• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin-orbit torque in perpendicularly magnetized[Pt/Ni]multilayers

    2023-11-02 08:38:46YingCao曹穎ZhichengXie謝志成ZhiyuanZhao趙治源YuminYang楊雨民NaLei雷娜BingfengMiao繆冰鋒andDahaiWei魏大海
    Chinese Physics B 2023年10期
    關(guān)鍵詞:志成大海

    Ying Cao(曹穎), Zhicheng Xie(謝志成), Zhiyuan Zhao(趙治源), Yumin Yang(楊雨民),Na Lei(雷娜), Bingfeng Miao(繆冰鋒), and Dahai Wei(魏大海),?

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    4National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    Keywords: spin-orbit torque,perpendicular magnetic anisotropy,spintronics

    1.Introduction

    The rapid development of emerging information technologies, such as artificial intelligence, requires highperformance and energy-efficient memory devices.[1,2]The spintronic memories, where information is encoded by the magnetization,provide a promising solution for the next generation data storage and processing.[3]Magnetic films exhibiting perpendicular magnetic anisotropy (PMA) are of great significance in the fabrication of magnetic tunnel junctions (MTJs),[4]which are the core of the magnetic randomaccess memory (MRAM) with high storage density and high thermal stability at room temperature.[5,6]Meanwhile the spin-orbit torque (SOT) MRAM has advantages of high energy efficiency, sub-ns switching and high endurance for writing operation.[7,8]These advancements have been pivotal in driving forward research and development efforts,enabling integration with traditional complementary metaloxide-semiconductor (CMOS) processes.[9]Thus, the magnetic materials and structures with both strong PMA and high SOT efficiency are crucial for the development of the MRAM applications.

    The perpendicular magnetized CoFeB/MgO bilayer is one of the most promising MTJ materials systems, which has been intensively investigated and widely utilized in various spintronics applications.[10]However,the interfacial PMA originated from the CoFeB/MgO interface is insufficient to maintain high thermal stability for MTJs at reduced dimension smaller than 20 nm.[11,12]To achieve stronger PMA for future sub-10 nm technology node, a number of material systems,such as Co(Tb,Gd),[13,14]L10-ordered FePt,[15]MnGa[16]alloys and CoPt[17]multilayers have been explored,which have significant magnetocrystalline anisotropy.The bulk PMA in such alloys is very sensitive to the crystal structures of the films,and requires epitaxial growth or strict heat treatment.[18]In contrast, the PMA in the multilayers mainly arises from the interfacial effect at the multiple interfaces which can be easily tuned and are much easier for fabrication in practical device applications.[19]The perpendicular magnetized Co/(Pt,Pd)[20]and Fe/Pt[21]have been realized and intensively studied.However,the PMA of Ni/Pt multilayer is relatively complex.There may be several mechanisms,like the magnetoelastic anisotropy induced by lattice stress[22]and magnetocrystalline anisotropy of the interfaces,[23]that can lead to PMA in Ni/Pt multilayers.Therefore, the dependence of PMA for Ni/Pt multilayer on the thickness of the Ni and Pt layer is intriguing.

    Furthermore, the magnetization switching of ferromagnets through current-induced spin-orbit torque (SOT) has received significant attention in recent years.[24]In ferromagnetic metal (FM)/ heavy metal (NM) heterostructures, it is mainly the spin Hall effect(SHE)and the inverse spin galvanic effect that provide SOT.[25]When the FM layer exhibits perpendicular magnetic anisotropy,achieving deterministic magnetization switching under current-induced SOT often requires an in-plane bias field to break the symmetry.[26]However,there have been few reports on the SOT of Ni/Pt multilayer films before.This urgently requires us to further explore SOT in Ni/Pt multilayer, in particular, the SOT efficiency and bias field dependence,which could enrich the content of Ni/Pt multilayer films in the field of SOT.

    Here we fabricated a multilayer structure composed of[Pt(2-t)/Ni(t)]4, where the thicknesstof the Ni layer in the periodic layer was adjusted to achieve PMA within a relatively narrow range of thicknesses (below the intrinsic spin diffusion length).The observed PMA phenomenon arises from the interplay between magnetoelastic anisotropy and interface anisotropy.Subsequently, we successfully achieved SOT induced switching of the PMA magnetic multilayer films using a current density of approximately 1×107A/cm2.The effectiveness of the spin switching process in the device was found to be influenced by the regulation of the thicknesst.

    2.Experimental details

    In this work, a serials of substrate/Ge(3)/[Pt(2-t)/Ni(t)]4/Ge(3)multilayers were grown on thermally oxidized Si substrates using a high vacuum magnetron sputtering system with a base pressure of 8×10-8Torr at room temperature,as shown by the inset in Fig.1(a).The[Pt(2-t)/Ni(t)]4multilayers were deposited by the alternative deposition of Pt and Ni using radio-frequency and direct current sputterings.The deposition rates for Pt and Ni are 0.019 nm/s and 0.018 nm/s,respectively,which were calibrated by atomic force microscopy(AFM).The thicknesstis varied from 1.45 nm to 1.85 nm.Both buffer and capping layer are 3 nm Ge layers.The AFM measurements also indicate smooth surfaces and the surface root mean square roughness is about 0.3 nm for our stacks.These multilayers were further fabricated into 10×40μm2Hall bar devices using photolithography and ion milling.The electric transport measurements were performed by a Quantum Design physical property measurement system(PPMS)at room temperature,figure 1(a)illustrates the testing geometry.The magnetic properties of all multilayers were characterized by a Quantum Design magnetic property measurement system(MPMS)with a superconducting quantum interference device(SQUID)at room temperature.

    Figure 1(b) exhibits the anomalous Hall loops of the[Pt(2-t)/Ni(t)]4multilayers with differentt.The multilayers with thicker Ni layers, as shown by the blue (t=1.65),red (t=1.75), and black (t=1.85) curves, exhibit squareshaped loops, which suggest a strong PMA.Otherwise,these multilayers witht <1.65 exhibit in-plane magnetic anisotropy(IMA).The anomalous Hall effect(AHE)coefficients of these multilayers are all negative, which is consistent with the previous results for Ni.[27]The saturation magnetization(MS)of all multilayers was obtained from theM-Hhysteresis loops and plotted as black triangles in the top panel of Fig.1(c).TheMSmonotonically increases with Ni thicknesst.The magnetic moment per Ni atom was calculated and plotted as the red triangles.It increases from 0.129μB/atom att=1.45 nm to 0.216μB/atom att=1.85 nm,which is far below the bulk value of Ni (~0.6μB/atom).[23]Such a small atomic moment at room temperature can be attributed to the reduced Curie temperature (TC) as Ni film in ultrathin region.It increases with thicknesstand would finally reach the bulk value for thick Ni films.[23]Notably,the multilayer[Pt(2-t)/Ni(t)]Ncan show room temperature ferromagnetism only whenN >3,while for smallerNthe reducedTCis lower than room temperature due to the small total thickness of Ni layer.

    To investigate the relation between PMA andtin[Pt(2-t)/Ni(t)]4multilayer films,both in-plane and out-of-plane hysteresis loops were measured to extract the values of the effective anisotropy field(HK).Then,the effective perpendicular magnetic anisotropy energy density(Keff)was further calculated from the in-plane and out-of-plane hysteresis loops.HK(black squares)andKeff(red circles)are plotted as a function oftin the middle panel of Fig.1(c).Consistent with the anomalous Hall loops shown in Fig.1(b),Keffis positive as a perpendicular magnetic anisotropy att ≥1.65 and presents a nonmonotonic trend with the maximumKeff=8.21 kJ/m3appearing att=1.75.

    The resistivity increases as the thickness decreases due to the additional scattering at the interface and surface of the film.The resistivity(ρxx)of[Pt(2-t)/Ni(t)]4multilayer,composed aslinearly decreases from 90.8μΩ·cm att=1.45 to 61.36μΩ·cm att=1.85,as shown in Fig.1(c),which is due to the increase of Ni atoms witht.This means that astincreases, the proportion of Ni increases, and the resistance gradually approaches the resistivity of the Ni layer,resulting in a decrease in the total resistivity.The multilayer structure can also be viewed as incorporating Pt intercalation into the Ni layer,which introduces interlayer impurity scattering,and subsequently enhances the resistivity of the material.Although the anomalous Hall resistivity(ρAH)should be proportional toρxy,ρAHis factually inversely proportional toρxywith increasingt, which is mainly due to the huge enhancement ofMSrelated with increasingt.

    Fig.1.(a)The structure of the[Pt(2-t)/Ni(t)]4 multilayers and the Hall bar device used for the electrical transport measurements.(b)RAH vs. Hz curves of the[Pt(2-t)/Ni(t)]4 multilayers at different t.(c)The t dependence of the saturation magnetization(MS),coercive field(HC),anisotropic field(HK),anomalous Hall resistivity(ρxy),and resistivity(ρxx).

    3.Results and discussion

    3.1.Current-driven switching of magnetization for the PMA[Pt(2-t)/Ni(t)]4 multilayer

    We investigated the current-driven magnetization switching for the [Pt(2-t)/Ni(t)]4multilayers with PMA fromt=1.65 tot=1.85.A series of current pulses with a 50 μs duration are applied to the Hall bar device along thexdirection.The in-plane bias field (Hx) is necessary to be applied along with the current, which can assist in deterministic magnetization switching.Figure 2(a) shows the current-driven magnetization switching curves for the [Pt(2-t)/Ni(t)]4multilayer att=1.65 withHxfrom-800 Oe to 800 Oe, which exhibit clockwise and counterclockwise polarity with positive and negativeHx,respectively.This is opposite to that of Pt/Co bilayer, which is due to the negative anomalous Hall coefficient of Ni compared with the positive anomalous Hall coefficient of Co.[28]

    Furthermore,the critical current density(JC)as a function ofHxwith differenttis shown in Fig.2(b), which decreases monotonically with the increase of|Hx|.This is becauseJCis expressed as[29]

    wheree,μ0,tFM, ˉhandξDLare the elementary charge, the permeability of vacuum, the thickness of the magnetic layer,the reduced Plank constant, and the damping-like SOT efficiency, respectively.Of course, the current-driven magnetization switching amplitude (Rxy/RAH) also decreases, when the magnetization of[Pt(2-t)/Ni(t)]4multilayer is gradually pulled into thex-yplane with|Hx|increasing.BecauseRxyis dependent on the magnetization of thezcomponent.[30]

    We note that the current-driven magnetization switching of[Pt(2-t)/Ni(t)]4multilayer can be achieved even under the residual field (~10 Oe) of the PPMS, which might accidentally be mistaken as field-free current-driven magnetization switching.However, this is actually a significant advantage in spintronic application,because even a tinyHxcan break the symmetry in SOT process.We believe that the main reason should be that the Dzyaloshinskii-Moriya interaction (DMI)of[Pt(2-t)/Ni(t)]4multilayer is very small.It is well known that DMI represents an obstacle for current-driven magnetization switching.[31]

    Subsequently, the thermal stability is estimated by the thermal stability factorΔT=Ku,effVFM/(kBT), considering a cylinder with typical diameter of 28 nm for MRAM nodes.[32]ΔTof these PMA[Pt(2-t)/Ni(t)]4multilayers are on the same order of magnitude as the previously reportedΔTof the applicable MRAM.[5]Obviously, our [Pt(2-t)/Ni(t)]4multilayer maintains the thermal stability and meets some application standards, which can be further optimized by MgO capping layer for practical applications.Therefore, [Pt(2-t)/Ni(t)]4multilayer indeed enriches the material system in the field of SOT.

    Fig.2.(a)The current-driven switching of magnetization for the[Pt(2-t)/Ni(t)]4 multilayer at t=1.65 with different Hx.(b)The Hx dependence of JC and ΔRxy/RAH.

    3.2.The harmonic Hall measurements

    Next,in order to directly evaluate the current-driven magnetization switching for the [Pt(2-t)/Ni(t)]4multilayers, we quantified the damping-like SOT efficiency(ξDL)by employing the extended harmonic Hall measurement.The harmonic Hall measurement geometry is shown in Fig.3(a).A sinusoidal current with a frequency of 521 Hz was applied along thexdirection,and then the second harmonic Hall resistances(R2ω)were obtained under a constant external magnetic field(Hext)rotating in thex-yplane.The azimuthal angle(φ)is betweenHextand the current.Theφdependence ofR2ωfor the[Pt(2-t)/Ni(t)]4multilayers att=1.65 is shown in Fig.3(b)under a series ofHext.Usually, the second harmonic Hall resistancesR2ωcan be expressed as[33]

    whereRAHis the anomalous Hall resistance,HDLis the damping-like SOT effective field,HKis the effective anisotropy field,defined asHK=Hani-Hdem,withHaniandHdembeing the anisotropy field and the demagnetization field,respectively,RPHis the planar Hall resistance,HFLis the fieldlike SOT effective field, andHOeis the Oersted field.R0ΔTis the thermoelectric contribution forR2ω, which needs to be ruled out.

    According to Eq.(2), we calculated and plotted the-R[cosφ]/RAHvs.1/(Hext-HK) curves under differentHext,the damping-like field(HDL)was obtained as the slope of linear fitting,as shown in Fig.3(c).Furthermore,ξDLwas calculated by[34]

    whereJeis the current density of the Pt layer.Here, we assume that all Pt land Ni layers are simplified as Pt/Ni bilayer.The variation ofξDLas a function oftis plotted in Fig.3(d),which shows an almost decreasing trend.It reveals a noticeable trend:ξDLin the[Pt(2-t)/Ni(t)]4multilayer diminishes rapidly from 0.125(t=1.55 nm)to 0.035(t=1.85 nm).This observation indicates a direct influence of the thicknesstof the Pt layer in the periodic structure on the SOT of the multilayer film.In the [Pt(2-t)/Ni(t)]4configuration, two SOT sources contribute to the damping torque: the bulk spin Hall effect(SHE)in the Pt layer and the Rashba effect at the Pt/Ni interface.[26]In typical bilayer film systems such as Pt/Co,Pt/Fe,and Pt/Ni,the generation of damping-like torque is originated from the SHE of the Pt layer in the specific context of SHE.Consequently,it follows that the thickness of the Pt layer directly affectsξDLin the Pt/Ni multilayer structure.[23]

    We have completely adopted a Pt/Ni bilayer in the above description and discussion, just like the classical Pt/Co bilayer in the specific context of SHE.However, the original consideration as Pt/Ni bilayer is not very accurate, as our[Pt(2-t)/Ni(t)]4multilayer seems to be more similar to a PtNi alloy in terms of material preparation,although the corresponding properties can be well explained considering as Pt/Ni bilayer.But if[Pt(2-t)/Ni(t)]4multilayer is simply regarded as a PtNi alloy,it is difficult to explain the significant current driven magnetization switching andξDLin [Pt(2-t)/Ni(t)]4multilayer.Because there should be no net spin current flowing in a uniform PtNi alloy.We think that the main reason is that the film quality gradient always exists in thez-direction,which leads to the net SOT in[Pt(2-t)/Ni(t)]4multilayer.Because the contribution of Pt/Ni at the lower interface to SOT is always greater than that of Ni/Pt at the upper interface,similar to previous reports.Therefore, considering [Pt(2-t)/Ni(t)]4multilayer as Pt/Ni bilayer is more reasonable than considering[Pt(2-t)/Ni(t)]4multilayer as a PtNi alloy.

    Fig.3.(a) Schematic of the harmonic Hall measurement geometry.(b) The φ dependence of R2ω under different H.The inset illustrates the harmonic Hall measurement geometry (c) The -Rcosφ/RAH vs.1/(Hext-HK)curves at different t.(d)The t dependence of ξDL.

    In comparison to Pt/Co and Pt/Fe bilayer films,the Pt/Ni system exhibits weaker interface SOC and magnetic proximity effects.Consequently, it experiences a smaller spin backflow phenomenon and spin memory loss at the interface.[35]As a result, in most cases, it is reasonable to consider that the damping-like torque in Pt/Ni systems primarily originates from the bulk spin Hall effect(SHE)of the heavy metal layer Pt, while the contribution from the Rashba effect at the interface is relatively minor.Furthermore,the interface Rashba field can be modulated by varying the number of periodic layers.[35]However, in this experiment, the number of periodic layers is fixed at 4, and only the thickness (t) is varied.Therefore, the contribution of the interface Rashba effect remains unchanged with the thicknesst.Hence, our analysis can focus solely on the SHE contribution of the Pt layer.

    To investigate the origin of the damping-like torque in the[Pt (2-t)/Ni(t)]4multilayer film structure, we can begin by examining a symmetrical three-layer film structure consisting of Pt/Ni/Pt,where the thicknesses of the top and bottom Pt layers are equal.Since the top and bottom Pt layers have equal thickness in the Pt/Ni/Pt three-layer film structure, and considering the SHE,the majority of the spin current contribution from the Pt layer is anticipated to have the same magnitude but opposite spin directions.Theoretically, this implies that the damping-like torque experienced by the middle Ni layer should cancel out due to the opposing spin currents.Consequently, in the [Pt(2-t)/Ni(t)]4multilayer film, only the top Ni layer is affected by the damping torque generated by the current flowing through the lower Pt layer.As a result,the damping-like switching efficiency of the Pt layer thickness within the range of 0.15-0.45 nm is expected to be extremely low.

    However, as shown in the SOT tests and the second harmonic tests in Figs.2 and 3,it has been demonstrated that the damping torque efficiency in the [Pt(2-t)/Ni(t)]4multilayer film is still very significant, close to the torque efficiency of Pt/Ni in the literature(~0.05),[36]which means that the spin current from the Pt layer has not been completely offset.This means that the asymmetry between the top Ni/Pt and bottom Pt/Ni interfaces of the multilayer film is the key to the existence of a large damping torque in the symmetric three layers.

    In the SOT study of Pt/Co multilayers with similar structures, there are different interface structures between Co/Pt and Pt/Co.The bottom Pt/Co exhibits a chemically sharp interface,but the top Co/Pt is slightly intermixed during the sputtering process,which may be the reason for the obvious dampinglike torque.[37]This can also be used to explain the cause of symmetry breaking of the Pt/Ni system.Meanwhile,considering that the thickness of the Pt layer is relatively smaller compared to the Ni layer,as the Pt thickness increases,the increase in interface mixing may change the interface difference,which may also lead toξDLincreasing.

    4.Conclusion

    In this work, we have successfully fabricated a series of perpendicular magnetized [Pt(2-t)/Ni(t)]4multilayers and studied the SOTs as a function of the thickness of Ni layer.The damping-like SOT efficiencyξDLwas extracted from an extended harmonic Hall measurement.We find that theξDLincreases with increasing thetPt/tNiratio due to pronounced contribution from the Pt layers.Our experimental results indicate that the perpendicularly magnetized Ni/Pt multilayers have a sizeable SOT efficiency which can be tuned by thetPt/tNiratio,and could be a promising material for the future SOT-MRAM.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00126.

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No.2021YFB3502400), the National Natural Science Foundation of China (Grant Nos.52061135105,12074025, 11834013, and 12274203), the CAS Project for Yong Scientists in Basic Research (Grant No.YSBR-030),and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos.XDB44000000 and XDB28000000).

    猜你喜歡
    志成大海
    大海撈金
    眾志成誠迎戰(zhàn)特大暴雨
    大海才是我的家
    問大海
    歌海(2019年4期)2019-11-04 06:22:17
    大海依舊在那兒
    冬日的大海
    連志成:一心向戰(zhàn)
    令人興奮的大海
    大灰狼(2016年7期)2016-08-04 11:17:02
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    天天都是感恩節(jié)
    老女人水多毛片| 精品一区二区免费观看| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| 国产乱人偷精品视频| 亚洲无线观看免费| 成人av一区二区三区在线看| 国产成年人精品一区二区| 嫩草影院新地址| 午夜激情福利司机影院| 免费一级毛片在线播放高清视频| 99热精品在线国产| 久久久久久九九精品二区国产| 美女黄网站色视频| 天天躁日日操中文字幕| 老司机午夜福利在线观看视频| 久久久久久久久中文| 国产精品一区二区性色av| 国产蜜桃级精品一区二区三区| 最近中文字幕高清免费大全6| 少妇熟女欧美另类| 中文资源天堂在线| 久久国产乱子免费精品| a级毛片a级免费在线| 女同久久另类99精品国产91| 亚洲一级一片aⅴ在线观看| 欧美zozozo另类| 欧美3d第一页| 久久久久免费精品人妻一区二区| 午夜影院日韩av| 91久久精品国产一区二区三区| 别揉我奶头~嗯~啊~动态视频| 十八禁国产超污无遮挡网站| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 国产亚洲精品久久久com| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 日本 av在线| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添av毛片| 亚洲精品日韩av片在线观看| 少妇裸体淫交视频免费看高清| 国产视频内射| 国产精品不卡视频一区二区| 男人舔奶头视频| 久久精品国产清高在天天线| 夜夜爽天天搞| 级片在线观看| 色哟哟哟哟哟哟| 波多野结衣高清作品| 日本一二三区视频观看| 乱码一卡2卡4卡精品| 在线观看66精品国产| 男女下面进入的视频免费午夜| av在线播放精品| 精品日产1卡2卡| 亚洲欧美日韩东京热| 欧美日韩在线观看h| 久久综合国产亚洲精品| 日本黄色片子视频| 日日摸夜夜添夜夜添av毛片| 久久精品久久久久久噜噜老黄 | 亚洲在线自拍视频| 在线国产一区二区在线| 日本色播在线视频| 18禁在线无遮挡免费观看视频 | 天堂√8在线中文| 久久久国产成人免费| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品粉嫩美女一区| 亚洲国产精品sss在线观看| 又黄又爽又刺激的免费视频.| 人妻久久中文字幕网| 国产aⅴ精品一区二区三区波| 日韩,欧美,国产一区二区三区 | 亚洲婷婷狠狠爱综合网| 欧美丝袜亚洲另类| 久久久a久久爽久久v久久| 中国美白少妇内射xxxbb| 身体一侧抽搐| eeuss影院久久| 国产精品av视频在线免费观看| 日本黄大片高清| 免费在线观看影片大全网站| 日韩人妻高清精品专区| 中文字幕av成人在线电影| 色噜噜av男人的天堂激情| avwww免费| av国产免费在线观看| 床上黄色一级片| 俺也久久电影网| 亚洲婷婷狠狠爱综合网| 美女内射精品一级片tv| 亚洲av第一区精品v没综合| 精品久久久久久久末码| 一本久久中文字幕| 麻豆乱淫一区二区| 又爽又黄a免费视频| 久久亚洲国产成人精品v| 你懂的网址亚洲精品在线观看 | 国产单亲对白刺激| 日韩大尺度精品在线看网址| 国产精品乱码一区二三区的特点| 国产高清视频在线播放一区| 久久这里只有精品中国| 欧美性感艳星| 国产淫片久久久久久久久| 高清毛片免费看| 成人永久免费在线观看视频| 亚洲真实伦在线观看| 免费观看人在逋| 午夜精品国产一区二区电影 | 日本免费一区二区三区高清不卡| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 九九在线视频观看精品| 露出奶头的视频| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看 | 日本一二三区视频观看| 中国美白少妇内射xxxbb| eeuss影院久久| 欧美成人一区二区免费高清观看| 亚洲在线自拍视频| 亚洲精品日韩av片在线观看| 99久国产av精品国产电影| a级一级毛片免费在线观看| av在线观看视频网站免费| 亚洲av第一区精品v没综合| 久久久久久久久久久丰满| 日本-黄色视频高清免费观看| 亚洲国产欧美人成| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 成年女人永久免费观看视频| 内地一区二区视频在线| 一个人看视频在线观看www免费| 国产真实伦视频高清在线观看| 女人十人毛片免费观看3o分钟| 国内久久婷婷六月综合欲色啪| 亚洲av五月六月丁香网| eeuss影院久久| 日韩高清综合在线| 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 精品人妻熟女av久视频| 国产精品人妻久久久久久| 久久国产乱子免费精品| 国产片特级美女逼逼视频| 中文资源天堂在线| 亚洲美女视频黄频| 三级毛片av免费| 日韩国内少妇激情av| 九九久久精品国产亚洲av麻豆| 亚洲最大成人手机在线| 国产探花极品一区二区| 久久精品国产清高在天天线| 啦啦啦啦在线视频资源| 麻豆久久精品国产亚洲av| 亚洲最大成人av| 亚洲av不卡在线观看| 免费无遮挡裸体视频| 欧美又色又爽又黄视频| 中国美女看黄片| 精品久久久久久成人av| 人人妻人人澡人人爽人人夜夜 | 国产乱人偷精品视频| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 18+在线观看网站| 男女下面进入的视频免费午夜| 男人和女人高潮做爰伦理| 亚洲成av人片在线播放无| avwww免费| av女优亚洲男人天堂| 国产精品99久久久久久久久| 精品午夜福利在线看| 国产麻豆成人av免费视频| 国产精品乱码一区二三区的特点| 免费不卡的大黄色大毛片视频在线观看 | 在线观看免费视频日本深夜| 免费观看人在逋| 最近最新中文字幕大全电影3| 亚洲激情五月婷婷啪啪| 亚洲高清免费不卡视频| 日韩成人伦理影院| 国产男人的电影天堂91| 欧美另类亚洲清纯唯美| 国产高清视频在线播放一区| 久久6这里有精品| 精品久久久久久久久久免费视频| eeuss影院久久| 亚洲va在线va天堂va国产| 中文字幕av在线有码专区| 最好的美女福利视频网| 久久久色成人| 搞女人的毛片| 女生性感内裤真人,穿戴方法视频| 欧美成人精品欧美一级黄| 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 午夜精品一区二区三区免费看| 无遮挡黄片免费观看| 美女cb高潮喷水在线观看| 色5月婷婷丁香| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 国产精品亚洲美女久久久| 日韩欧美三级三区| 亚洲不卡免费看| 又粗又爽又猛毛片免费看| 美女内射精品一级片tv| 免费看光身美女| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 12—13女人毛片做爰片一| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 99热网站在线观看| 欧美成人精品欧美一级黄| 91久久精品电影网| 插阴视频在线观看视频| 精品少妇黑人巨大在线播放 | 久久99热这里只有精品18| 美女 人体艺术 gogo| 婷婷精品国产亚洲av| 淫秽高清视频在线观看| 欧美最黄视频在线播放免费| 国产精品久久久久久精品电影| 99热6这里只有精品| 小说图片视频综合网站| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 精品国产三级普通话版| 啦啦啦啦在线视频资源| 国产三级中文精品| 麻豆成人午夜福利视频| 精品熟女少妇av免费看| 久久午夜福利片| 91在线观看av| 国产成年人精品一区二区| 女的被弄到高潮叫床怎么办| 欧美日本亚洲视频在线播放| 乱系列少妇在线播放| 亚洲av二区三区四区| 舔av片在线| 久久久a久久爽久久v久久| 亚洲美女黄片视频| 一级黄片播放器| 精品熟女少妇av免费看| 欧美激情在线99| 18+在线观看网站| 亚洲av美国av| 精品人妻一区二区三区麻豆 | 简卡轻食公司| 99久久九九国产精品国产免费| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 2021天堂中文幕一二区在线观| 亚洲欧美清纯卡通| 在线观看66精品国产| 综合色丁香网| 日日摸夜夜添夜夜添av毛片| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 久久久成人免费电影| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 久久6这里有精品| 国产亚洲精品综合一区在线观看| 哪里可以看免费的av片| 国产高清三级在线| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成a人片在线一区二区| 你懂的网址亚洲精品在线观看 | 免费大片18禁| 午夜日韩欧美国产| 成人特级av手机在线观看| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 级片在线观看| 国产成人91sexporn| 久久精品国产99精品国产亚洲性色| 国产高清视频在线播放一区| 国产淫片久久久久久久久| 国产精品亚洲一级av第二区| 久久午夜福利片| 国内精品一区二区在线观看| 日韩高清综合在线| 欧美最新免费一区二区三区| 欧美成人a在线观看| 国产成人一区二区在线| 成人特级av手机在线观看| 亚洲av成人精品一区久久| 久久这里只有精品中国| 亚洲国产精品久久男人天堂| 亚洲美女视频黄频| 欧洲精品卡2卡3卡4卡5卡区| 一区福利在线观看| 99热这里只有精品一区| 精品国产三级普通话版| 高清毛片免费看| 美女免费视频网站| 久久99热6这里只有精品| 久久热精品热| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 99久国产av精品国产电影| 精品不卡国产一区二区三区| videossex国产| 婷婷亚洲欧美| 免费搜索国产男女视频| 一个人看的www免费观看视频| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 日本a在线网址| 亚洲成av人片在线播放无| 国产一区二区激情短视频| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕 | 午夜福利成人在线免费观看| 12—13女人毛片做爰片一| 亚洲五月天丁香| 少妇高潮的动态图| 欧美成人a在线观看| 久久久久国产精品人妻aⅴ院| 久久综合国产亚洲精品| 久久精品国产亚洲av涩爱 | 简卡轻食公司| 日韩av不卡免费在线播放| 精品一区二区三区视频在线| 国产高清视频在线播放一区| 一进一出抽搐动态| 欧美又色又爽又黄视频| 久久99热6这里只有精品| 97碰自拍视频| 在线看三级毛片| 国产乱人视频| 热99re8久久精品国产| 12—13女人毛片做爰片一| 久久午夜亚洲精品久久| 两个人的视频大全免费| 成人av在线播放网站| 我的老师免费观看完整版| 午夜精品在线福利| 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 国内少妇人妻偷人精品xxx网站| 老司机影院成人| av.在线天堂| 亚洲va在线va天堂va国产| 日本成人三级电影网站| 男女视频在线观看网站免费| 亚洲av二区三区四区| 天天躁日日操中文字幕| 99视频精品全部免费 在线| 亚洲精品影视一区二区三区av| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 亚洲最大成人中文| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 久久九九热精品免费| 国产精品久久久久久久电影| 春色校园在线视频观看| 中文亚洲av片在线观看爽| 欧美xxxx黑人xx丫x性爽| 成人亚洲欧美一区二区av| 亚洲精品影视一区二区三区av| 一个人看的www免费观看视频| 少妇猛男粗大的猛烈进出视频 | 99热网站在线观看| 久久久久精品国产欧美久久久| 国产成人91sexporn| 级片在线观看| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 97在线视频观看| 在线国产一区二区在线| 午夜亚洲福利在线播放| 伦理电影大哥的女人| 色播亚洲综合网| 国产白丝娇喘喷水9色精品| 天天躁日日操中文字幕| 亚洲电影在线观看av| 日本欧美国产在线视频| 一进一出抽搐gif免费好疼| 成人性生交大片免费视频hd| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色| 一级a爱片免费观看的视频| 亚洲欧美精品综合久久99| 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 免费av毛片视频| 色尼玛亚洲综合影院| 久久久久久伊人网av| 亚洲人成网站高清观看| 亚洲内射少妇av| 天堂av国产一区二区熟女人妻| 97在线视频观看| 亚洲成av人片在线播放无| 亚洲av一区综合| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 小说图片视频综合网站| 国产欧美日韩一区二区精品| 波多野结衣高清无吗| 美女高潮的动态| 日本色播在线视频| 日本在线视频免费播放| 亚洲av美国av| 精品久久久久久久人妻蜜臀av| 亚洲性夜色夜夜综合| 国产精品99久久久久久久久| 久久韩国三级中文字幕| 日本黄色视频三级网站网址| 别揉我奶头~嗯~啊~动态视频| 国产乱人视频| 蜜桃亚洲精品一区二区三区| 色综合亚洲欧美另类图片| 丝袜喷水一区| 国国产精品蜜臀av免费| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 99久久中文字幕三级久久日本| 久久久精品大字幕| 日韩强制内射视频| 免费看光身美女| 美女内射精品一级片tv| 国产精品一区二区性色av| 久久精品夜色国产| 成人三级黄色视频| 国产在视频线在精品| 深夜精品福利| 97超碰精品成人国产| 少妇裸体淫交视频免费看高清| 老熟妇乱子伦视频在线观看| 国产亚洲精品久久久com| 天天躁夜夜躁狠狠久久av| aaaaa片日本免费| 美女大奶头视频| 亚洲不卡免费看| 国产一区亚洲一区在线观看| 乱人视频在线观看| av在线亚洲专区| 欧美激情在线99| 九九在线视频观看精品| 国产精品美女特级片免费视频播放器| 国产真实伦视频高清在线观看| 亚洲美女搞黄在线观看 | 在线播放无遮挡| 狠狠狠狠99中文字幕| 国产老妇女一区| 成人av在线播放网站| 亚洲乱码一区二区免费版| 亚洲av电影不卡..在线观看| 亚州av有码| 看黄色毛片网站| 观看美女的网站| 在线观看66精品国产| 麻豆成人午夜福利视频| 精品人妻视频免费看| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 国产精品99久久久久久久久| 一级毛片我不卡| 成人毛片a级毛片在线播放| 最新在线观看一区二区三区| 国产成人91sexporn| 一级毛片aaaaaa免费看小| 亚洲av一区综合| 日本成人三级电影网站| 久久精品夜色国产| 午夜a级毛片| 国产色婷婷99| 日韩成人av中文字幕在线观看 | 国产成年人精品一区二区| 久久久a久久爽久久v久久| 欧美一区二区国产精品久久精品| 久久久久国产精品人妻aⅴ院| 日本一二三区视频观看| av在线观看视频网站免费| 亚洲不卡免费看| 国产av不卡久久| 91狼人影院| 欧美成人一区二区免费高清观看| 国产乱人视频| 亚洲久久久久久中文字幕| 在线免费观看的www视频| 久久久久久久久中文| 亚洲国产精品成人综合色| 色哟哟哟哟哟哟| 啦啦啦啦在线视频资源| 国产精品,欧美在线| 小蜜桃在线观看免费完整版高清| 久久韩国三级中文字幕| 国产爱豆传媒在线观看| 欧美另类亚洲清纯唯美| 99在线人妻在线中文字幕| 国产探花极品一区二区| 99久国产av精品国产电影| 国产三级在线视频| 国产精品久久电影中文字幕| 麻豆国产97在线/欧美| 日本熟妇午夜| 麻豆国产av国片精品| 日韩欧美精品v在线| 精品久久久久久久久久久久久| 男女边吃奶边做爰视频| 白带黄色成豆腐渣| 简卡轻食公司| 一区福利在线观看| 天堂av国产一区二区熟女人妻| 女人十人毛片免费观看3o分钟| 亚洲一区二区三区色噜噜| 干丝袜人妻中文字幕| 久久中文看片网| 中国美白少妇内射xxxbb| 久久久久国内视频| av中文乱码字幕在线| 又爽又黄a免费视频| a级毛片a级免费在线| 免费av不卡在线播放| 日韩 亚洲 欧美在线| 成人国产麻豆网| 真人做人爱边吃奶动态| 99久久无色码亚洲精品果冻| 日韩av不卡免费在线播放| 高清毛片免费看| 久久精品影院6| 日韩欧美在线乱码| 观看美女的网站| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 人妻制服诱惑在线中文字幕| 免费大片18禁| 又黄又爽又免费观看的视频| 插阴视频在线观看视频| 两个人的视频大全免费| 精品欧美国产一区二区三| 日本免费一区二区三区高清不卡| 国产精品一二三区在线看| 最好的美女福利视频网| 男人狂女人下面高潮的视频| 亚洲美女黄片视频| 国产成人a区在线观看| 嫩草影院新地址| 国产女主播在线喷水免费视频网站 | 一级黄色大片毛片| 夜夜夜夜夜久久久久| 黑人高潮一二区| 亚洲欧美日韩东京热| 亚洲国产精品成人久久小说 | 久久午夜福利片| 蜜臀久久99精品久久宅男| 乱码一卡2卡4卡精品| 综合色丁香网| 国产高潮美女av| 精品99又大又爽又粗少妇毛片| 99在线人妻在线中文字幕| 亚洲色图av天堂| 少妇熟女欧美另类| 美女黄网站色视频| 国产精品乱码一区二三区的特点| 成人性生交大片免费视频hd| 日韩制服骚丝袜av| 久久亚洲国产成人精品v| 久久国内精品自在自线图片| 国产 一区精品| 成人欧美大片| 97热精品久久久久久| 久久人人精品亚洲av| 啦啦啦观看免费观看视频高清| 色播亚洲综合网| 日日啪夜夜撸| 亚洲人成网站高清观看| 日日摸夜夜添夜夜爱| 波多野结衣高清无吗| av在线老鸭窝| 亚洲aⅴ乱码一区二区在线播放| 欧美+亚洲+日韩+国产| 国产大屁股一区二区在线视频| 天美传媒精品一区二区| 日本免费一区二区三区高清不卡| 精品人妻一区二区三区麻豆 | 久久久欧美国产精品| 日本一二三区视频观看| 久久精品国产自在天天线| 赤兔流量卡办理| 俺也久久电影网| www日本黄色视频网| 看黄色毛片网站| 99久久精品国产国产毛片| 少妇被粗大猛烈的视频| 免费av观看视频| 精品欧美国产一区二区三| 国产精品av视频在线免费观看| 尾随美女入室| 欧美色视频一区免费| 久久99热这里只有精品18| 熟妇人妻久久中文字幕3abv| 国产淫片久久久久久久久| 丰满的人妻完整版| 日韩国内少妇激情av| 热99re8久久精品国产| 国产成年人精品一区二区| h日本视频在线播放| 夜夜夜夜夜久久久久|