遮挡| 欧洲精品卡2卡3卡4卡5卡区| 国产成人aa在线观看| 成人美女网站在线观看视频| 精品一区二区三区视频在线观看免费| 国产av麻豆久久久久久久| 99久国产av精品| 久久九九热精品免费| 亚洲av熟女| 久久久久久大精品| 精品人妻视频免费看| 免费看光身美女| 怎么达到女性高潮| 成人亚洲精品av一区二区| a在线观看视频网站| 亚洲狠狠婷婷综合久久图片| 少妇人妻一区二区三区视频| 中文字幕av成人在线电影| 日本成人三级电影网站| 国产av在哪里看| 村上凉子中文字幕在线| 色综合亚洲欧美另类图片| 丰满人妻一区二区三区视频av| 波多野结衣高清作品| 亚洲精品色激情综合| 黄色女人牲交| 69人妻影院| 久久精品久久久久久噜噜老黄 | 日本 av在线| 少妇人妻一区二区三区视频| 神马国产精品三级电影在线观看| 国产午夜福利久久久久久| 成年版毛片免费区| 亚洲精品亚洲一区二区| 国产精品,欧美在线| 精品午夜福利在线看| 欧美zozozo另类| 色精品久久人妻99蜜桃| 熟女人妻精品中文字幕| 国产久久久一区二区三区| 亚洲经典国产精华液单 | 精品日产1卡2卡| 一本久久中文字幕| 成人午夜高清在线视频| 欧美性猛交╳xxx乱大交人| 国产高清视频在线观看网站| 日本 av在线| eeuss影院久久| 亚洲美女黄片视频| 身体一侧抽搐| 在线天堂最新版资源| 又紧又爽又黄一区二区| 一个人看的www免费观看视频| 人妻制服诱惑在线中文字幕| 国产精品电影一区二区三区| 国产精品亚洲av一区麻豆| 亚洲黑人精品在线| 欧美激情在线99| 亚洲性夜色夜夜综合| aaaaa片日本免费| 久久性视频一级片| 男人和女人高潮做爰伦理| 免费观看的影片在线观看| 性色avwww在线观看| 久久久久久久精品吃奶| 两个人视频免费观看高清| а√天堂www在线а√下载| 一进一出好大好爽视频| 热99在线观看视频| 97超视频在线观看视频| 男女床上黄色一级片免费看| 免费高清视频大片| 高清日韩中文字幕在线| 色吧在线观看| www.999成人在线观看| 琪琪午夜伦伦电影理论片6080| 午夜福利欧美成人| 国产野战对白在线观看| 日韩成人在线观看一区二区三区| 午夜福利在线在线| 色在线成人网| 国产一区二区在线观看日韩| 精华霜和精华液先用哪个| 18禁黄网站禁片免费观看直播| 久久欧美精品欧美久久欧美| 五月玫瑰六月丁香| 在线观看一区二区三区| avwww免费| avwww免费| 国产欧美日韩一区二区三| 午夜免费成人在线视频| 小说图片视频综合网站| 亚洲av五月六月丁香网| 少妇熟女aⅴ在线视频| 欧美精品啪啪一区二区三区| 又黄又爽又免费观看的视频| a级一级毛片免费在线观看| 亚洲中文日韩欧美视频| netflix在线观看网站| 91狼人影院| 国产白丝娇喘喷水9色精品| 中文字幕熟女人妻在线| 综合色av麻豆| 岛国在线免费视频观看| 99国产精品一区二区蜜桃av| 欧美成人一区二区免费高清观看| 1024手机看黄色片| aaaaa片日本免费| 日本黄色片子视频| 天堂影院成人在线观看| 伊人久久精品亚洲午夜| 波多野结衣高清无吗| 国产国拍精品亚洲av在线观看| 日韩欧美精品免费久久 | 黄色配什么色好看| 精品人妻1区二区| 琪琪午夜伦伦电影理论片6080| 国产亚洲av嫩草精品影院| 国内久久婷婷六月综合欲色啪| 国产精品乱码一区二三区的特点| 神马国产精品三级电影在线观看| 久久人人爽人人爽人人片va | 美女 人体艺术 gogo| 免费在线观看日本一区| 精品不卡国产一区二区三区| 成人三级黄色视频| 黄色女人牲交| 90打野战视频偷拍视频| 欧美激情在线99| 久久久久久久精品吃奶| 久久久久九九精品影院| 亚洲人成电影免费在线| 欧美丝袜亚洲另类 | 中文资源天堂在线| 黄色配什么色好看| 午夜福利在线观看免费完整高清在 | 无人区码免费观看不卡| 男插女下体视频免费在线播放| 能在线免费观看的黄片| 精品欧美国产一区二区三| 在线免费观看不下载黄p国产 | av黄色大香蕉| 99精品在免费线老司机午夜| 国产在线精品亚洲第一网站| 国产黄片美女视频| 亚洲成人免费电影在线观看| 日本与韩国留学比较| 综合色av麻豆| 欧美日韩福利视频一区二区| 人妻丰满熟妇av一区二区三区| 波野结衣二区三区在线| av欧美777| 亚洲精品粉嫩美女一区| 欧美黑人巨大hd| bbb黄色大片| 真人一进一出gif抽搐免费| 麻豆av噜噜一区二区三区| 国产aⅴ精品一区二区三区波| 午夜视频国产福利| 国产精品1区2区在线观看.| 精品人妻偷拍中文字幕| eeuss影院久久| 露出奶头的视频| 性色avwww在线观看| 国产精品伦人一区二区| 真实男女啪啪啪动态图| 欧美+日韩+精品| 中文字幕av成人在线电影| 精品久久久久久,| 亚洲熟妇中文字幕五十中出| 两个人视频免费观看高清| 非洲黑人性xxxx精品又粗又长| 国产aⅴ精品一区二区三区波| 国产免费男女视频| 好男人电影高清在线观看| 日本 av在线| 偷拍熟女少妇极品色| 国产精品久久视频播放| 男人狂女人下面高潮的视频| 变态另类丝袜制服| 国产免费一级a男人的天堂| 国产一区二区在线观看日韩| 91麻豆精品激情在线观看国产| 女生性感内裤真人,穿戴方法视频| 乱人视频在线观看| 一个人免费在线观看电影| 好男人在线观看高清免费视频| 久久草成人影院| 欧美极品一区二区三区四区| 国产av麻豆久久久久久久| 欧美日韩综合久久久久久 | 国产伦在线观看视频一区| 啪啪无遮挡十八禁网站| 99在线人妻在线中文字幕| 精品一区二区三区视频在线| 国产欧美日韩精品一区二区| 好男人电影高清在线观看| 欧美日韩乱码在线| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区激情视频| 亚洲熟妇熟女久久| 国产日本99.免费观看| 日本熟妇午夜| 亚洲激情在线av| 国产成人aa在线观看| 欧美乱色亚洲激情| 国产不卡一卡二| 国产亚洲av嫩草精品影院| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| a在线观看视频网站| 少妇的逼水好多| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 好看av亚洲va欧美ⅴa在| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产 | xxxwww97欧美| 精品不卡国产一区二区三区| 亚洲性夜色夜夜综合| 午夜久久久久精精品| 精品人妻1区二区| a在线观看视频网站| 内射极品少妇av片p| 男女床上黄色一级片免费看| 成人鲁丝片一二三区免费| 一区二区三区激情视频| 日韩欧美免费精品| 久久人妻av系列| 欧美bdsm另类| 国产麻豆成人av免费视频| 黄色日韩在线| 乱人视频在线观看| 久久国产精品人妻蜜桃| 亚洲成人中文字幕在线播放| 久9热在线精品视频| 久久久久国产精品人妻aⅴ院| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 我的老师免费观看完整版| 天天躁日日操中文字幕| 赤兔流量卡办理| 国产91精品成人一区二区三区| 麻豆av噜噜一区二区三区| 日本黄大片高清| 色播亚洲综合网| 91在线观看av| 亚洲av成人av| 色尼玛亚洲综合影院| av在线观看视频网站免费| 青草久久国产| 精品福利观看| 国产精品女同一区二区软件 | 亚洲欧美激情综合另类| 亚洲电影在线观看av| 最近中文字幕高清免费大全6 | 嫩草影院新地址| 日日夜夜操网爽| 欧美黑人欧美精品刺激| a级一级毛片免费在线观看| 午夜福利免费观看在线| 欧美+日韩+精品| 日本一二三区视频观看| 亚洲精品在线美女| 午夜福利视频1000在线观看| 成人特级黄色片久久久久久久| 成人无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 最新中文字幕久久久久| 亚洲美女搞黄在线观看 | 午夜激情福利司机影院| 免费在线观看影片大全网站| 日韩欧美精品免费久久 |