• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction

    2023-11-18 09:14:16ShifanHUANGWeihaoLUOZongmingZHUZhenlongXUBanWANGMaoyingZHOUHuaweiQIN
    關(guān)鍵詞:非線性壓電電磁

    Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, Huawei QIN

    Research Article

    Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction

    Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, Huawei QIN

    School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

    Harvesting vibration energy has attracted the attention of researchers in recent decades as a promising approach for powering wireless sensor networks. The hybridization of piezoelectricity and electromagnetism has proven helpful in the improvement of vibration energy harvesting. In this study, we explore the integration of piezoelectric and electromagnetic parts in one vibration energy harvesting device. Lumped-parameter models of the system are derived considering the different connection topologies of the piezoelectric and electromagnetic parts. Numerical predictions from these models are compared with experimental results to throw light on the nonlinearities in the system. Modifications of the system are also explored to provide insights into opportunities to improve its performance and that of future vibration energy harvesters.

    Hybrid energy harvesting; Nonlinear interaction; Magnetic spring; Piezoelectricity; Electromagnetism

    1 Introduction

    Recent years have witnessed the rapid development of wireless sensor networks and their vast applications in consumer electronics, industrial automation, and environmental monitoring (Kandris et al., 2020; Malik et al., 2020; Priyadarshi et al., 2020). In this process, a major concern has been the power supply of such networks, which currently relies on batteries and suffers from a high cost of maintenance (Priyadarshi et al., 2020). In view of the ubiquitous presence of vibration in the ambient environment, it is feasible in principle to harness available vibration energy and convert it into electricity for sensors. The so-called vibration energy harvester has emerged from this idea and has attracted the attention of numerous researchers (Zhou et al., 2018; Malik et al., 2020; Miller et al., 2020; Yao et al., 2023). According to their underlying mechanisms of energy transduction, several sorts of vibration energy harvesters are found in the literature: electrostatic energy harvesters (Basset et al., 2014; Zhang et al., 2016, 2018), triboelectric energy harvesters (Zhu et al., 2013; Li et al., 2015; Qiu et al., 2020), electromagnetic energy harvesters (Zhang et al., 2015; Saravia, 2019; Shi et al., 2020; Wang W et al., 2022), and piezoelectric energy harvesters (Cao et al., 2015; Zhang and Qin, 2019; Wang ZM et al., 2022; Wu and Xu, 2022). Among these, piezoelectric vibration energy harvesters (PVEHs) have shown superior potential for application due to their high voltage output and simple structure.

    Physically, PVEHs operate in resonant mode to achieve high efficiency of energy conversion (Anton and Sodano, 2007; Safaei et al., 2019). One problem with these PVEHs has been their limited working frequency bandwidth. Great efforts have been made to enlarge the bandwidth of PVEHs, including the automatic tuning of their resonant frequencies (Challa et al., 2011), integration of multiple PVEHs with different resonant frequencies (Dechant et al., 2017), combination of PVEHs with other energy transduction mechanisms (Fan et al., 2018c; Liu et al., 2021), and intentional introduction of nonlinearity into PVEHs (Zou et al., 2017; Fan et al., 2018b). Of practical interest here is the combination of piezoelectric and electromagnetic energy harvesters. On the one hand, the frequency bandwidth is broadened due to the different resonant frequencies of piezoelectric and vibration electromagnetic energy harvesters. On the other hand, introduction of magnetic interaction provides an opportunity to further increase the frequency bandwidth with the help of nonlinearity.

    Hence, many researchers have tried to construct and investigate hybrid energy harvesters based on piezoelectricity and electromagnetism (HEHPEs) (Xia et al., 2015; Ahmad and Khan, 2021). Magnetic interactions between permanent magnets and conducting coils have been introduced to conventional piezoelectric energy harvesters (Challa et al., 2009). Under the action of base excitation, the piezoelectric beam undergoes elastic vibration. As a result, the permanent magnets oscillate relative to the conducting coil. Electrical output can then be expected from the coil according to the principles of electromagnetism. Different arrangements between the magnets and the coils have been explored, based on spiral coils (Yang et al., 2010; Zhang et al., 2019) or helical coils (Sang et al., 2012; Xu et al., 2017b). Magnetic springs formed by the nonlinear interactions between different magnets have also been used to connect the piezoelectric and electromagnetic parts of the HEHPEs (Xu et al., 2016; Xia et al., 2017). The optimal operation frequency of the HEHPE can be easily tuned by the nonlinear magnetic spring introduced. An interesting approach to integrate the piezoelectric and electromagnetic parts in an HEHPE is to add an electromagnetic energy harvesting unit to the free end of a piezoelectric energy harvesting unit (Shan et al., 2013; Mahmoudi et al., 2014; Li et al., 2016; Liu et al., 2019). In this case, a multi-degree of freedom (DOF) vibration system is formed, increasing the power output of the hybrid system. Other investigations have focused on the introduction of impact or contact to tune the operation frequency of HEHPEs (Fan et al., 2018a, 2018b; Halim et al., 2019; Maamer et al., 2019; Iqbal et al., 2021). Nonetheless, it seems that the full potential of HEHPEs has not yet been revealed. Due to the mismatching characteristics of stand-alone piezoelectric and electromagnetic energy harvesters (Arroyo et al., 2012), nearly all the proposed and investigated HEHPEs disconnect the output of the piezoelectric part from that of the electromagnetic part. Hence, the outputs of these two parts are considered and evaluated separately. Meanwhile, due to the capacitive property of a piezoelectric energy harvester, addition of an external inductor alters the vibration characteristics of the device (Wang B et al., 2022). Noting that coils are typical electrical inductors, the electrical connection between the piezoelectric and electromagnetic parts inside an HEHPE may also alter and enhance the performance of an HEHPE (Huang et al., 2022).

    In this study, we investigated the direct integration of piezoelectric and electromagnetic energy harvesting units in one HEHPE. An electromagnetic part based on magnetic springs was attached to the free end of a piezoelectric part in an HEHPE. Lumped-parameter models of the HEHPE were established considering different connection topologies between the piezoelectric and electromagnetic parts. Experimental results were obtained and compared with theoretical predictions considering the nonlinearities in the HEHPE. Modifications of the HEHPE were also explored to provide insights into the potential to improve the performance of HEHPEs and that of future vibration energy harvesters.

    2 Structure and working principle

    Fig. 2 Different connection topologies: (a) connection topology 1; (b) connection topology 2; (c) connection topology 3; (d) connection topology 4

    3 Theoretical model of the HEHPE

    3.1 Lumped-parameter representation of the system

    As indicated above, the dynamic behavior of the HEHPE is affected by the connection topology between the electromagnetic and piezoelectric parts. Four connection topologies were considered: connection topology 1, connection topology 2, connection topology 3, and connection topology 4.

    4 Numerical analysis and experiments

    4.1 Experimental setup

    Based on the above analysis, a prototype of the studied HEHPE was prepared (as shown in the enlarged inset located in the upper right corner of Fig. 3). Related structural and material parameters are shown in Table 1. The prototype consists of a 3D-printed base made of resin materials, a 3D-printed frame made of transparent resin materials (Future Factory, China), a base beam made of red copper (Taizhou Shunkuo Hardware Products Co., Ltd., China), a ring magnet (Shanghai Strong Magnetic Material Factory, China), an induction coil, a copper bar guide, and some screws and nuts.

    Fig. 3 Schematic diagram of the studied HEHPE (PC: personal computer; NI: National Instruments)

    The main bimorph beam is composed of two PZT-5H ceramic plates (Baoding Hongsheng Electronics Co., Ltd., China) and the base beam. The two piezoelectric ceramic plates were attached to the base beam in parallel using AB glue. Both surfaces of the piezoelectric ceramic plate are covered with electrodes. The frame is attached to the free end of the base beam with the help of screws and nuts. An induction coil is wound in the middle of the frame. Two ring magnets are fixed at the upper and lower ends of the frame using solid sol. The ring magnets fixed at the upper and lower ends are connected by a thin copper rail, which guides the motion of the moving magnet.

    Table 1 Parameters of the experimental prototype HEHPE

    sandsare the width and thickness of the base beam, respectively;pandpare the width and thickness of the piezoelectric plates, respectively;oandiare the outer diameter and inner diameter of the magnets, respectively;andmare the thicknesses of fixed magnets and moving magnets, respectively

    The test rig of the HEHPE is shown in Fig. 3. A vibration exciter is used to provide periodic base excitation, and its waveform and frequency are adjusted by a vibration controller, the control computer, and a power amplifier. The experimental prototype is fixed on the vibration exciter by screws. Two acceleration sensors are fixed to the base, one for detecting feedback signal and the other for monitoring the vibration controller. Voltage generated by the prototype is collected by the computer through a data acquisition card.

    4.2 Comparisons of the models and the experiments

    Since the lumped-parameter model described in the ESM is based on the first resonant vibration mode of the studied HEHPE, in subsequent analysis we use only the experimental data collected for the first-order harmonic. Under different connection topologies and given external load resistance, the output voltages of the piezoelectric and electromagnetic parts, if available, are normalized with respect to the amplitude of base excitation accelerations. Results were also obtained using the lumped-parameter model with parameters tuned to match the experimental results.

    Fig. 4 Comparison of the frequency responses of RMS voltage and average power of the HEHPE obtained with different connection topologies: (a) and (b) for connection 1 and (c) and (d) for connection 2

    For condition 3, the piezoelectric and electromagnetic parts of the HEHPE were electrically disconnected from each other. The external load resistance of the piezoelectric part was 70 k?, while that of the electromagnetic part was 150 ?. The normalized output RMS voltage and average power of the piezoelectric part are shown in Figs. 5a and 5b, respectively, and those of the electromagnetic part in Figs. 5c and 5d, respectively. For both the piezoelectric and electromagnetic parts, two resonant peaks are present at the base excitation frequencies of 6.4 and 9.6 Hz, respectively. For the piezoelectric part, the normalized RMS voltages for the two resonant peaks were 2.624 and 10.850, respectively, while those for the average power were 0.91 and 1.68, respectively. For the electromagnetic part, the normalized RMS voltages for the two resonant peaks were 0.733 and 0.892, respectively, while those for average power were 3.585 and 5.300, respectively.

    Fig. 5 Comparison of the frequency responses of RMS voltage and average power of the piezoelectric part (a and b) and electromagnetic part (c and d) obtained with connection topology 3

    Note that although the experimental results obtained are in good qualitative agreement with the numerical predictions from the developed models, there are quantitative errors. One reason for this is the oversimplification of the 3D motion of the HEHPE 1D linear motion. Rotational elastic vibration of the piezoelectric cantilever beam is ignored. The swing of the electromagnetic part and revolution of the moving magnetic with respect to the copper guide rail are also neglected. A second concern is the simplified expression of the magnetic force and electromagnetic damping shown before. Moreover, although the copper guide rail was made as smooth as possible before the experiment, friction and collision between the moving magnet and the copper guide rail contribute to the differences.

    where

    Fig. 6 Comparison of the frequency responses of RMS voltage (a) and average power (b) of the HEHPE obtained with connection topology 4

    Fig. 7 Schematic diagram of the resistor-capacitor-inductor (RCL) circuit in the energy harvester device

    As stated previously (Huang et al., 2022), the complex coupling between the electrical resonator, the piezoelectric part, and the electromagnetic part is seen to have the most influence on device performance. Calculations show that in our situation, the electrical resonant frequency was around 631 Hz. As this frequency is far outside the considered frequency range, the effect of the electrical resonance is not shown in our experiments. However, extra tuning of the external load circuits can help tune the output performance of HEHPEs (Huang et al., 2022). Because of the limited choice of piezoelectric and electromagnetic materials, the effect of electrical resonance has not been fully recognized. Further research is needed urgently, and this will be a topic of future investigations.

    As a final characterization, considering the HEHPE in connection topology 3, different external load resistances were applied to the piezoelectric part (1–1000 k?) and electromagnetic part (10–5000 ?), respectively. The RMS voltage and average power of the HEHPE are shown in Fig. 8. With increasing load resistance, the output voltage amplitude gradually increases, and finally approaches a limit (Figs. 8a and 8c). The average output power first reaches the maximum value at the optimal load, and then decreases monotonically with the further increase of load resistance (Figs. 8b and 8d). The predictions from our lumped-parameter models are also shown.

    Fig. 8 Outputs of the HEHPE with connection topology 3 at excitation frequencies of 6.0, 7.5, and 9.0 Hz: RMS voltage (a) and average power (b) for the piezoelectric part; RMS voltage (c) and average power (d) for the electromagnetic part

    Note that when the base excitation frequency is far from the resonant frequencies (here we aimed for a resonant frequency of around 6.4 Hz), the numerical predictions are in good agreement with the experiment results. However, when the base excitation frequency is close to the resonance, numerical predictions deviate from experimental results. This is consistent with our model assumption that the electromagnetic and piezoelectric parts weakly interact with each other. Close to resonance, however, the interaction between these two parts is strong with dramatic energy exchange, which is not accounted for in the simplified model. Nonlinearity and mutual coupling in the HEHPE need extra attention in future investigations.

    4.3 Modifications of the electromagnetic part

    Results from previous experiments gave us the impression that a moving magnet in the electromagnetic part does not move far from its balanced position. As a consequence, the RMS output voltage of the electromagnetic part shown in Fig. 8 is far from satisfactory. A direct cause is that the magnetic force is too strong for the moving magnet to move easily. To strengthen the motion of the moving magnet, we replaced the upper fixed magnet in the electromagnetic part with an elastic spring. A schematic diagram of the modified system is shown in Fig. 9. The main idea is that when the moving magnet oscillates, it will collide with the elastic spring. Non-smooth nonlinearity is introduced into the system and the oscillating amplitude of the moving magnet can be increased (Xu et al., 2017a).

    Fig. 9 Diagram of the structure of the modified HEHPE with the upper fixed magnet replaced with a fixed spring

    To begin with, we were concerned about the distancebetween the elastic spring and the moving magnet (Fig. 9). Its influence upon device performance was explored. The values ofwere set to 0, 2, and 4 mm, respectively. Under connection topology 3, the RMS voltages of the piezoelectric part and the electromagnetic part were as shown in Figs. 10a and 10b, respectively, versus the base excitation frequency. Under connection topology 4, the RMS voltage of the HEHPE was as shown in Fig. 11.

    In Figs. 10a and 11, with increasing, the RMS voltage for the first resonant peak decreases gradually, while that for the second peak increases, while in Fig. 10b, the RMS voltage of both resonant peaks decreases with increasingand gradually approachs that of the original HEHPE prototype. Note that replacement of the upper fixed magnet with an elastic spring increased the output performance of the device for nearly all connection topologies. Besides, due to the introduction of collision between the moving magnet and the elastic spring, up-conversion of the frequency is apparent in Figs. 10 and 11.

    Fig. 10 Output performance of the modified HEHPE with different d with connection topology 3: (a) RMS voltage of the piezoelectric part; (b) RMS voltage of the electromagnetic part

    Fig. 11 Output voltage of the modified HEHPE with different d with connection topology 4

    Since the mathematical model of the modified HEHPE is not well established, detailed discussions are postponed. In future investigations, a search for an optimal value ofcould be of primary interest to improve device performance. In addition, the stiffness of the elastic spring was not carefully tuned in our small-scale experiments. Future investigations should be done to elucidate its effects.

    5 Conclusions

    With increasing attention being paid to PVEHs, researchers are attempting to increase their working bandwidths through the integration of piezoelectric and electromagnetic energy transduction mechanisms in a single HEHPE.

    This study focused on the nonlinear interaction in an HEHPE. Mathematical models of the proposed HEHPE were established considering different connection topologies. Prototypes were prepared and tested. Input and output signals of the HEHPE were firstly analyzed to stress the insufficiently understood features of containing multi-frequency components. Methods for characterizing such signals are put forward and discussed. With regard to different connection topologies, the RMS voltage and average power of the HEHPE were investigated and compared with numerical predictions based on a developed model. Good agreement was found. We also found that the electrical connection between the electromagnetic and piezoelectric parts in the HEHPE serves to tune the frequency characteristics of the device and alter its output performance. Nonlinearity due to the magnetic force introduced also changes the energy distribution between the electromagnetic and piezoelectric parts. Once system parameters are well tuned, better device performance in terms of working bandwidth and output power can be expected.

    Also, the original HEHPE was modified by replacing the upper fixed magnet with an elastic spring. An obvious performance improvement was witnessed and considerable frequency tuning observed. Changing the distancebetween the spring and the moving magnet was shown to greatly affect device behavior.

    Nonetheless, several points need attention in future research. The base beam in the piezoelectric part should be longer and thicker, to make it easier to match the resonant properties of the piezoelectric and electromagnetic parts. Besides, tuning of the resonant frequency due to the electrical connection between the piezoelectric part and the electromagnetic should be optimized. In addition, a detailed study of the modified HEHPE is needed to provide a thorough understanding of the effect of the introduced nonlinearity on device performance.

    Acknowledgments

    This work is supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY22E050013) and the China Postdoctoral Science Foundation (No. 2021M690545), and is also supported in part by the Zhejiang Provincial Natural Science Foundation of China (No. LZY22E050001) and the National Natural Science Foundation of China (No. 51805124).

    Author contributions

    Shifan HUANG, Zhenlong XU, and Maoying ZHOU designed the research. Shifan HUANG and Weihao LUO processed the corresponding data. Shifan HUANG wrote the first draft of the manuscript. Weihao LUO, Zongming ZHU, Ban WANG, and Huawei QIN helped to organize the manuscript. Maoying ZHOU and Shifan HUANG revised and edited the final version.

    Conflict of interest

    Shifan HUANG, Weihao LUO, Zongming ZHU, Zhenlong XU, Ban WANG, Maoying ZHOU, and Huawei QIN declare that they have no conflict of interest.

    Ahmad MM, Khan FU, 2021. Review of vibration?‐?based electromagnetic–piezoelectric hybrid energy harvesters., 45(4):5058-5097. https://doi.org/10.1002/er.6253

    Anton SR, Sodano HA, 2007. A review of power harvesting using piezoelectric materials (2003-2006)., 16(3):R1-R21. https://doi.org/10.1088/0964-1726/16/3/r01

    Arroyo E, Badel A, Formosa F, et al., 2012. Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments., 183:148-156. https://doi.org/10.1016/j.sna.2012.04.033

    Basset P, Galayko D, Cottone F, et al., 2014. Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact., 24(3):035001. https://doi.org/10.1088/0960-1317/24/3/035001

    Cao DX, Leadenham S, Erturk A, 2015. Internal resonance for nonlinear vibration energy harvesting., 224(14-15):2867-2880. https://doi.org/10.1140/epjst/e2015-02594-4

    Challa VR, Prasad MG, Fisher FT, 2009. A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching., 18(9):095029. https://doi.org/10.1088/0964-1726/18/9/095029

    Challa VR, Prasad MG, Fisher FT, 2011. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications., 20(2):025004. https://doi.org/10.1088/0964-1726/20/2/025004

    Dechant E, Fedulov F, Fetisov LY, et al., 2017. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting., 7(12):1324. https://doi.org/10.3390/app7121324

    Erturk A, Inman DJ, 2009. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations., 18(2):025009. https://doi.org/10.1088/0964-1726/18/2/025009

    Fan KQ, Tan QX, Liu HY, et al., 2018a. Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations., 27(8):085001. https://doi.org/10.1088/1361-665X/aaae92

    Fan KQ, Tan QX, Zhang YW, et al., 2018b. A monostable piezoelectric energy harvester for broadband low-level excitations., 112(12):123901. https://doi.org/10.1063/1.5022599

    Fan KQ, Liu SH, Liu HY, et al., 2018c. Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester., 216:8-20. https://doi.org/10.1016/j.apenergy.2018.02.086

    Halim MA, Kabir MH, Cho H, et al., 2019. A frequency up-converted hybrid energy harvester using transverse impact-driven piezoelectric bimorph for human-limb motion., 10(10):701. https://doi.org/10.3390/mi10100701

    Huang SF, Zhou MY, Liu Y, 2022. Output performance of piezoelectric vibration energy harvester considering inductive loads. Proceedings of the Eighth Asia International Symposium on Mechatronics, p.167-172. https://doi.org/10.1007/978-981-19-1309-9_16

    Iqbal M, Nauman MM, Khan FU, et al., 2021. Vibration‐based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review., 45(1):65-102. https://doi.org/10.1002/er.5643

    Kandris D, Nakas C, Vomvas D, et al., 2020. Applications of wireless sensor networks: an up-to-date survey., 3(1):14. https://doi.org/10.3390/asi3010014

    Li P, Gao SQ, Cai HT, et al., 2016. Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester., 22(4):727-739. https://doi.org/10.1007/s00542-015-2440-8

    Li YF, Cheng G, Lin ZH, et al., 2015. Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors., 11:323-332. https://doi.org/10.1016/j.nanoen.2014.11.010

    Liu HC, Fu HL, Sun LN, et al., 2021. Hybrid energy harvesting technology: from materials, structural design, system integration to applications., 137:110473. https://doi.org/10.1016/j.rser.2020.110473

    Liu HP, Gao SQ, Wu JR, et al., 2019. Study on the output performance of a nonlinear hybrid piezoelectric-electromagnetic harvester under harmonic excitation., 1(2):382-392. https://doi.org/10.3390/acoustics1020021

    Maamer B, Boughamoura A, Fath El-Bab AMR, et al., 2019. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes., 199:111973. https://doi.org/10.1016/j.enconman.2019.111973

    Mahmoudi S, Kacem N, Bouhaddi N, 2014. Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions., 23(7):075024. https://doi.org/10.1088/0964-1726/23/7/075024

    Malik BT, Doychinov V, Hayajneh AM, et al., 2020. Wireless power transfer system for battery-less sensor nodes., 8:95878-95887. https://doi.org/10.1109/access.2020.2995783

    Miller T, Oyewobi SS, Abu-Mahfouz AM, et al., 2020. Enabling a battery-less sensor node using dedicated radio frequency energy harvesting for complete off-grid applications., 13(20):5402. https://doi.org/10.3390/en13205402

    Priyadarshi R, Gupta B, Anurag A, 2020. Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues., 76(9):7333-7373. https://doi.org/10.1007/s11227-020-03166-5

    Qiu CK, Wu F, Lee C, et al., 2020. Self-powered control interface based on gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications., 70:104456. https://doi.org/10.1016/j.nanoen.2020.104456

    Safaei M, Sodano HA, Anton SR, 2019. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008-2018)., 28(11):113001. https://doi.org/10.1088/1361-665X/ab36e4

    Sang YJ, Huang XL, Liu HX, et al., 2012. A vibration-based hybrid energy harvester for wireless sensor systems., 48(11):4495-4498. https://doi.org/10.1109/tmag.2012.2201452

    Saravia CM, 2019. A formulation for modeling levitation based vibration energy harvesters undergoing finite motion., 117:862-878. https://doi.org/10.1016/j.ymssp.2018.08.023

    Shan XB, Guan SW, Liu ZS, et al., 2013. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism., 14(12):890-897. https://doi.org/10.1631/jzus.A1300210

    Shi G, Chen JF, Peng YS, et al., 2020. A piezo-electromagnetic coupling multi-directional vibration energy harvester based on frequency up-conversion technique., 11(1):80. https://doi.org/10.3390/mi11010080

    Tran N, Ghayesh MH, Arjomandi M, 2018. Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement., 127:162-185. https://doi.org/10.1016/j.ijengsci.2018.02.003

    Wang B, Zhou MY, Zhu DF, et al., 2022. Modeling and analysis of the piezoelectric vibration energy harvester with externally connected inductor., 233(7):2701-2717. https://doi.org/10.1007/s00707-022-03248-w

    Wang W, Wei HT, Wei ZH, 2022. Numerical analysis of a magnetic-spring-based piecewise nonlinear electromagnetic energy harvester., 137(1):56. https://doi.org/10.1140/epjp/s13360-021-02255-5

    Wang ZM, Du Y, Li TR, et al., 2022. Bioinspired omnidirectional piezoelectric energy harvester with autonomous direction regulation by hovering vibrational stabilization., 261:115638. https://doi.org/10.1016/j.enconman.2022.115638

    Wu ZH, Xu QS, 2022. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction., 162:108043. https://doi.org/10.1016/j.ymssp.2021.108043

    Xia HK, Chen RW, Ren L, 2015. Analysis of piezoelectric?–electromagnetic hybrid vibration energy harvester under different electrical boundary conditions., 234:87-98. https://doi.org/10.1016/j.sna.2015.08.014

    Xia HK, Chen RW, Ren L, 2017. Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: modeling and experiment., 257:73-83. https://doi.org/10.1016/j.sna.2017.01.026

    Xu ZL, Shan XB, Chen DP, et al., 2016. A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms., 6(1):10. https://doi.org/10.3390/app6010010

    Xu ZL, Wang W, Xie J, et al., 2017a. An impact-based frequency up-converting hybrid vibration energy harvester for low frequency application., 10(11):1761. https://doi.org/10.3390/en10111761

    Xu ZL, Shan XB, Yang H, et al., 2017b. Parametric analysis and experimental verification of a hybrid vibration energy harvester combining piezoelectric and electromagnetic mechanisms., 8(6):189. https://doi.org/10.3390/mi8060189

    Yang B, Lee C, Kee WL, et al., 2010. Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms., 9(2):023002. https://doi.org/10.1117/1.3373516

    Yao BK, Gao H, Zhang Y, et al., 2023. Maximum AoI minimization for target monitoring in battery-free wireless sensor networks., 22(8):4754-4772. https://doi.org/10.1109/TMC.2022.3161975

    Zhang GY, Gao SQ, Liu HP, et al., 2019. Design and performance of hybrid piezoelectric-electromagnetic energy harvester with trapezoidal beam and magnet sleeve., 125(8):084101. https://doi.org/10.1063/1.5087024

    Zhang JH, Qin LF, 2019. A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism., 240:26-34. https://doi.org/10.1016/j.apenergy.2019.01.261

    Zhang Y, Cai CS, Kong B, 2015. A low frequency nonlinear energy harvester with large bandwidth utilizing magnet levitation., 24(4):045019. https://doi.org/10.1088/0964-1726/24/4/045019

    Zhang YL, Wang TY, Zhang A, et al., 2016. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency., 87(12):125001. https://doi.org/10.1063/1.4968811

    Zhang YL, Wang TY, Luo AX, et al., 2018. Micro electrostatic energy harvester with both broad bandwidth and high normalized power density., 212:362-371. https://doi.org/10.1016/j.apenergy.2017.12.053

    Zhou MY, Al-Furjan MSH, Zou J, et al., 2018. A review on heat and mechanical energy harvesting from human?–principles, prototypes and perspectives., 82:3582-3609. https://doi.org/10.1016/j.rser.2017.10.102

    Zhu G, Lin ZH, Jing QS, et al., 2013. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator., 13(2):847-853. https://doi.org/10.1021/nl4001053

    Zou HX, Zhang WM, Li WB, et al., 2017. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion., 148:1391-1398. https://doi.org/10.1016/j.enconman.2017.07.005

    Electronic supplementary materials

    Sections S1 and S2

    題目:壓電-電磁混合振動俘能器的實驗與理論分析

    作者:黃世帆,羅偉昊,朱宗明,徐振龍,王班,周茂瑛,秦華偉

    機構(gòu):杭州電子科技大學,機械工程學院,中國杭州,310018

    目的:振動俘能器作為一種富有前景的無線傳感器網(wǎng)絡(luò)供電方法,壓電與電磁的耦合有助于提高振動俘能器的輸出性能。本文旨在探討壓電和電磁在混合振動俘能器中的集成,考慮壓電和電磁不同的連接拓撲,并對該混合振動俘能器的優(yōu)化結(jié)構(gòu)進行探索,提出改進其性能的方法。

    創(chuàng)新點:1. 將壓電和電磁兩種能量收集裝置集成在一個系統(tǒng)中進行分析;2. 分析壓電與電磁之間不同的連接拓撲,建立其集總參數(shù)模型;3. 提出該混合振動俘能器的優(yōu)化結(jié)構(gòu)。

    方法:1. 首先對壓電-電磁混合振動俘能器的輸入和輸出信號進行分析,強調(diào)對其包含多頻成分的特征理解不夠充分,提出并討論表征這類信號的方法。2. 通過實驗分析壓電和電磁混合振動俘能器四種連接拓撲方式的輸出性能,推導出他們的集中參數(shù)模型。3. 將這些參數(shù)模型的數(shù)值預測結(jié)果與實驗結(jié)果進行比較(圖4~6),揭示系統(tǒng)中的非線性。4. 對優(yōu)化的混合振動俘能器進行了實驗分析探索,提出改進其性能的方法。

    結(jié)論:1.針對不同的連接拓撲,通過實驗研究的混合振動俘能器的均方根電壓和平均功率與所建立模型的數(shù)值預測結(jié)果一致。2. 電磁和壓電部件之間的電氣連接可以調(diào)節(jié)俘能器的頻率特性并改變其輸出性能。3. 用彈性彈簧取代原混合振動俘能器的上部固定磁鐵,性能得到了明顯的改善,并觀察到了相當大的頻率調(diào)整;改變彈簧和移動磁鐵之間的初始距離會極大地影響俘能器的輸出性能(圖10和11)。

    關(guān)鍵詞:混合能量收集;非線性;磁彈簧;壓電;電磁

    https://doi.org/10.1631/jzus.A2200551

    https://doi.org/10.1631/jzus.A2200551

    ? Zhejiang University Press 2023

    Nov. 20, 2022;

    Jan. 6, 2022;

    June 21, 2023;

    Aug. 1, 2023

    猜你喜歡
    非線性壓電電磁
    三維多孔電磁復合支架構(gòu)建與理化表征
    《壓電與聲光》征稿啟事
    壓電與聲光(2019年1期)2019-02-22 09:46:06
    新型壓電疊堆泵設(shè)計及仿真
    掌握基礎(chǔ)知識 不懼電磁偏轉(zhuǎn)
    電子節(jié)氣門非線性控制策略
    汽車科技(2016年5期)2016-11-14 08:03:52
    基于SolidWorksSimulation的O型圈錐面密封非線性分析
    科技視界(2016年23期)2016-11-04 08:14:28
    四輪獨立驅(qū)動電動汽車行駛狀態(tài)估計
    工業(yè)機器人鋁合金大活塞鑄造系統(tǒng)設(shè)計與研究
    科技視界(2016年24期)2016-10-11 12:53:13
    基于壓電激振的彈性模量測量方法
    壓電復合懸臂梁非線性模型及求解
    一本一本综合久久| 最近最新免费中文字幕在线| 波多野结衣高清作品| 精品国产美女av久久久久小说| 黄色女人牲交| 日日干狠狠操夜夜爽| 国产av又大| 午夜成年电影在线免费观看| 老司机在亚洲福利影院| avwww免费| 免费观看人在逋| 欧美日韩一级在线毛片| 国产激情欧美一区二区| 12—13女人毛片做爰片一| 亚洲成人国产一区在线观看| 毛片女人毛片| 99热这里只有是精品50| 999精品在线视频| 精品国产美女av久久久久小说| 免费搜索国产男女视频| 国内久久婷婷六月综合欲色啪| 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 老鸭窝网址在线观看| 中出人妻视频一区二区| 一本综合久久免费| 美女大奶头视频| 黄色视频,在线免费观看| 免费在线观看黄色视频的| 99热这里只有是精品50| 日韩免费av在线播放| 亚洲精品国产精品久久久不卡| 久久九九热精品免费| 蜜桃久久精品国产亚洲av| 高清在线国产一区| 欧美成人性av电影在线观看| 精品国内亚洲2022精品成人| 99热这里只有是精品50| 最新美女视频免费是黄的| 国产亚洲精品av在线| 两个人的视频大全免费| 天堂动漫精品| 一个人免费在线观看电影 | 不卡一级毛片| 国产精品1区2区在线观看.| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人澡欧美一区二区| 日韩国内少妇激情av| 老司机深夜福利视频在线观看| 日韩国内少妇激情av| 一二三四在线观看免费中文在| 成人特级黄色片久久久久久久| 18禁观看日本| 五月伊人婷婷丁香| 18禁黄网站禁片免费观看直播| 国产91精品成人一区二区三区| a级毛片在线看网站| 精品久久久久久成人av| 欧美激情久久久久久爽电影| 18禁国产床啪视频网站| 久9热在线精品视频| 午夜精品一区二区三区免费看| 亚洲精品中文字幕在线视频| 久久精品aⅴ一区二区三区四区| 一级a爱片免费观看的视频| 亚洲一区中文字幕在线| 搞女人的毛片| 9191精品国产免费久久| 熟妇人妻久久中文字幕3abv| 熟女电影av网| 两个人的视频大全免费| 国产av在哪里看| av在线播放免费不卡| 亚洲成人国产一区在线观看| 天天添夜夜摸| 性色av乱码一区二区三区2| 国产伦人伦偷精品视频| 男人的好看免费观看在线视频 | 欧美三级亚洲精品| 亚洲男人天堂网一区| 亚洲成人免费电影在线观看| 欧美午夜高清在线| 亚洲一区二区三区色噜噜| 欧美三级亚洲精品| av中文乱码字幕在线| 亚洲成人中文字幕在线播放| 1024香蕉在线观看| or卡值多少钱| 男人的好看免费观看在线视频 | 亚洲精品一卡2卡三卡4卡5卡| 国产爱豆传媒在线观看 | 久9热在线精品视频| 窝窝影院91人妻| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久久5区| 久久久久性生活片| 91大片在线观看| 99久久国产精品久久久| 国产一级毛片七仙女欲春2| 国产一区二区三区视频了| 成人国产一区最新在线观看| 色在线成人网| a级毛片a级免费在线| 人成视频在线观看免费观看| 真人一进一出gif抽搐免费| 校园春色视频在线观看| 国产精品一区二区三区四区免费观看 | 亚洲国产日韩欧美精品在线观看 | 美女扒开内裤让男人捅视频| 国产伦在线观看视频一区| 亚洲专区国产一区二区| 亚洲精品在线观看二区| 免费电影在线观看免费观看| 老鸭窝网址在线观看| 国产单亲对白刺激| 亚洲午夜理论影院| 日本黄色视频三级网站网址| 亚洲成人中文字幕在线播放| 亚洲av日韩精品久久久久久密| 久久久久国内视频| 欧美国产日韩亚洲一区| 欧美不卡视频在线免费观看 | 国产精品永久免费网站| 亚洲自偷自拍图片 自拍| 熟女电影av网| 在线永久观看黄色视频| 欧美zozozo另类| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美国产在线观看| 在线观看免费视频日本深夜| 日韩欧美 国产精品| 丰满人妻一区二区三区视频av | 国产伦一二天堂av在线观看| 国产高清视频在线播放一区| 宅男免费午夜| 国产高清有码在线观看视频 | 不卡av一区二区三区| 男人舔女人的私密视频| 久久久久久久久久黄片| 99国产综合亚洲精品| 一个人观看的视频www高清免费观看 | 99国产极品粉嫩在线观看| 国产欧美日韩精品亚洲av| 欧美zozozo另类| 精品日产1卡2卡| 欧美日本视频| 欧美黄色淫秽网站| 久久久国产成人精品二区| 亚洲欧洲精品一区二区精品久久久| 99久久99久久久精品蜜桃| 男人舔女人的私密视频| 欧美午夜高清在线| 午夜免费观看网址| 最近最新中文字幕大全免费视频| 18禁黄网站禁片午夜丰满| 中文字幕久久专区| 老熟妇乱子伦视频在线观看| 99国产极品粉嫩在线观看| 美女高潮喷水抽搐中文字幕| 日韩av在线大香蕉| 久久久久性生活片| 午夜精品一区二区三区免费看| 精品少妇一区二区三区视频日本电影| 女人高潮潮喷娇喘18禁视频| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 精品欧美一区二区三区在线| 老司机深夜福利视频在线观看| 国产亚洲精品久久久久久毛片| 悠悠久久av| 免费电影在线观看免费观看| 亚洲五月天丁香| 国产单亲对白刺激| 日日摸夜夜添夜夜添小说| 精品国产亚洲在线| 精品国产美女av久久久久小说| 叶爱在线成人免费视频播放| 禁无遮挡网站| 久久国产精品人妻蜜桃| 一二三四在线观看免费中文在| 久久这里只有精品中国| 亚洲黑人精品在线| 精品久久久久久久久久久久久| 成人国产综合亚洲| 搡老岳熟女国产| 最近最新中文字幕大全免费视频| 久久精品国产99精品国产亚洲性色| netflix在线观看网站| av天堂在线播放| 国产精品一区二区三区四区久久| 后天国语完整版免费观看| 免费一级毛片在线播放高清视频| 91字幕亚洲| 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| 黄色a级毛片大全视频| 亚洲电影在线观看av| 丰满的人妻完整版| 嫁个100分男人电影在线观看| 久久久久性生活片| 淫妇啪啪啪对白视频| 欧美激情久久久久久爽电影| 免费看a级黄色片| 日本精品一区二区三区蜜桃| 国产高清有码在线观看视频 | 日本在线视频免费播放| 婷婷精品国产亚洲av| 身体一侧抽搐| 亚洲熟妇熟女久久| 午夜福利视频1000在线观看| 禁无遮挡网站| 中出人妻视频一区二区| 亚洲第一电影网av| 麻豆一二三区av精品| 精品福利观看| 精品电影一区二区在线| 国产免费av片在线观看野外av| 亚洲成人国产一区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 两性午夜刺激爽爽歪歪视频在线观看 | 精品电影一区二区在线| 丁香欧美五月| 欧美 亚洲 国产 日韩一| 欧美精品亚洲一区二区| 白带黄色成豆腐渣| 国产成人精品久久二区二区免费| 亚洲中文字幕一区二区三区有码在线看 | 精品高清国产在线一区| 亚洲 国产 在线| 哪里可以看免费的av片| 后天国语完整版免费观看| 精品久久久久久久久久久久久| 欧美成人午夜精品| 琪琪午夜伦伦电影理论片6080| 人妻久久中文字幕网| 国产精品一区二区精品视频观看| 一级a爱片免费观看的视频| 男女视频在线观看网站免费 | 国产又色又爽无遮挡免费看| 丝袜人妻中文字幕| 国产成人av激情在线播放| 男人舔奶头视频| 亚洲av熟女| 欧美久久黑人一区二区| 欧美又色又爽又黄视频| 午夜亚洲福利在线播放| 黄色片一级片一级黄色片| 成人欧美大片| 亚洲 欧美 日韩 在线 免费| 长腿黑丝高跟| 中亚洲国语对白在线视频| 久久国产精品人妻蜜桃| 999久久久国产精品视频| 午夜亚洲福利在线播放| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 成人三级黄色视频| 国模一区二区三区四区视频 | 欧美久久黑人一区二区| 两个人的视频大全免费| 国产欧美日韩精品亚洲av| 麻豆国产av国片精品| 黑人欧美特级aaaaaa片| 在线观看66精品国产| 国产亚洲欧美98| 丁香六月欧美| 久久精品人妻少妇| 亚洲中文av在线| 久久香蕉激情| 黄色a级毛片大全视频| 亚洲精品在线美女| 国产精品一区二区三区四区久久| 欧美成狂野欧美在线观看| 制服人妻中文乱码| 老司机在亚洲福利影院| 国产精品av视频在线免费观看| 欧美日韩乱码在线| 国产成人欧美在线观看| 欧美绝顶高潮抽搐喷水| 国产野战对白在线观看| 久久久久久大精品| 美女 人体艺术 gogo| 级片在线观看| 国产精品免费视频内射| 久久久久久久久久黄片| 男人的好看免费观看在线视频 | 美女大奶头视频| 亚洲人成77777在线视频| 夜夜爽天天搞| 国产区一区二久久| 久久精品国产综合久久久| 欧美一区二区精品小视频在线| 国产一区二区激情短视频| 久久精品成人免费网站| 欧美乱码精品一区二区三区| 久久久国产欧美日韩av| 亚洲国产精品成人综合色| 桃色一区二区三区在线观看| 国产亚洲av高清不卡| 久久久国产精品麻豆| 99久久精品国产亚洲精品| 曰老女人黄片| 日韩欧美三级三区| 久99久视频精品免费| 女人爽到高潮嗷嗷叫在线视频| 国产不卡一卡二| 亚洲色图 男人天堂 中文字幕| 欧美日韩国产亚洲二区| 99久久精品热视频| 国产亚洲av嫩草精品影院| 国产区一区二久久| 欧美激情久久久久久爽电影| 亚洲精品久久成人aⅴ小说| 欧美zozozo另类| 成人18禁在线播放| 国产精品久久久久久久电影 | 亚洲 欧美一区二区三区| 午夜福利在线在线| 极品教师在线免费播放| 欧美一级毛片孕妇| 老司机在亚洲福利影院| 国产av一区二区精品久久| 18美女黄网站色大片免费观看| 国产又黄又爽又无遮挡在线| 黄色 视频免费看| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 中文字幕人妻丝袜一区二区| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 女人高潮潮喷娇喘18禁视频| 黄频高清免费视频| 国产单亲对白刺激| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 美女 人体艺术 gogo| 久久香蕉精品热| 嫩草影院精品99| 91麻豆av在线| 91字幕亚洲| 1024视频免费在线观看| 伦理电影免费视频| 黄色 视频免费看| 精品免费久久久久久久清纯| 免费一级毛片在线播放高清视频| 亚洲自拍偷在线| 久久中文字幕人妻熟女| 伦理电影免费视频| 久久精品人妻少妇| 人成视频在线观看免费观看| 国产视频内射| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久人人做人人爽| 国产精品av视频在线免费观看| 欧美一区二区国产精品久久精品 | 在线播放国产精品三级| 国产黄片美女视频| 婷婷六月久久综合丁香| 大型av网站在线播放| 国产v大片淫在线免费观看| 757午夜福利合集在线观看| 国产高清视频在线观看网站| 亚洲欧美激情综合另类| 欧美日本视频| 亚洲片人在线观看| 午夜精品在线福利| 欧美高清成人免费视频www| 久久人人精品亚洲av| cao死你这个sao货| 精品久久久久久久久久免费视频| 搡老岳熟女国产| 国产av又大| 欧美精品亚洲一区二区| 欧美日韩乱码在线| 欧美大码av| 大型黄色视频在线免费观看| 免费观看人在逋| 精品一区二区三区av网在线观看| 一区二区三区激情视频| 欧美黑人精品巨大| 香蕉国产在线看| 男男h啪啪无遮挡| 99re在线观看精品视频| 丝袜人妻中文字幕| 中文字幕av在线有码专区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩中文字幕国产精品一区二区三区| 国产v大片淫在线免费观看| 国产视频一区二区在线看| 国产黄a三级三级三级人| 国产成人欧美在线观看| 国产亚洲精品av在线| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 最新美女视频免费是黄的| 欧美丝袜亚洲另类 | 欧美日韩亚洲综合一区二区三区_| 桃色一区二区三区在线观看| 又黄又爽又免费观看的视频| 在线免费观看的www视频| 99热6这里只有精品| 中文字幕av在线有码专区| 一区福利在线观看| 在线观看免费日韩欧美大片| 欧美日本视频| 婷婷六月久久综合丁香| 久9热在线精品视频| 国产黄片美女视频| 亚洲精品美女久久av网站| 欧美黄色淫秽网站| 亚洲精品中文字幕在线视频| 69av精品久久久久久| 成人一区二区视频在线观看| 国产一区二区在线观看日韩 | 欧美性长视频在线观看| 变态另类丝袜制服| 女人被狂操c到高潮| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 伦理电影免费视频| 不卡一级毛片| 亚洲中文av在线| 成年女人毛片免费观看观看9| 黑人巨大精品欧美一区二区mp4| 日韩三级视频一区二区三区| 欧美另类亚洲清纯唯美| 每晚都被弄得嗷嗷叫到高潮| av视频在线观看入口| 伦理电影免费视频| 国产精品影院久久| 亚洲五月天丁香| 亚洲av成人一区二区三| 日韩欧美一区二区三区在线观看| 国产熟女午夜一区二区三区| 国产成+人综合+亚洲专区| 国产精品久久久久久精品电影| 麻豆国产av国片精品| 免费无遮挡裸体视频| www.999成人在线观看| 女警被强在线播放| 日韩 欧美 亚洲 中文字幕| 老鸭窝网址在线观看| 日日夜夜操网爽| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 9191精品国产免费久久| 丰满人妻一区二区三区视频av | 免费一级毛片在线播放高清视频| 国产一区二区在线观看日韩 | 50天的宝宝边吃奶边哭怎么回事| 精品人妻1区二区| 99在线视频只有这里精品首页| 白带黄色成豆腐渣| 嫩草影院精品99| 免费观看精品视频网站| 精品久久久久久,| 1024手机看黄色片| 国产精品一区二区精品视频观看| 91成年电影在线观看| 国产成人啪精品午夜网站| 国产三级中文精品| 中亚洲国语对白在线视频| 黑人操中国人逼视频| 亚洲av美国av| www国产在线视频色| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 成人欧美大片| 久久精品国产亚洲av香蕉五月| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 亚洲国产欧美一区二区综合| 欧美精品啪啪一区二区三区| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| av欧美777| 狂野欧美激情性xxxx| 日韩欧美 国产精品| 久久精品91无色码中文字幕| 99国产精品一区二区三区| 久久久久久久久久黄片| 中出人妻视频一区二区| 日韩精品青青久久久久久| 日韩大码丰满熟妇| 成人高潮视频无遮挡免费网站| 九九热线精品视视频播放| 久久久精品大字幕| 他把我摸到了高潮在线观看| 久久草成人影院| 999精品在线视频| 国产真实乱freesex| 亚洲 欧美 日韩 在线 免费| 中亚洲国语对白在线视频| 岛国在线观看网站| 亚洲无线在线观看| 午夜久久久久精精品| 日韩成人在线观看一区二区三区| 1024手机看黄色片| 国产精品98久久久久久宅男小说| 黄色视频,在线免费观看| 91老司机精品| 亚洲精品久久成人aⅴ小说| 很黄的视频免费| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 婷婷精品国产亚洲av| 色精品久久人妻99蜜桃| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 国产精品乱码一区二三区的特点| 一个人免费在线观看的高清视频| 国产探花在线观看一区二区| 欧美午夜高清在线| www.熟女人妻精品国产| 啦啦啦免费观看视频1| 免费在线观看成人毛片| 成人av一区二区三区在线看| 香蕉国产在线看| 不卡一级毛片| 亚洲欧美日韩高清专用| 欧美日韩黄片免| 欧美乱妇无乱码| 国产一级毛片七仙女欲春2| 中亚洲国语对白在线视频| 白带黄色成豆腐渣| 母亲3免费完整高清在线观看| 成人国产综合亚洲| 国产成人精品无人区| 国产免费男女视频| 一个人免费在线观看电影 | 99国产精品99久久久久| www.999成人在线观看| 精品久久久久久久久久免费视频| 国产精品久久久久久精品电影| 午夜福利高清视频| 在线观看日韩欧美| 中文亚洲av片在线观看爽| 欧美在线一区亚洲| 天天一区二区日本电影三级| 久久精品国产亚洲av高清一级| 成人欧美大片| 在线永久观看黄色视频| 成人亚洲精品av一区二区| 91字幕亚洲| 两性夫妻黄色片| 亚洲一区二区三区色噜噜| 久久久国产成人免费| 国产精品综合久久久久久久免费| 欧美乱妇无乱码| 亚洲一区二区三区色噜噜| 日韩有码中文字幕| 精品一区二区三区视频在线观看免费| 1024视频免费在线观看| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 777久久人妻少妇嫩草av网站| 亚洲aⅴ乱码一区二区在线播放 | 丰满人妻一区二区三区视频av | 国产高清视频在线播放一区| 亚洲色图 男人天堂 中文字幕| 亚洲精品中文字幕在线视频| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 亚洲人与动物交配视频| 亚洲精品在线美女| 男插女下体视频免费在线播放| 在线观看www视频免费| 成人手机av| 999久久久精品免费观看国产| 亚洲色图 男人天堂 中文字幕| 日本黄大片高清| 麻豆国产av国片精品| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 婷婷丁香在线五月| 国产一区在线观看成人免费| 欧美极品一区二区三区四区| av国产免费在线观看| 狂野欧美激情性xxxx| 日韩成人在线观看一区二区三区| 桃色一区二区三区在线观看| 村上凉子中文字幕在线| 91麻豆av在线| 男女下面进入的视频免费午夜| 午夜福利成人在线免费观看| 久久中文看片网| 精品高清国产在线一区| 亚洲av第一区精品v没综合| 欧美不卡视频在线免费观看 | 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 亚洲国产欧美网| 丝袜美腿诱惑在线| 天天一区二区日本电影三级| cao死你这个sao货| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 在线观看www视频免费| 一进一出抽搐动态| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 少妇人妻一区二区三区视频| 狂野欧美激情性xxxx| 国产又色又爽无遮挡免费看| 亚洲男人的天堂狠狠| 久久天堂一区二区三区四区| 欧美大码av| 老汉色av国产亚洲站长工具| 99国产精品99久久久久| 黄色视频,在线免费观看| 欧美激情久久久久久爽电影| 精品久久久久久久末码| 日本黄色视频三级网站网址|