• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality

    2023-11-02 08:12:30XueFengZhang張雪楓JeHoShim沈帝虎XiaoPingMa馬曉萍ChengSong宋成HaimingYu于海明andHongGuangPiao樸紅光
    Chinese Physics B 2023年10期
    關(guān)鍵詞:紅光

    Xue-Feng Zhang(張雪楓), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(馬曉萍),Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(樸紅光)

    1Hubei Engineering Research Center of Weak Magnetic-Field Detection,China Three Gorges University,Yichang 443002,China

    2Department of Physics,College of Science,Yanbian University,Yanji 133002,China

    3Key Laboratory of Advanced Materials(MOE),School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China

    4Fert Beijing Institute,School of Integrated Circuit Science and Engineering,Beijing Advanced Innovation Center for Big Data and Brain Computing,Beihang University,Beijing 100191,China

    Keywords: magnonics,magnetic vortex,spin wave,magnetic chirality

    Nonlinear science is an interdisciplinary science which studies the common law of nonlinear behaviors in various systems.[1,2]In recent years, nonlinear interaction between spin wave (magnon) and topological magnetic texture (magnetic soliton)has received a great deal of attention in magnetic systems,[3,4]because it provides a good platform for exploring nonlinear science and has potential application prospects.[5-7]In many nonlinear magnetic systems,the equilibrium position(vortex core position in the steady state)of magnetic vortices exhibits notable robustness.[8]In other words,the vortex structure remains remarkably stable even under the interference of the external field.Hence, the interaction between spin waves(SWs) and magnetic vortices can provide a stable platform for research of nonlinear dynamics and may have application prospects in the field of spintronics.[9]

    SWs,as a collective precession behavior of spins in magnetic systems,[10,11]can transmit information using spin angular momentum rather than electron as a carrier, which can effectively solve the problem of thermal effect related power consumption caused by electron scattering.Since SWs has a wide frequency range from GHz to THz and their wavelengths can also reach nanometer scales,[12,13]it is advantageous to transmit information in magnetic nanodevices.Particularly,since they can propagate in magnetic materials, wave properties like diffraction,[14]refraction,[15]and interference[16,17]can be used to realize a variety of useful functions.At present,some SW-based functional devices have been reported, such as SW-based diodes and logic devices.[18-20]Interestingly, a nonreciprocal behavior of SW propagation can be achieved by modulating Dzyaloshinskii-Moriya interaction[21,22]and magnetic anisotropy[23,24]in magnetic systems, which is expected to be applied to the magnonic logics as an asymmetric behavior.However, it is obvious that the best way to apply magnonics is not to control the SW behaviors by changing the inherent structural properties of magnetic materials.Therefore, it will be of great significance for development of ultrafast, low power consumption and stable performance magnonic devices if the control of SW behavior can be realized through reconstruction of magnetic texture.[25]

    Recently, it has been found that behaviors of SW propagation become richer and easier to be controlled with introduction of topological spin textures,[4]due to the fact that the spin texture exhibits structurally stable soliton-like dynamic behavior,[26,27]which can produce SWs when excited by an external field and influence the behavior of SWs as they propagate.[27-29]Among various spin textures, the magnetic vortex not only effectively excites SWs[30,31]through the gyromotion,[32,33]azimuth mode motion[34,35]or radial mode motion[36]of its core, but also controls the SW propagation behaviors by switching its chirality.[30]The vortex has two chirality with right and left handedness,[37]which are characterized by the circulation sense of the in-plane circling spins[c=-1 for clockwise(CW),c=1 for counterclockwise(CCW)]and the polarity of the vortex core(VC)(p=1 for upward core,p=-1 for downward core).That is,there are four chiral states:vortex(1,1)and vortex(-1,-1)for right-handed chirality,and vortex(1,-1)and vortex(-1,1)for left-handed chirality.Therefore, if the propagation behavior of SWs can be effectively manipulated by controlling the four chiral states of the magnetic vortex,it will benefit the design of magnonic devices and promote the exploration of nonlinear science.

    In this paper,an asymmetric SW scattering behavior,depending on the chirality of magnetic vortices, is investigated in a cross-shaped ferromagnetic nanostructure.The results show that there are four scattering mechanisms in the magnetic system,including asymmetric skew scattering,back scattering(reflection),side deflection scattering,and geometrical scattering,which depend on the VC polarity,the VC stiffness,structural symmetry of the vortex circulation, and the waveguide structure.Moreover,based on the asymmetric effect of chiral topological structure on scattering behaviors of SWs,a control scheme of SWs propagating in the cross-shaped nanostructure is proposed by reconstructing the chiral structure.

    In order to investigate the effect of magnetic vortex chirality on the SW scattering behavior, the SW propagation in a cross-shaped ferromagnetic nanostructure is carefully explored by using micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation.[38]In all the simulations,the material parameters of the permalloy are considered, the saturation magnetizationMS=8.6×105A/m, the exchange stiffness coefficientAex=13×10-12J/m,the Gilbert damping constantα=0.01,and the zero magnetocrystalline anisotropy.As schematically illustrated in Fig.1,the cross-shaped nanostructure is composed of two flat rectangular strips of 2000×200×2 nm3,overlapping each other,which is discretized into 106unit cells of 2×2×2 nm3.Initially,a magnetic vortex is set in the cross region of the nanostructure, as shown in two insets of Fig.1,which illustrates two chiral structures of vortex(1,1)and vortex(1,-1).All spins in the four arms of the nanostructure are initially set to point toward the cross center(see the white arrows)to form a stable magnetic vortex structure.An SW source is placed at the end of the left arm (arm 1),as the black part shown in Fig.1.The SW is excited by the sinusoidal microwave fieldBext=B0sin(2π ft)^z(^zisz-axis unit vector), withB0=200 mT andf=50 GHz.An original monochromatic SW(SWorg)propagates along the+x-axis direction from arm 1 to arm 3.To prevent the influence of SWs reflection from the ends,the high damping constant is set in the 30nm-width region(see gray parts)at the three ends of each arm(arms 2,3 and 4).

    Fig.1.Geometry and dimension of the cross-shaped nanostructure in Cartesian coordinates.The color ring and white arrows indicate the inplane magnetization distribution.The black and gray parts show the positions of wave source and high damping regions, respectively.The upper-left and lower-right insets represent the right- and left-handed magnetic vortex structure,respectively.

    As shown in Fig.2(a), it can be clearly observed that when the SWorgpropagates to the cross region of the nanostructure, the majority of the SWorgtravels through the vortex structure,and reaches arm 3,while a minority of SWorgis scattered to arms 2 and 4.As shown in Fig.2(b),there is a significant difference(asymmetry)in the average amplitudes of the SWs scattered into arms 2 and 4,whereas no such significant difference is observed in the no-vortex case(see Fig.S1 in the supplementary information).Hence,it can be found that there exists an interaction between the SW and the vortex, which suggests the occurrence of asymmetric behaviors in SW propagation.In addition, it is worth mentioning that in the vortex(1,1) case (see Fig.2(b)), the average amplitude of SWs injected into arm 2 is about 12 times larger than that injected into arm 4.

    The asymmetric scattering of SWs is compared in the cases of four different chiral vortices [vortex (1,1), vortex(-1,1),vortex(-1,-1),and vortex(1,-1)]and the case without vortex(no-vortex)in order to verify the universality of the interaction between SW and vortex.As shown in Fig.2(c),the percentages of the average amplitudes of SWs scattered into arm 2(red)and arm 4(green)are compared in each case.In the no-vortex cases, the percentages of SW amplitudes for arms 2 and 4 are nearly identical, whereas in the presence of vortex structures,the percentages of SW amplitudes for arms 2 and 4 are noticeably different.It is obvious that the asymmetric scattering behavior of SWs in this system occurs due to the interaction between SW and vortex.It is worth reminding that the SWs scattered into arm 2 are relatively dominant when the VC polarity is up (p=1), while the SWs scattered into arm 4 are dominant when the VC polarity is down(p=-1).The change of vortex circulation (c=±1) does not significantly affect the asymmetric scattering effect.All of these reveal that the asymmetric scattering effect of the SWs in this system is mainly dependent on the VC polarity rather than the vortex circulation.

    In order to further confirm the dominant role of VC polarity on the asymmetric scattering behavior of SWs in this system,a no-VC case was simulated in the redesigned nanostructure with an 8×8 nm2hole at the center of the cross region,as shown in Fig.3(a).The hole can pin the equilibrium point of the vortex circulation at the center of the cross region,and the vortex circulation structure still maintains symmetry[see inset of Fig.3(a)].The results show that the asymmetric scattering behavior of SWs cannot be observed in the no-VC case, as shown in Fig.3(b).However, by comparing the no-VC case and the no-vortex case[see Figs.3(b)and 3(c)],it can be clearly observed that the SW scattering effect in the no-VC case is more significant(~4.6 times)than that in the no-vortex case,and it is found that there is a phase difference(Δt ≈3 ps)between them,which suggests that the circulation structure of the magnetic vortex also has a scattering effect on the SWorg.In the no-vortex case,it can be clearly observed that the SWs are symmetrically scattered into arms 2 and 4, as illustrated in Fig.S1 of the supplementary information.The dispersion effect of SWs caused by the geometric characteristics of the waveguide structure can be called geometric scattering of SWs(SWgeo).[39]Therefore,it can be considered that the source of SWgeois located at the edges of both sides of the cross region.Obviously, in the no-VC case, the SWs scattered into arms 2 and 4 consist of two parts: one is the SWgeoand the other is the SWs caused by the vortex circulation scattering (SWC).Asymmetric scattering of SWs can also be achieved by modulating the vortex circulation structure,as shown in Fig.S2 of the supplementary information.

    Fig.3.(a) Snapshots of SW distribution for the no-VC case at 20 ns after the SW excitation, the inset shows the magnetization distribution and SW distribution in the cross region.Time-varying mz signals collected at the detecting positions in arms 2 and 4, 550 nm far from the geometric center of the nanostructure,in the cases of(b)no-VC and(c)no-vortex.

    The asymmetric scattering behavior caused by the interaction between SW and VC is an interesting physical phenomenon which belongs to the field of nonlinear science.In order to explore this phenomenon, the vortex (1,1) case was carefully analyzed in the following.In Fig.4(a), it can be clearly observed that 600 ns after the VC is excited by the SWorg,its gyromotion is effectively suppressed under the mechanical action of damping(FDM,red arrows),and finally converges(see the red time region)at a position~1.24 nm away from the cross center.This means that the SWorgalso has a skew mechanical effect on the VC, that is, an SW current force.[40]Although the VC deviates from the cross center under the SWorgcurrent force (FSW, the green arrow), it will not deviate further after~1.24 nm shift because there is a restoring force (FEP, the blue arrow) in this system that always points the cross center and its magnitude is related to the distribution of stray fields around the VC.Therefore, in this system the direction of theFEPis always opposite to theFSWwhile its magnitude is always equal to theFSWand depends on the distance(R)of the equilibrium position(EP)of the vortices from the cross geometric center.That is,the EP is determined byFEPandFSW.Nevertheless, after the equilibrium position of the vortex shifts a certain distance under the combined action ofFEPandFSW,the gyromotion behavior of the VC still follows the Thiele equation,[40-42]as shown by the dotted fitting line in Fig.4(a).The Thiele equation can be written as

    Fig.4.(a)The VC trajectory in the vortex(1,1)case during 600 ns,the black arrow represents the VC gyromotion direction and the red,blue and green arrows show the mechanical relationships among FDM,FEP,and FSW.Color bar indicates the time variation and the dotted line represents the numerical fitting.(b)The time-varying mz signals collected at the detecting positions 160 nm far from the geometric center of the nanostructure are shown in(b)arm 1,(c)arm 2,and(d)arm 4,for the cases of vortex(1,1)and no vortex.

    In order to further confirm the possibility of SW scattering behavior caused by the reaction ofFSWon the VC, the distribution of SWs around the VC in the no-vortex and vortex (1,1) cases are compared.In the signals detected in arm 1, it is found that the mean amplitude of the signals in the vortex(1,1)case is obviously larger than that in the no-vortex case,Δˉmz ≈0.0025,indicating that the VC reflects the SWorgin the vortex (1,1) case, as shown in Fig.4(b).In the signals detected in arm 2, it is also found that the mean amplitude of the signals in the vortex (1,1) case is significantly larger than that in the no-vortex case, Δˉmz ≈0.0016, which is attributed to the skew scattering of the SWorgin the vortex(1,1)case,as shown in Fig.4(c).However,in the signals detected in arm 4,although the mean amplitude of the signals in the vortex (1,1) case is found to be larger than that in the no-vortex case, Δˉmz ≈0.0005, it is obviously weaker than that in arm 2(Δˉmz ≈0.0016).This means that the skew scattering effect of the VC on the SWorgobviously has asymmetric nature, as shown in Fig.4(c).According to the above phenomena, the conclusions are as follows: (1)The VC can cause reflection or skew scattering of the SWs.(2)The reaction forceFSWof the scattering or reflection will cause the oblique shift of vortex EP.(3)The skew scattering effect of VC on the SW is asymmetric and depends on the VC polarity(see Fig.S3 of the supplementary information).At present,the asymmetric interaction between VC and SW is considered originating from a socalled nonlinear topological magnon spin Hall effect, which is related to magnon spin-transfer torque effect[45-48]and depends on the magnon chirality and the VC polarity.However,the scattering behavior of vortex circulation structure on SWs has not received much attention so far,because the asymmetric scattering effect induced by vortex circulation structure is insignificantly compared with that of the VC,especially in the case of the SW driving the VC motion.In this paper,it is found that the vortex circulation structure contributes to the asymmetric scattering behavior of the SW and cannot be ignored.The obliqued shift of VC will make the vortex circulation distribution in the cross region of the nanostructure asymmetric,which will form an asymmetric scattering cross-section for the propagating SW,and eventually lead to asymmetric scattering effect.This conclusion is further confirmed by artificially designing a new micromagnetic simulation in which the vortex EP in the cross region is not located at the geometric center(see Fig.3(a)).

    Fig.5.Schematic diagram of SW symmetric scattering mechanism for the SW propagating in the magnetic nonlinear system.The thick black arrow represents the SWorg propagating direction,the green arrows represent the geometric scatterings of SWgeo,the yellow arrows represent the SWC scatterings, the red curved arrow represents the SWre reflection,and the purple arrow represents the skew scattering of SWP.The red and blue interference patterns represent the main propagation distribution of SWorg.

    In conclusion, it is found that there are four scattering mechanisms for SWs traveling in a cross-shaped ferromagnetic nonlinear system, as schematically illustrated in Fig.5:(i) the asymmetric skew scattering (SWP, purple arrow), related to VC polarity; (ii) the reflection (SWre, red curved arrow), associated with the scattering cross-section and stiffness of VC; (iii) the side deflection scattering (SWC, yellow arrows), depending on structural symmetry of vortex circulation; and (iv) the geometrical scattering (SWgeo, green arrows),depending on waveguide structural characteristics.The four mechanisms will play an important role in the exploration of nonlinear science and the development of magnonic devices.

    Acknowledgments

    Project supported by the Basic Science Research Program of the National Research Foundation of Korea (Grant No.2021R1F1A1050539), the Yanbian University Research Project(Grant No.482022104),and the Yichang Natural Science Research Project(Grant No.A22-3-010).

    猜你喜歡
    紅光
    以前的村莊
    基于吩嗪類受體的紅光至近紅外TADF材料與器件的研究進(jìn)展
    發(fā)紅光的蔬菜
    學(xué)與玩(2022年6期)2022-10-28 09:18:52
    高速鐵路線路紅光帶故障應(yīng)急處置箱的設(shè)計及運(yùn)用
    先鋒引領(lǐng)致富路
    ——記嘉蔭縣紅光鄉(xiāng)燎原村黨支部
    奮斗(2020年24期)2021-01-16 06:23:36
    尊嚴(yán)
    遼河(2020年12期)2020-01-05 07:03:17
    移風(fēng)易俗的路徑探索——基于涴市鎮(zhèn)紅光村鄉(xiāng)村振興促進(jìn)會的分析
    活力(2019年17期)2019-11-26 00:41:04
    二維水力學(xué)模型在紅光大橋洪水影響評價中的應(yīng)用
    The Advantages of the application of Multimedia—assisted Teaching to English Reading Class in Junior Middle Schools
    10分鐘
    汽車生活(2015年3期)2015-03-27 22:18:05
    少妇丰满av| h日本视频在线播放| 特大巨黑吊av在线直播| 亚洲精品国产成人久久av| 国产主播在线观看一区二区| 亚洲自拍偷在线| eeuss影院久久| 97超视频在线观看视频| 床上黄色一级片| 噜噜噜噜噜久久久久久91| 俺也久久电影网| aaaaa片日本免费| 校园春色视频在线观看| 99久久精品一区二区三区| 国产免费男女视频| 婷婷亚洲欧美| 999久久久精品免费观看国产| 中文字幕av成人在线电影| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 日本爱情动作片www.在线观看 | 夜夜看夜夜爽夜夜摸| 国产 一区 欧美 日韩| 欧美高清性xxxxhd video| 亚洲avbb在线观看| 亚洲天堂国产精品一区在线| 久久人妻av系列| 99久国产av精品| 麻豆av噜噜一区二区三区| 少妇人妻精品综合一区二区 | 婷婷精品国产亚洲av在线| 人妻夜夜爽99麻豆av| 精品人妻偷拍中文字幕| 欧美日韩黄片免| 免费观看在线日韩| 校园人妻丝袜中文字幕| 色吧在线观看| 日本精品一区二区三区蜜桃| 国产不卡一卡二| 少妇的逼好多水| 俺也久久电影网| 日本在线视频免费播放| 国产亚洲精品久久久久久毛片| eeuss影院久久| 精品免费久久久久久久清纯| 夜夜夜夜夜久久久久| 日日夜夜操网爽| 亚洲中文字幕一区二区三区有码在线看| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 最新在线观看一区二区三区| 日韩在线高清观看一区二区三区 | 精品国产三级普通话版| av在线蜜桃| 成年女人看的毛片在线观看| 国产高清视频在线播放一区| 婷婷精品国产亚洲av在线| 久久精品国产亚洲av香蕉五月| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色| 亚洲精华国产精华液的使用体验 | 在线天堂最新版资源| 一a级毛片在线观看| 国产高清有码在线观看视频| 亚洲欧美精品综合久久99| 看免费成人av毛片| 99久久精品热视频| 久久午夜亚洲精品久久| 国产精品野战在线观看| 91午夜精品亚洲一区二区三区 | 久久久久国产精品人妻aⅴ院| 精品人妻视频免费看| 极品教师在线免费播放| 亚洲av电影不卡..在线观看| 国产精品1区2区在线观看.| 草草在线视频免费看| 成人午夜高清在线视频| 亚洲精品456在线播放app | 男人的好看免费观看在线视频| 久久精品国产鲁丝片午夜精品 | 亚洲四区av| 十八禁国产超污无遮挡网站| 国内少妇人妻偷人精品xxx网站| 亚洲av成人av| 久久精品国产亚洲网站| 日韩国内少妇激情av| 国产一区二区三区av在线 | a级毛片免费高清观看在线播放| 亚洲成人久久爱视频| 啦啦啦韩国在线观看视频| 1000部很黄的大片| 国产精品日韩av在线免费观看| 国产人妻一区二区三区在| 亚洲av中文字字幕乱码综合| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 男人狂女人下面高潮的视频| 色综合色国产| 在线免费观看的www视频| a在线观看视频网站| 淫妇啪啪啪对白视频| 永久网站在线| 国内毛片毛片毛片毛片毛片| 干丝袜人妻中文字幕| 免费看光身美女| 五月伊人婷婷丁香| 高清毛片免费观看视频网站| 人妻丰满熟妇av一区二区三区| 精品一区二区三区人妻视频| 91久久精品国产一区二区三区| x7x7x7水蜜桃| 国产毛片a区久久久久| 草草在线视频免费看| 97热精品久久久久久| 国产高清三级在线| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 欧美色欧美亚洲另类二区| 免费黄网站久久成人精品| 伦理电影大哥的女人| 久久99热这里只有精品18| 久久久久九九精品影院| 国产在线精品亚洲第一网站| 此物有八面人人有两片| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频| 全区人妻精品视频| 亚洲性夜色夜夜综合| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 亚洲自偷自拍三级| 夜夜夜夜夜久久久久| 少妇高潮的动态图| 欧美精品国产亚洲| 国产单亲对白刺激| 一区二区三区激情视频| 少妇裸体淫交视频免费看高清| 成熟少妇高潮喷水视频| 国产高清不卡午夜福利| 91久久精品国产一区二区三区| 国产69精品久久久久777片| 国产精品一区二区三区四区免费观看 | 国产黄片美女视频| av在线蜜桃| 91av网一区二区| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 色尼玛亚洲综合影院| 国内精品一区二区在线观看| 亚洲自拍偷在线| 免费看a级黄色片| 亚洲性久久影院| 欧美激情久久久久久爽电影| 午夜激情欧美在线| 男人狂女人下面高潮的视频| 成人美女网站在线观看视频| 日韩国内少妇激情av| 日韩一本色道免费dvd| 久久人人爽人人爽人人片va| 色精品久久人妻99蜜桃| 国产视频内射| 国产成人a区在线观看| 亚洲欧美日韩东京热| 国产午夜福利久久久久久| 色噜噜av男人的天堂激情| 免费看美女性在线毛片视频| 午夜精品久久久久久毛片777| 亚洲天堂国产精品一区在线| 亚洲av五月六月丁香网| 欧美最新免费一区二区三区| 国产精品一区二区性色av| 无遮挡黄片免费观看| 美女高潮喷水抽搐中文字幕| 性插视频无遮挡在线免费观看| 99精品久久久久人妻精品| 在线免费观看不下载黄p国产 | 欧美潮喷喷水| 久久久久国产精品人妻aⅴ院| 国产乱人视频| 五月玫瑰六月丁香| 午夜免费激情av| 亚洲在线自拍视频| 精品不卡国产一区二区三区| 久久国产乱子免费精品| 久久久久久大精品| 一本一本综合久久| 中文在线观看免费www的网站| 白带黄色成豆腐渣| 国产精品福利在线免费观看| 亚洲精品粉嫩美女一区| 久久国内精品自在自线图片| 在线播放国产精品三级| 成年版毛片免费区| 亚洲欧美日韩无卡精品| or卡值多少钱| 久久精品国产亚洲网站| 亚洲精华国产精华精| 亚洲精品久久国产高清桃花| 成人二区视频| 深夜a级毛片| 日本一本二区三区精品| 中文亚洲av片在线观看爽| 国产精品日韩av在线免费观看| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 亚洲精品国产成人久久av| 欧美极品一区二区三区四区| 又粗又爽又猛毛片免费看| 女人十人毛片免费观看3o分钟| 国内精品久久久久精免费| 午夜影院日韩av| 亚洲va在线va天堂va国产| av专区在线播放| 最新中文字幕久久久久| 国产中年淑女户外野战色| 波野结衣二区三区在线| 美女xxoo啪啪120秒动态图| 99久久成人亚洲精品观看| 国产免费一级a男人的天堂| 观看美女的网站| 久久人妻av系列| av在线观看视频网站免费| 久久久久国内视频| 少妇熟女aⅴ在线视频| 十八禁网站免费在线| 夜夜夜夜夜久久久久| 日本-黄色视频高清免费观看| 美女xxoo啪啪120秒动态图| 国产大屁股一区二区在线视频| 久久久午夜欧美精品| 日本 欧美在线| 免费av观看视频| 91麻豆精品激情在线观看国产| 最新在线观看一区二区三区| 久久热精品热| 久久国内精品自在自线图片| 一个人看的www免费观看视频| 亚洲最大成人av| 国内久久婷婷六月综合欲色啪| 91午夜精品亚洲一区二区三区 | 老司机深夜福利视频在线观看| 深夜精品福利| 欧美国产日韩亚洲一区| av在线蜜桃| 免费人成视频x8x8入口观看| 国产精品亚洲美女久久久| 天堂动漫精品| 日韩欧美在线二视频| 国内精品美女久久久久久| 成人午夜高清在线视频| 国产精品99久久久久久久久| 国产一区二区亚洲精品在线观看| 啦啦啦观看免费观看视频高清| 少妇丰满av| x7x7x7水蜜桃| 久久久久久九九精品二区国产| 精品久久久久久久末码| 免费看光身美女| a级毛片免费高清观看在线播放| 高清在线国产一区| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 九九在线视频观看精品| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 男女边吃奶边做爰视频| 久久人妻av系列| 美女免费视频网站| 欧美中文日本在线观看视频| 婷婷精品国产亚洲av在线| 日本欧美国产在线视频| av福利片在线观看| 久久亚洲真实| 亚洲欧美日韩东京热| 露出奶头的视频| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 免费av不卡在线播放| 搡老妇女老女人老熟妇| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 国产色爽女视频免费观看| 欧美bdsm另类| 国产精品久久久久久久久免| 日韩欧美精品v在线| 99在线视频只有这里精品首页| 黄色日韩在线| 狠狠狠狠99中文字幕| 91在线观看av| 久久久久久大精品| 亚洲中文日韩欧美视频| 变态另类丝袜制服| 欧美最黄视频在线播放免费| 久久久久久伊人网av| 人妻久久中文字幕网| 日韩一本色道免费dvd| 亚洲欧美清纯卡通| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 看黄色毛片网站| 国产高清视频在线观看网站| 久久国产精品人妻蜜桃| 国产精品国产三级国产av玫瑰| 国产精品久久久久久久久免| 亚洲欧美日韩无卡精品| 免费看日本二区| 日本免费一区二区三区高清不卡| 国产精品一区www在线观看 | 97超级碰碰碰精品色视频在线观看| 国产一级毛片七仙女欲春2| 欧美黑人巨大hd| 免费看光身美女| 99九九线精品视频在线观看视频| 久久久久久久久中文| 国产黄a三级三级三级人| 乱码一卡2卡4卡精品| 亚洲美女视频黄频| 婷婷丁香在线五月| 精品久久久久久久久亚洲 | 国产精品av视频在线免费观看| 中出人妻视频一区二区| 少妇被粗大猛烈的视频| 亚洲欧美精品综合久久99| 国产午夜精品久久久久久一区二区三区 | а√天堂www在线а√下载| 午夜日韩欧美国产| or卡值多少钱| 日韩在线高清观看一区二区三区 | 欧美中文日本在线观看视频| 亚洲电影在线观看av| 啪啪无遮挡十八禁网站| 中文资源天堂在线| 国产精品,欧美在线| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| 麻豆av噜噜一区二区三区| 久久久午夜欧美精品| 国产成人aa在线观看| 日本-黄色视频高清免费观看| 日韩高清综合在线| 国产高清不卡午夜福利| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| 久久久久国内视频| 全区人妻精品视频| 一本一本综合久久| 免费在线观看影片大全网站| 可以在线观看的亚洲视频| 精品一区二区三区人妻视频| 久久午夜亚洲精品久久| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看 | 欧美激情在线99| 久久精品国产亚洲av涩爱 | 亚洲国产欧美人成| 国产精品野战在线观看| 中文字幕熟女人妻在线| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站| 免费av观看视频| 久久久精品欧美日韩精品| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 中文字幕高清在线视频| 乱人视频在线观看| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 亚洲在线自拍视频| 哪里可以看免费的av片| 国内精品久久久久精免费| 免费高清视频大片| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 看片在线看免费视频| 床上黄色一级片| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 亚洲最大成人av| 在线国产一区二区在线| 亚洲av一区综合| 内射极品少妇av片p| 男女之事视频高清在线观看| h日本视频在线播放| 毛片一级片免费看久久久久 | 两个人视频免费观看高清| 日本熟妇午夜| 一个人观看的视频www高清免费观看| 婷婷精品国产亚洲av| 99久久无色码亚洲精品果冻| 国产欧美日韩精品一区二区| 亚洲美女视频黄频| 色视频www国产| 国产黄片美女视频| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 91午夜精品亚洲一区二区三区 | 国产黄片美女视频| 欧美性猛交黑人性爽| 国产色爽女视频免费观看| 深夜a级毛片| 精品人妻熟女av久视频| 99视频精品全部免费 在线| 一夜夜www| 国产伦精品一区二区三区四那| 国产精品三级大全| 亚洲精华国产精华液的使用体验 | 丰满乱子伦码专区| 国产亚洲精品av在线| 一个人免费在线观看电影| 日本熟妇午夜| 一边摸一边抽搐一进一小说| 欧美三级亚洲精品| 少妇人妻精品综合一区二区 | 日韩,欧美,国产一区二区三区 | 国内少妇人妻偷人精品xxx网站| 国产精品美女特级片免费视频播放器| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲综合色惰| 欧美最黄视频在线播放免费| 亚洲狠狠婷婷综合久久图片| 欧美日韩瑟瑟在线播放| 久久久精品欧美日韩精品| 国产色婷婷99| 天堂√8在线中文| 人人妻人人看人人澡| 欧美性感艳星| 免费无遮挡裸体视频| 少妇猛男粗大的猛烈进出视频 | 免费搜索国产男女视频| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 男女啪啪激烈高潮av片| 国产精品久久久久久久久免| 国产蜜桃级精品一区二区三区| 老女人水多毛片| 亚洲精品色激情综合| 欧美最黄视频在线播放免费| 听说在线观看完整版免费高清| 在线免费十八禁| 国产免费一级a男人的天堂| 美女 人体艺术 gogo| 日本与韩国留学比较| 欧美成人免费av一区二区三区| 热99在线观看视频| 精品久久久噜噜| 国国产精品蜜臀av免费| 日韩,欧美,国产一区二区三区 | ponron亚洲| 国产日本99.免费观看| 91av网一区二区| 日本三级黄在线观看| 日本精品一区二区三区蜜桃| 中文字幕av在线有码专区| 免费观看人在逋| .国产精品久久| 美女cb高潮喷水在线观看| 国内少妇人妻偷人精品xxx网站| 在线看三级毛片| 美女免费视频网站| 亚洲天堂国产精品一区在线| 亚洲av日韩精品久久久久久密| 欧美+日韩+精品| 性插视频无遮挡在线免费观看| 久久精品91蜜桃| 欧美xxxx性猛交bbbb| 搡老岳熟女国产| 日本在线视频免费播放| 色哟哟·www| 国产午夜精品论理片| 天天躁日日操中文字幕| 三级国产精品欧美在线观看| xxxwww97欧美| 久久这里只有精品中国| 欧美潮喷喷水| 欧美成人性av电影在线观看| 女同久久另类99精品国产91| 热99re8久久精品国产| 亚洲精品日韩av片在线观看| 国产综合懂色| a级毛片a级免费在线| 国产精品一区二区三区四区免费观看 | 精品人妻熟女av久视频| 国产真实伦视频高清在线观看 | 久久精品综合一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲五月天丁香| 国产高清视频在线播放一区| 成人二区视频| 久久久久久久久久黄片| 色5月婷婷丁香| 少妇猛男粗大的猛烈进出视频 | 国产亚洲精品久久久久久毛片| 99在线视频只有这里精品首页| 午夜影院日韩av| 久久精品国产亚洲av天美| 少妇的逼好多水| 欧美+日韩+精品| 99riav亚洲国产免费| 国产女主播在线喷水免费视频网站 | 亚洲精品乱码久久久v下载方式| 97超视频在线观看视频| 国产午夜精品论理片| 亚洲精华国产精华精| 午夜福利高清视频| 中文字幕免费在线视频6| 亚洲自偷自拍三级| 熟妇人妻久久中文字幕3abv| 久久久久九九精品影院| 欧美日本亚洲视频在线播放| 国产av一区在线观看免费| 欧美一区二区国产精品久久精品| 看十八女毛片水多多多| 麻豆国产av国片精品| 91av网一区二区| 九色国产91popny在线| 国产一区二区三区在线臀色熟女| 亚洲经典国产精华液单| 少妇人妻精品综合一区二区 | 在线观看66精品国产| 国产精品一区www在线观看 | 中文字幕久久专区| 两个人视频免费观看高清| 日本-黄色视频高清免费观看| 日本黄色片子视频| 国产蜜桃级精品一区二区三区| 波多野结衣巨乳人妻| 亚洲aⅴ乱码一区二区在线播放| 亚洲成人久久性| 久久久国产成人精品二区| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 亚洲18禁久久av| 日韩大尺度精品在线看网址| 色哟哟·www| 国产在线男女| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| 九色成人免费人妻av| 成人一区二区视频在线观看| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 少妇的逼好多水| 在线国产一区二区在线| 舔av片在线| 内射极品少妇av片p| 嫩草影院新地址| 婷婷亚洲欧美| 欧美成人a在线观看| 熟女电影av网| 久久九九热精品免费| 成年女人看的毛片在线观看| 99在线视频只有这里精品首页| 国产女主播在线喷水免费视频网站 | 国产真实伦视频高清在线观看 | avwww免费| 高清在线国产一区| 色吧在线观看| 国产色婷婷99| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看 | 麻豆av噜噜一区二区三区| 精品乱码久久久久久99久播| 成人永久免费在线观看视频| 男人的好看免费观看在线视频| 精品久久久久久,| 成人美女网站在线观看视频| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 人妻久久中文字幕网| 色哟哟·www| av福利片在线观看| 国产亚洲精品久久久com| 久久精品人妻少妇| 亚洲精品456在线播放app | 久久精品国产亚洲av涩爱 | 久久九九热精品免费| 美女大奶头视频| 99久久精品一区二区三区| 最近最新免费中文字幕在线| 欧美日本亚洲视频在线播放| 亚洲在线自拍视频| 免费搜索国产男女视频| 日韩欧美国产一区二区入口| 国产高清三级在线| 久久久久久久精品吃奶| 嫩草影视91久久| 久久国产精品人妻蜜桃| 一夜夜www| 亚洲 国产 在线| 国产大屁股一区二区在线视频| 少妇裸体淫交视频免费看高清| 一区二区三区高清视频在线| 国产久久久一区二区三区| 国内毛片毛片毛片毛片毛片| 91久久精品电影网| 国内久久婷婷六月综合欲色啪| 免费观看人在逋| 99久久久亚洲精品蜜臀av| 99久久成人亚洲精品观看| 国产伦人伦偷精品视频| 欧美一区二区精品小视频在线| 天堂影院成人在线观看| 少妇裸体淫交视频免费看高清| 午夜福利高清视频| 久久人妻av系列| 91在线精品国自产拍蜜月| 久久欧美精品欧美久久欧美| 国产色爽女视频免费观看| 日韩av在线大香蕉| 日本与韩国留学比较|