張子傲,嚴(yán)新銳,宋晨晨,馬廣義,牛方勇,吳東江
超聲對直接激光沉積鈦基復(fù)材中未熔TiC聚集現(xiàn)象的影響
張子傲,嚴(yán)新銳,宋晨晨,馬廣義*,牛方勇,吳東江
(大連理工大學(xué),遼寧 大連 116024)
改善直接激光沉積TiCp增強TC4復(fù)合材料中未熔TiC(Unmelted TiC,UMT)的聚集情況,提高鈦基復(fù)合材料的力學(xué)性能。利用定點超聲輔助直接激光沉積工藝制備了20%、30%(質(zhì)量分?jǐn)?shù))TiCp/TC4復(fù)合材料,通過金相顯微鏡觀察UMT的分布情況,采用X射線衍射儀分析物相組成、衍射峰強度與半峰寬變化。通過掃描電子顯微鏡(SEM)進一步分析樣件的微觀組織,并使用SEM配備的能譜儀模塊對元素分布情況和元素含量進行分析,同時觀察拉伸樣件的斷口微觀形貌和初生TiC情況。分別采用顯微硬度儀和微機控制電子萬能試驗機測試樣件的顯微硬度與拉伸性能。超聲產(chǎn)生的聲流、空化和機械效應(yīng)不斷攪拌熔池,增大了熔池的潤濕性,初生TiC熔化/溶解更加充分,改善了UMT在熔覆層邊緣的聚集情況。在超聲能場輔助作用下,20%、30%(質(zhì)量分?jǐn)?shù))TiCp/TC4復(fù)合材料的平均顯微硬度分別提升了8.4%和12.7%,極限拉伸性能分別提升了8.0%和15.0%。定點超聲高頻振動可以有效改善UMT聚集現(xiàn)象,使TiCp在TC4基體中分布得更加均勻,增強了熔覆層間結(jié)合強度,最終使沉積件力學(xué)性能得到提升。
直接激光沉積;TiCp/TC4復(fù)合材料;超聲振動;UMT聚集;微觀組織;力學(xué)性能
鈦合金因具備優(yōu)異的耐腐蝕性、較高的比剛度和較好的高溫性能,已被廣泛應(yīng)用于航空工業(yè)中[1-7],例如高壓機艙面板、高溫渦輪風(fēng)扇、整體葉盤等關(guān)鍵零部件[8-10]。但在高效率、高性能的發(fā)展趨勢下,傳統(tǒng)鈦合金材料難以滿足苛刻環(huán)境下更高性能的需求,因此,通過添加增強相改善鈦合金性能的鈦基復(fù)合材料(Titanium Matrix Composites,TMC)成為新一代材料的研究重點[7,9]。TC4作為常用的鈦合金,具備與TiC相近的密度和良好的相容性,添加TiC增強TC4可以有效提高其硬度、耐磨性和高溫穩(wěn)定性[11-17],進而提高鈦合金的綜合性能。
Liu等[18]通過直接激光沉積制備了0%~40%(體積分?jǐn)?shù))TiC增強TC4梯度復(fù)合材料,當(dāng)TiC的體積分?jǐn)?shù)超過5%時,便很難完全熔化/溶解,并且未熔的顆粒在馬蘭戈尼流強作用下被推向熔池邊緣,導(dǎo)致其分布不均勻,降低了熔合區(qū)域強度。Zeng等[19]指出在激光熔化沉積20%(質(zhì)量分?jǐn)?shù))TiC/TC4過程中,溫度梯度和馬蘭戈尼流動會導(dǎo)致層間未溶解TiC發(fā)生聚集,從而降低了復(fù)合材料的延展性與強度。Wang等[20-21]也指出UMT的聚集會使層間產(chǎn)生應(yīng)力集中,使材料在拉伸過程中過早失效,甚至在制備過程中由于應(yīng)力過大而產(chǎn)生裂紋。
TiC增強相的添加會使鈦合金獲得更優(yōu)異的硬度與耐磨性能,但是由于直接激光沉積的快熱快冷特點,TiC難以完全熔化/溶解,熔池內(nèi)較大的溫度梯度[22]與馬蘭戈尼強流作用將UMT推向熔覆層邊緣聚集,降低了熔池的潤濕性,嚴(yán)重影響了層間結(jié)合強度。許多研究表明,超聲可以促進組織均勻、晶粒細化[23-25]。因此,本文設(shè)計了超聲輔助平臺,采用定點超聲輔助直接激光沉積技術(shù)制備了20%、30%(質(zhì)量分?jǐn)?shù),下同)TiCp/TC4樣件,通過超聲的高頻振動傳入熔池產(chǎn)生的空化、聲流、機械等效應(yīng)干預(yù)凝固過程,成功改善了UMT的聚集現(xiàn)象,顯著提高了TMC的力學(xué)性能。
實驗中用的粉末為粒徑45~95 μm的球形TC4粉末和粒徑45~75 μm不規(guī)則形狀的TiC粉末,如圖1所示,粉末的化學(xué)成分如表1和表2所示。在實驗前先將2種粉末按一定質(zhì)量比例充分混合,并置于120 ℃的烘干箱中進行4 h的干燥處理?;暹x用130 mm× 130 mm×9 mm的TC4板材,在實驗開始前,用240#砂紙進行打磨并用酒精擦拭以去除基板表面的氧化層。
實驗時的超聲輔助激光增材制造系統(tǒng)主要包括JK 1002型Nd:YAG連續(xù)激光器(JK 1002,GSI Lumonics)、DPSF-2型送粉器(中國航空工業(yè))、超聲控制器與發(fā)生器(Hangzhou Fransonic Technology Co., Ltd.)、數(shù)控五軸機床(RESUM Inc.)和高純氬氣。實驗采取雙向往復(fù)掃描的方式沉積樣件,掃描路徑長度為30 mm。沉積實驗相關(guān)工藝參數(shù)如下:激光功率為480 W,掃描速度為150 mm/min,送粉速率為2.0 g/min,超聲功率為1 500 W。超聲輔助激光增材系統(tǒng)示意圖如圖2所示。
根據(jù)檢測需要,對制備的樣件進行線切割,之后進行磨拋處理,達到金相試樣標(biāo)準(zhǔn)后進行檢測。通過蔡司智能金相顯微鏡(Axioscope 5)觀察UMT分布情況。之后利用X射線衍射儀(X-ray Diffractometer 6000)分析物相組成、衍射峰強度與半峰寬變化。通過掃描電子顯微鏡(SU-5000)進一步分析微觀組織,并使用SEM配備的EDS模塊對元素分布和含量進行分析,同時觀察拉伸樣件斷口微觀形貌和初生TiC情況。通過顯微硬度儀(HV-1000A)檢測樣件顯微硬度,為保證實驗數(shù)據(jù)的準(zhǔn)確性,避開UMT連續(xù)打10個點,計算平均值。采用微機控制電子萬能試驗機(WDW-20E)測試樣件的極限拉伸性能,每組參數(shù)制備3個樣件進行測試,樣件尺寸如圖3所示。
圖1 粉末微觀形貌
表1 TC4粉末化學(xué)成分
表2 TiC粉末化學(xué)成分
圖2 超聲輔助激光增材系統(tǒng)示意圖
圖3 TiCp/TC4拉伸樣件示意圖
使用游標(biāo)卡尺對樣件的寬度進行測量,結(jié)果如圖4所示。當(dāng)TiC的質(zhì)量分?jǐn)?shù)為20%時,直接激光沉積制備的復(fù)合材料樣件寬度為(2.48±0.02)mm,施加超聲后,樣件的平均寬度為(2.60±0.04)mm。當(dāng)TiC的質(zhì)量分?jǐn)?shù)為30%時,超聲施加前后復(fù)合材料樣件寬度分別為(2.45±0.03)mm和(2.54±0.03)mm。當(dāng)TiC的質(zhì)量分?jǐn)?shù)從20%增大到30%時,熔池中UMT的含量也會增多,而UMT在熔池中會降低熔池的流動性[20],不利于液體金屬的鋪展,使直接激光沉積薄壁件寬度減小。通過超聲對熔池進行干預(yù),超聲頭在基板上高頻振動并作用于熔池內(nèi)部,使液體金屬易于向兩邊鋪展,從而增大了層間的結(jié)合強度。
圖4 樣件尺寸
對無超聲和1 500 W超聲功率下制備的20%和30%TiCp/TC4復(fù)合材料截面進行微觀組織觀察,如圖5所示??梢钥吹剑c20%相比,直接激光沉積制備的30%TiCp/TC4復(fù)合材料中的UMT明顯更多,這主要是因為隨著TiC含量的增加,激光能量無法使其全部熔化/溶解[26]。由圖5a和圖5c可知,UMT主要聚集在相鄰沉積層的結(jié)合區(qū),這直接影響了基體凝固過程中的收縮,使TC4基體內(nèi)部產(chǎn)生了殘余拉應(yīng)力[20],嚴(yán)重影響了層與層之間的結(jié)合,降低了材料的塑性。同時陶瓷與金屬之間的潤濕性較差,在機械加載過程中,脆性的陶瓷-金屬界面更易破裂,從而導(dǎo)致材料過早失效[27]。施加超聲后,如圖5b和圖5d所示,超聲振動產(chǎn)生的聲流與空化效應(yīng)不斷干預(yù)熔池凝固行為,為TiC的熔融裂解提供了攪拌作用,促進了TiC充分熔化和均勻分布。
圖5 樣件xz截面UMT宏觀分布
對制備的樣件進行物相分析,其檢測結(jié)果如圖6所示。2種工藝制備的20%和30%TiCp/TC4復(fù)合材料的物相組成均為α-Ti、β-Ti和TiC,無其他物相生成。與20%相比,30%TiCp/TC4復(fù)合材料的TiC衍射峰強度更高,這是因為隨著TiC含量的增加,基體中溶解并生成了更多的初生TiC。
對TiC衍射峰進行高斯擬合得到半高寬(FWHM),如圖6b所示??梢园l(fā)現(xiàn),隨著1 500 W超聲的引入,除(200)TiC衍射峰外,(111)TiC、(220)TiC、(311)TiC、(222)TiC衍射峰的FWHM均增大。Debye-Scherrer公式如式(1)所示[28]。
式中:為X射線波長(Cu靶波長為0.154 056 nm);為檢測樣品的衍射峰半高寬;為衍射角;為晶粒尺寸,nm。衍射峰半峰寬的增大意味著晶粒尺寸減小,并對位錯、應(yīng)力產(chǎn)生了一定影響[29]。因此,在超聲輔助直接激光沉積成形TiCp/TC4復(fù)合材料過程中,超聲干預(yù)熔池的凝固有助于細化晶粒、減小殘余應(yīng)力。
通過掃描電鏡觀察樣件截面的微觀組織,如圖7所示。在直接激光沉積制備TiCp/TC4復(fù)合材料的過程中,激光能量的輸入使TiC發(fā)生熔化/溶解,基體中結(jié)晶的初生TiC形態(tài)有以下4種:未溶TiC(UMT)、枝晶狀TiC(DPT)、鏈狀TiC(CPT)和顆粒狀TiC(GPT)[30]。由于激光的快冷快熱特性,相鄰層之間的溫度梯度較大[22],加上劇烈的馬蘭戈尼對流作用,促使未溶顆粒流向熔池頂端[31]。當(dāng)激光掃掠過后,UMT顆粒在沉積層頂端凝固,如圖7a和圖7d所示。當(dāng)超聲高頻振動引入熔池后,UMT聚集現(xiàn)象得到改善,如圖7b和圖7e所示,并且在超聲的作用下,UMT不斷與液體金屬接觸而繼續(xù)溶解。在圖7c和圖7f中,TMC的微觀組織以DPT與CPT為主,共晶GPT生長得也較為充分。其中30%TMC基體中的DPT生長得更為粗大,CPT更少。對有無施加超聲制備的30%TiCp/TC4復(fù)合材料截面的微觀組織進行分析,結(jié)果如圖8所示。可以發(fā)現(xiàn),在超聲作用下,微觀組織中DPT尺寸明顯減小,這將有助于提升初生TiC與基體的結(jié)合強度[30]。直接激光沉積制備的TiCp/TC4復(fù)合材料的微觀缺陷主要是氣孔,這些孔隙主要分布于UMT內(nèi)部,來自于原始TiC粉末本身的孔隙。超聲的空化作用也有利于排出TiC溶解于基體后產(chǎn)生的氣泡,提高材料的致密度。超聲高頻振動對TMC熔池凝固過程中初生TiC的干預(yù)作用如圖9所示,超聲高頻振動改善了UMT的聚集現(xiàn)象,有利于TiCp充分熔化/溶解,同時DPT被破碎,尺寸減小。
圖7 樣件xz截面微觀組織
圖9 超聲對熔池中TiC形貌影響
對30%TiCp/TC4復(fù)合材料組織中的元素分布情況進行分析,如圖10和圖11所示??梢钥吹剑还苁欠袷┘映?,材料中主要存在Ti、C、Al、V 4種元素,在基體中均能觀察到C元素的分布,這說明基體中也固溶了部分溶解的C,形成了間隙固溶體,同時,初生TiC上也固溶了少量的Al元素。值得注意的是,在超聲輔助下制備的TMC基體中C元素含量更高,這是因為超聲的高頻振動效應(yīng)使直接激光沉積過程中的熔池流動速度變快,讓初生TiC與液體金屬有更多的接觸時間與更大的接觸面積,使更多的TiC被熔化/溶解。對TMC中初生TiC與基體進行EDS分析,發(fā)現(xiàn)2種工藝下UMT中的C原子含量均低于原始粉末(通過原始TiC粉末元素質(zhì)量比,計算出C的原子數(shù)分?jǐn)?shù)約為56%)的,這說明在沉積過程中TiC顆粒進一步被熔化/溶解,而C原子的固溶強化作用將有助于提升TMC的力學(xué)性能[32]。
對不同工藝制備的TMC樣件進行顯微硬度檢測,結(jié)果如圖12所示??梢钥吹?,20%TMC無超聲時的平均顯微硬度為(463.7±9.5)HV0.5,1 500 W超聲作用下的平均顯微硬度為(497.1±17.0)HV0.5,提升了8.4%;而30%TMC在無超聲時的平均顯微硬度為(496.0±16.2)HV0.5,超聲介入后平均顯微硬度為(559.1±17.8)HV0.5,提升了12.7%。這是因為隨著超聲的引入,UMT在熔池中溶解并分布均勻,TMC中DPT的含量也逐漸增多,這些高硬質(zhì)的TiC能抑制基體變形,導(dǎo)致顯微硬度顯著提高。
圖10 無超聲30%TiCp/TC4復(fù)合材料元素與EDS分析
圖11 1 500 W超聲下30%TiCp/TC4復(fù)合材料元素與EDS分析
圖12 顯微硬度檢測結(jié)果
通過EDS對30%TiCp/TC4基體元素進行分析,發(fā)現(xiàn)由超聲輔助制備的復(fù)合材料C原子含量增加,TiC在超聲的作用下進一步溶解,使更多的C固溶在基體中。Fleischer強化公式如式(2)所示[33-34]。
式中:Δss為強化強度;為平均取向系數(shù);為剪切模量;為博格斯向量;ss為常數(shù);為元素的質(zhì)量分?jǐn)?shù)。所以C元素含量的增加會強化TC4基體,有利于提高TiCp/TC4復(fù)合材料的顯微硬度。
有無超聲輔助下直接激光沉積20%和30%TiCp/ TC4復(fù)合材料的工程應(yīng)力-應(yīng)變曲線如圖13所示。可以看到,直接激光沉積20%TiCp/TC4的極限拉伸強度為(712.6±9.9)MPa,超聲輔助下的極限拉伸強度為(769.9±6.8)MPa,提高了8.0%。30%TiCp/TC4復(fù)材基體中UMT含量大幅度增加,使極限拉伸強度快速下降,在無超聲作用下極限拉伸強度僅為(628.3±11.9) MPa,超聲介入后極限拉伸強度為(722.4±4.4) MPa,比無超聲時提高了15.0%。拉伸性能的提升主要歸因于聚集的UMT在超聲作用下分布均勻,而均勻后的TiC會緩解凝固過程中基體產(chǎn)生的收縮應(yīng)力,在拉伸過程中延緩斷裂失效。2種TiC比例的TMC的斷后伸長率變化不大,這是因為初生TiC為脆性相,在拉伸過程中會阻礙TC4基體的塑性變形,導(dǎo)致應(yīng)力集中進而使材料斷裂失效[35]。
有無超聲輔助下直接激光沉積20%和30%TiCp/ TC4復(fù)合材料的拉伸斷口形貌如圖14所示??梢钥闯觯跓o超聲作用時,拉伸斷口有積聚的UMT,脆性的UMT會阻礙基體的塑性變形,造成應(yīng)力集中,斷裂裂紋會先在UMT中萌生,導(dǎo)致材料過早斷裂[36]。此外,在部分UMT上可以觀察到氣孔存在,這些氣孔也有可能導(dǎo)致TMC提前斷裂失效。在施加超聲后,UMT分布均勻且尺寸變小,大部分UMT上的氣孔在其溶解后被排出,材料的致密度與拉伸強度得到提高。在脆性的UMT斷口處存在解理臺階,且表面凹凸不平,這表明TMC主要發(fā)生了解理斷裂。
利用超聲能場輔助激光增材技術(shù),改善了TiCp/TC4復(fù)合材料中UMT的聚集情況,增大了TiCp/TC4復(fù)合材料熔池的潤濕性。重點對0 W和1 500 W超聲功率輔助下制備的20%和30%TiCp/TC4復(fù)合材料的尺寸、微觀組織以及力學(xué)性能進行分析,結(jié)論如下:
1)定點超聲高頻振動可以有效改善UMT聚集現(xiàn)象,使TiCp在TC4基體中充分熔化/溶解且分布更加均勻,液體熔池易于向外鋪展,樣件寬度增大。
2)超聲的空化、聲流和機械效應(yīng)耦合對熔池有攪拌作用,但不會改變復(fù)合材料的物相。在超聲輔助制備的TMC基體中,DPT尺寸減小、數(shù)量增多,基體中C元素含量更高。
3)超聲作用提高了鈦基復(fù)合材料的顯微硬度。在有超聲輔助時,20%和30%TiCp/TC4復(fù)合材料的硬度分別為(497.1±17.0)HV0.5和(559.1±17.8)HV0.5,與無超聲時相比分別提升了8.4%和12.7%。超聲作用減緩了機械加載過程中TMC的過早失效,在有超聲輔助時,20%和30%TiCp/TC4復(fù)合材料的硬度分別為(769.9±6.8) MPa和(722.4±4.4) MPa,與無超聲時相比分別提升了8.0%和15.0%。
[1] WANG B H, CHENG L, LI D C. Study on Very High Cycle Fatigue Properties of Forged TC4 Titanium Alloy Treated by Laser Shock Peening under Three-point Bending[J]. International Journal of Fatigue, 2022, 156: 106668.
[2] LI B Q, ZHOU H G, LIU J F, et al. Multiaxial Fatigue Damage and Reliability Assessment of Aero-engine Compressor Blades Made of TC4 Titanium Alloy[J]. Aerospace Science and Technology, 2021, 119: 107107.
[3] TAN C L, WENG F, SUI S, et al. Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.
[4] LI X Q, PAN C L, FU D J, et al. Fabrication of Highly Dissimilar TC4/Steel Joint with V/Cu Composite Transition Layer by Laser Melting Deposition[J]. Journal of Alloys and Compounds, 2021, 862: 158319.
[5] CHENG R H, LUO X T, HUANG G H, et al. Corrosion and Wear Resistant WC17Co-TC4 Composite Coatings with Fully Dense Microstructure Enabled by In-situ Forging of the Large-sized WC17Co Particles in Cold Spray[J]. Journal of Materials Processing Technology, 2021, 296: 117231.
[6] GURRAPPA I. Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications[J]. Materials Characterization, 2003, 51(2/3): 131-139.
[7] WANG T, LIU X Y, CHEN S Y, et al. Study on Microstructure and Tribological Properties of Nano/Micron TiC/TC4 Composites Fabricated by Laser Melting Deposition[J]. Journal of Manufacturing Processes, 2022, 82: 296-305.
[8] LV Y H, LI J, TAO Y F, et al. High-temperature Wear and Oxidation Behaviors of TiNi/Ti2Ni Matrix Composite Coatings with TaC Addition Prepared on Ti6Al4V by Laser Cladding[J]. Applied Surface Science, 2017, 402: 478-494.
[9] ZHU L D, XUE P S, LAN Q, et al. Recent Research and Development Status of Laser Cladding: A Review[J]. Optics & Laser Technology, 2021, 138: 106915.
[10] WANG S W, ZHAO Z Y, BAI P K, et al. Effect of in Situ Synthesis TiC on the Microstructure of Graphene/Ti6Al4V Composite Fabricated by Selective Laser Melting[J]. Materials Letters, 2021, 304: 130715.
[11] HAYAT M D, SINGH H, HE Z, et al. Titanium Metal Matrix Composites: An Overview[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438.
[12] QIAO G W, ZHANG B, BAI Q, et al. Machinability of TiC-reinforced Titanium Matrix Composites Fabricated by Additive Manufacturing[J]. Journal of Manufacturing Processes, 2022, 76: 412-418.
[13] ZHAO T, ZHANG S, ZHOU F Q, et al. Microstructure Evolution and Properties of In-situ TiC Reinforced Titanium Matrix Composites Coating by Plasma Transferred Arc Welding (PTAW)[J]. Surface and Coatings Technology, 2021, 424: 127637.
[14] CHEN D Q, LIU D, LIU Y F, et al. Microstructure and Fretting Wear Resistance of γ/TiC Composite Coating in Situ Fabricated by Plasma Transferred Arc Cladding[J]. Surface and Coatings Technology, 2014, 239: 28-33.
[15] AMMISETTI D K, KRUTHIVENTI S S H. Recent Trends on Titanium Metal Matrix Composites: A Review[J]. Materials Today: Proceedings, 2021, 46: 9730-9735.
[16] PEILLON N, FRUHAUF J B, GOURDET S, et al. Effect of TiH2 in the Preparation of MMC Ti Based with TiC Reinforcement[J]. Journal of Alloys and Compounds, 2015, 619: 157-164.
[17] YUAN X Y, LIU G H, JIN H B, et al. In Situ Synthesis of TiC Reinforced Metal Matrix Composite (MMC) Coating by Self Propagating High Temperature Synthesis (SHS)[J]. Journal of Alloys and Compounds, 2011, 509(30): L301-L303.
[18] LIU S, SHIN Y C. The Influences of Melting Degree of TiC Reinforcements on Microstructure and Mechanical Properties of Laser Direct Deposited Ti6Al4V-TiC Composites[J]. Materials & Design, 2017, 136: 185-195.
[19] ZENG Y Z, WANG J D, WEI J Z, et al. Microstructure and Properties of Inter/Inner-layer Regions of TiCp/ Ti6Al4V Composites Manufactured by Laser Melting Deposition[J]. Materials Letters, 2022, 316: 131989.
[20] WANG J D, LI L Q, TAN C W, et al. Microstructure and Tensile Properties of TiCp/Ti6Al4V Titanium Matrix Composites Manufactured by Laser Melting Deposition[J]. Journal of Materials Processing Technology, 2018, 252: 524-536.
[21] LI L Q, WANG J D, LIN P P, et al. Microstructure and Mechanical Properties of Functionally Graded TiCp/ Ti6Al4V Composite Fabricated by Laser Melting Deposition[J]. Ceramics International, 2017, 43(18): 16638- 16651.
[22] BANDYOPADHYAY A, TRAXEL K D. Invited Review Article: Metal-additive Manufacturing-Modeling Strategies for Application-optimized Designs[J]. Additive Manufacturing, 2018, 22: 758-774.
[23] YUAN D, SHAO S Q, GUO C H, et al. Grain Refining of Ti-6Al-4V Alloy Fabricated by Laser and Wire Additive Manufacturing Assisted with Ultrasonic Vibration[J]. Ultrasonics Sonochemistry, 2021, 73: 105472.
[24] TODARO C J, EASTON M A, QIU D, et al. Grain Refinement of Stainless Steel in Ultrasound-assisted Additive Manufacturing[J]. Additive Manufacturing, 2021, 37: 101632.
[25] WU D J, SONG C C, DI T D, et al. Intermetallic Regulation Mechanism of Inconel 718/Ti6Al4V Composite by Novel Follow-up Ultrasonic Assisted Laser Additive Manufacturing[J]. Composites Part B: Engineering, 2022, 235: 109736.
[26] YU C, LIU X, LI Y, et al. Investigations of the Microstructure and Performance of TiCp/Ti6Al4V Composites Prepared by Directed Laser Deposition[J]. International Journal of Mechanical Sciences, 2021, 205: 106595.
[27] LLORCA J. Fatigue of Particle-and Whisker-reinforced Metal-matrix Composites[J]. Progress in Materials Science, 2002, 47(3): 283-353.
[28] SONG H Y, ZHANG J Q, SONG X L, et al. Microstructure and Friction Properties of GNP/Ni-based Superalloy Composite Coating by Laser Melting Deposition[J]. Applied Surface Science, 2021, 541: 148492.
[29] UNGáR T. Microstructural Parameters from X-ray Diffraction Peak Broadening[J]. Scripta Materialia, 2004, 51(8): 777-781.
[30] MA G Y, LIU X, SONG C C, et al. TiCp Reinforced Ti6Al4V of Follow-up Synchronous Electromagnetic Induction-laser Hybrid Directed Energy Deposition: Microstructure Evolution and Mechanical Properties[J]. Additive Manufacturing, 2022, 59: 103087.
[31] YANG G, MA J J, WANG H P, et al. Studying the Effect of Lubricant on Laser Joining of AA 6111 Panels with the Addition of AA 4047 Filler Wire[J]. Materials & Design, 2017, 116: 176-187.
[32] TANG M, ZHANG L, ZHANG N. Microstructural Evolution, Mechanical and Tribological Properties of TiC/Ti6Al4V Composites with Unique Microstructure Prepared by SLM[J]. Materials Science and Engineering: A, 2021, 814: 141187.
[33] LABORDE J L, HITA A, CALTAGIRONE J P, et al. Fluid Dynamics Phenomena Induced by Power Ultrasounds[J]. Ultrasonics, 2000, 38(1/2/3/4/5/6/7/8): 297-300.
[34] HU Y N, WU S C, GUO Y, et al. Inhibiting Weld Cracking in High-strength Aluminium Alloys[J]. Nature Communications, Nature Publishing Group, 2022, 13(1): 5816.
[35] LIU D, ZHANG S Q, LI A, et al. Microstructure and Tensile Properties of Laser Melting Deposited TiC/TA15 Titanium Matrix Composites[J]. Journal of Alloys and Compounds, 2009, 485(1/2): 156-162.
[36] WANG J D, LI L Q, LIN P P, et al. Effect of TiC Particle Size on the Microstructure and Tensile Properties of TiCp/Ti6Al4V Composites Fabricated by Laser Melting Deposition[J]. Optics & Laser Technology, 2018, 105: 195-206.
Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium Matrix Composite by Direct Laser Deposition
ZHANG Zi-ao, YAN Xin-rui, SONG Chen-chen, MA Guang-yi*, NIU Fang-yong, WU Dong-jiang
(Dalian University of Technology, Liaoning Dalian 116024, China)
The work aims to improve the aggregation of UMT in TiCpreinforced TC4 composite fabricated by direct laser deposition to strengthen the mechanical properties of TMC. 20wt.% and 30wt.% TiCp/TC4 composites were prepared by fixed ultrasonic assisted direct laser deposition. The distribution of UMT was observed by metallographic microscope. The phase composition, diffraction peak intensity and half peak width were analyzed by X-ray diffractometer. The microstructure was analyzed by field emission scanning electron microscope. The element distribution and element content were analyzed by energy dispersive spectrometer of SEM. At the same time, the fracture morphology and primary TiC of tensile samples were observed. The mechanical properties of the samples were tested by microhardness tester and microcomputer controlled electronic universal testing machine. The acoustic flow, cavitation and mechanical effects generated by ultrasound could continuously stir the molten pool, increase the wettability of the molten pool, make the primary TiC melt/dissolve more fully, and improve the aggregation of UMT at the edge of the cladding layer. Under the assistance of ultrasonic energy field, the average microhardness of 20wt.% and 30wt.% TiCp/TC4 composites increased by 8.4% and 12.7% respectively, and the ultimate tensile properties increased by 8.0% and 15.0% respectively. The fixed ultrasonic high-frequency vibration effectively improves the UMT aggregation, makes the distribution of TiCpin the TC4 matrix more uniform, enhances the bonding strength between the cladding layers, and finally improves the mechanical properties of the deposited samples.
direct laser deposition; TiCp/TC4 composites; ultrasonic vibration; UMT aggregation; microstructure; mechanical properties
10.3969/j.issn.1674-6457.2023.011.003
TG174.442;TB34
A
1674-6457(2023)011-0021-10
2023-10-08
2023-10-08
中國高?;究蒲袠I(yè)務(wù)費資助(DUT21YG116);國家自然科學(xué)基金(52175291)
Fundamental Research Funds for the Central University(DUT21YG116);National Natural Science Foundation of China(52175291)
張子傲, 嚴(yán)新銳, 宋晨晨, 等. 超聲對直接激光沉積鈦基復(fù)材中未熔TiC聚集現(xiàn)象的影響[J]. 精密成形工程, 2023, 15(11): 21-30.
ZHANG Zi-ao, YAN Xin-rui, SONG Chen-chen, et al. Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium Matrix Composite by Direct Laser Deposition[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 21-30.
通信作者(Corresponding author)
責(zé)任編輯:蔣紅晨