• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Long-range interacting Stark many-body probes with super-Heisenberg precision

    2023-11-02 08:08:54RozhinYousefjaniXingjianHe何行健andAbolfazlBayat
    Chinese Physics B 2023年10期
    關鍵詞:行健

    Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat

    Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610051,China

    Keywords: quantum information,quantum statistical mechanics,quantum phase transitions

    1.Introduction

    Quantum sensors can achieve unprecedented precision in measuring time,[1,2]electric,[3,4]magnetic,[5-7]and gravitational fields,[8,9]way beyond the capability of their classical counterparts.They can be manufactured in atomic scales and have found applications in a wide range of fields, from cosmology[10-12]to biology.[13-15]The precision of estimating an unknown parameterh, encoded in a quantum density matrixρ(h),is fundamentally bounded by Cram′er-Rao inequality aswhere Δhis the standard deviation that quantifies the accuracy of the estimation,Mis the number of repetitions andFis a positive quantity called Fisher information.The scaling of Fisher information with respect to sensing resources,such as the probe sizeL,is a figure of merit that can be used for comparing the precision of different sensors.Typically,Fisher information scales are algebraically with the size of the resource,namelyF∝Lβ.In the absence of quantum features,classical sensing at best results inβ=1,is known as the standard limit.Quantum sensors,however,can achieve superlinear scaling withβ >1 through exploiting quantum features such as entanglement.[16,17]Originally,enhancement in precision has been discovered for a special form of entangled states,known as GHZ states,[18]which results inβ=2 also known as Heisenberg limit.[19-27]Although there are several experimental demonstrations of GHZ-based quantum sensors,[28-32]their scalability is challenging due to the sensitivity of such delicate quantum states to decoherence.In addition,the interaction between particles in these probes is detrimental to their precision.[33-35]

    Strongly correlated many-body systems are very resourceful for realizing quantum technology tasks, such as sensing.These quantum probes,which harness the interaction between particles, are naturally scalable and expected to be more robust against decoherence.In particular,various forms of phase transitions in such systems have been used for achieving quantum-enhanced sensitivity,including first-order,[36-39]second-order,[25,40-53]Floquet,[54,55]dissipative,[56-62]time crystals,[63,64]topological,[65-68]many-body[69]and Stark localization[70]phase transitions.Other types of manybody probes profit from diverse measurement methods including adaptive,[71-80]continuous,[29,62,81,84]and sequential[85,86]measurements.Since most of the sensing proposals in many-body probes have been dedicated to short-range interactions, a key open problem is whether long-range interactions can provide more benefits for sensing tasks? Longrange interactions naturally arise in certain quantum devices,such as ion traps[87-89]and Rydberg atoms.[90,91]The nature of these interactions prevents the systematic study of their interesting physics and except for some models such as Lipshin-Meshkov-Glick(LMG),[42,92]and long-range Kitaev chain,[93]the effect of long-range interaction on sensing precision remains almost untouched.

    Gradient field sensing is of major importance in various fields, including biological imaging[94,95]and gravitometry.[96-99]In the former,the ultra-precise sensing of a weak gradient magnetic field increases imaging resolution,enabling the visualization of smaller tumors for early cancer detection.In the latter,precise gravity measurement is essential for detection of gravitational waves,[100,101]investigating the equivalence principle,[102]obtaining the fine-structure[103]and measuring Newton’s gravitational constant.[104]Recently,we have shown that Stark probes can be exploited for measuring weak gradient fields with super-Heisenberg precision,[70]in which the scaling exponentβcan be as large asβ~= 6.This sensor relies on Stark localization transition which could even happen in the presence of an infinitesimal gradient field in single- and multi-particle quantum systems.The effect of a longer range of interaction on this sensor has not yet been explored.Addressing this issue is essential since the physical platforms for experimental realization of Stark localization,including ion traps[87-89]and Rydberg atoms[90,91]are naturally governed by long-range interactions.

    In this paper,we systematically study the effects of longrange interaction on the sensing capability of Stark probes.We show that the strong super-Heisenberg scaling of the Stark probes persists even in the presence of long-range interaction and is achievable throughout the extended phase of the system until the transition point.Our results show that various range of interaction leaves distinct imprints on the scaling of the Fisher information.Making the interaction more longranged enhances the localization and, hence, decreases the value of the Fisher information andβ.The localization effect disappears as the system gets closer to a fully connected graph and thus the sensitivity enhances again.The achievable super-Heisenberg scaling remains valid even when the state preparation time is taken into account in resource analysis.Moreover,we provide a comprehensive investigation of the critical properties of long-range Stark probes and establish a concrete relationship between critical exponents of the system through an extensive finite-size scaling analysis.We show that the enhanced sensitivity can be captured by measuring spin configurations in the relevant sector of the Hilbert space.Finally,we analyze the effect of filling factor (i.e., the number of excitations per site) on the sensing power of our Stark probes.While super-Heisenberg scaling is achievable for all studied filling factors,lower filling factors provide better precision.

    This paper is organized as follows.We start by presenting the tools for assessing a quantum probe in Section 2.After introducing our long-range Stark many-body probe in Section 3,we present the numerical results of sensing with the probe in the half-filling sector in Section 4.In the subsections of Section 4,the scaling behavior of the probe,its critical properties,the resource analysis, and the optimal measurement are discussed.Section 5 contains the analysis of the filling factor and the paper is summarized in Section 6.

    2.Ultimate precision limit

    In this section, we briefly review the implications of Cram′er-Rao inequality for quantum sensing problems.In order to estimate an unknown parameterhencoded in a probe,described by density matrixρ(h), one has to perform a measurement which is described by a set of positive operatorvalued measure (POVM){Πi}.Each measurement outcome appears with the probabilitypi(h)=Tr[Πiρ(h)].For this classical probability distribution one can show that the classical Fisher information(CFI),defined as[16,105]

    which establishes a bound on the estimation uncertainty Δh,known as Cram′er-Rao bound

    whereMrepresents the number of samples.The saturation of the inequality requires an optimal estimation algorithm.For large values ofM, it is known that the optimal algorithm is the Bayesian estimator.[106,107]Note that the CFI depends on the choice of measurement.In order to have a measurement-independent quantity, as an ultimate precision limit, one can maximize the CFI with respect to all possible measurements.The corresponding quantity, known as quantum Fisher information (QFI), is thus defined asFQ(h) =max{Πi}FC(h).[108,109]Therefore,the Cram′er-Rao inequality can be written in a hierarchical form as[24,110]

    This hierarchical inequality shows that the QFI can serve as a benchmark for evaluating any sensing protocol with a given measurement setup through a comparison of its corresponding CFI with the ultimate precision limit, quantified by the QFIFQ.Saturation of the ultimate precision bound, in Eq.(3),relies on both selecting the optimal measurement basis and choosing the best estimation algorithm.While the maximization with respect to measurement in the definition of the QFI seems notoriously challenging, alternative methods can provide computational-friendly methods for calculating the QFI.In particular, it turns out that the QFI is related to a quantity called fidelity susceptibilityχ(h)asFQ=4χ(h).The fidelity susceptibility is defined as[41,48,51,111]

    withδhbeing an infinitesimal variation inh.It has been shown that for systems that go through a second-order quantum phase transition, the fidelity susceptibility and, hence,QFI show non-analytic behavior in the vicinity of the critical point.[48,111-114]This reflects the tremendous sensitivity of the system with respect to the control parameterhwhich drives the system into the phase transition.In this paper,we rely on Eq.(4) for calculating the QFI and investigating the sensing power of a Stark many-body probe with long-range interaction.

    3.Stark many-body probe

    We consider a one-dimensional spin-1/2 chain ofLsites that is affected by a gradient fieldh.While spin tunneling is restricted to nearest-neighbor sites,the interaction between particles is taken to be long-range which algebraically decays by exponentη >0.The Hamiltonian reads

    whereJis the exchange coupling,are Pauli operators acting on sitei, andhis the amplitude of the applied gradient field, which has to be estimated.By varying the powerlaw exponentη,one can smoothly interpolate between a fully connected graph(η=0)and a standard nearest-neighbor onedimensional chain (η →∞).Inherently, many interactions are long-range.Coulomb and dipole-dipole interactions are notable examples of this interaction that can be modeled in certain quantum simulators,e.g.,ion traps[87-89]and Rydberg atoms.[90,91]The Hamiltonian Eq.(5) conserves the number of excitations in thezdirection, namely [H,Sz] = 0, whereThis implies that the Hamiltonian is blockdiagonal with respect to the number of excitationsN.Hence,each block can be described by a filling factor ofn=N/L.Here, we focus on the sensing power of our probe assuming that the filling factornis fixed and the probe is prepared in the lowest energy eigenstate of the relevant sector.Note that the true ground state of the Hamiltonian lies in the sector withn=0(i.e.,N=0 excitations).Nonetheless,throughout the paper,for the sake of convenience,we call the lowest eigenstate of the Hamiltonian for any given filling factornthe ground state which should not be mistaken by the true ground state of the Hamiltonian at filling factorn=0.

    Regardless of the range of interaction, by increasing the strength of the fieldh, the probe undergoes a quantum phase transition from an extended phase to a many-body localized one.[115-119]It is known that the many-body localization(MBL) transition occurs across the entire spectrum, in contrast to the conventional quantum phase transition which occurs only at the ground state.[51]Detecting and characterizing the MBL transition across the whole spectrum usually rely on exact diagonalization which severely restricts the numerical simulations to small systems.[120]For analyzing the sensing power of a probe,one requires large system size behavior which is not accessible through exact diagonalization.Therefore,we exploit matrix product state(MPS)simulation[121]to capture the behavior of QFI in large system sizes.While this allows us to extract a precise scaling analysis, it comes with the price that we will be limited to the ground state in each filling factor and cannot analyze the sensing power of excited states.

    4.Sensing at half-filling sector(n=1/2)

    We first focus on the half-filling sector of the Hamiltonian in which we haveN=L/2 excitations.In Fig.1(a), we plotFQas a function of Stark fieldh/Jfor a probe of sizeL=30 with various choices ofη.Several interesting features can be observed.First, by increasingh/Jthe QFI shows a dramatic change in its behavior from being almost constant in the extended phase to a decreasing function in the localized regime.During this transition, the QFI peaks at somehmax(η),which asymptotically converge to the transition pointhcin the thermodynamic limit.[111,114]Second,variousηleave distinct imprints on the QFI.By moving from a fully connected probe(η=0)to a nearest-neighbor one(η →∞), the peaks of the QFI first decrease and then show a revival behavior.This is because asηdecreases (i.e., interaction becomes more long-range) each spin configuration induces a different Zeeman energy splitting at any given site.This effect is like random disorder potential, which helps the system to localize and thus reduces the QFI.The observed behavior continues until the system becomes close to a fully connected graph(forη~0.1) in which all spin configurations induce almost the same energy splitting and thus the localization effect from off-resonant energy separations gradually disappears.Third,strong long-range interaction indeed enhances the sensitivity of the probe by providing the highest value ofFQin both the extended phase(i.e.,h <hmax)and at the transition point(i.e.,h=hmax).

    To explore the behavior of the QFI in the thermodynamic limit,namely forL →∞,one can study the QFI for various system sizes.In Figs.1(b)-1(d),we plot the ground state QFI as a function of Stark fieldh/Jfor various system sizesLand selectedη=0,1,and 5,respectively.Regardless of the range of the interaction,by enlarging the probe size,the peak of the QFI increases andhmaxgradually approaches zero, signaling the divergence ofFQin the thermodynamic limit for a vanishing transition pointhc→0.While the finite-size effect can be seen in the extended phase,in the localized regime one deals with a size-independent algebraic decay of the QFI which can be perfectly described byFQ∝|h-hmax|-α(η)(dashed lines).From Figs.1(b)-1(d),one can see that the exponentαtakes the valuesα(η=0)=4.00,α(η=1)=4.94,andα(η=5)=3.97,respectively.

    Fig.1.(a)The QFI versus Stark field h/J when our probe of size L=30 is prepared in the ground state of H(h)with n=1/2 and different powerlaw exponents η.(b)-(d)FQ as a function of h/J for probes of different sizes L initialized in the ground state of H(h) for η =0, 1, and 5, respectively.The dashed lines in all panels are the best fit of FQ, namely FQ∝|h-hmax|-α, representing the size-independent algebraic behavior of the QFI in the localized phase.

    4.1.Super-Heisenberg sensitivity

    Fig.2.Upper panels: the maximum of QFI(markers)versus probe size L for some values of η in(a)transition point(h=hmax)and(b)extended regime (h/J=10-4).The lines are the best fitting function of the form FQ ∝Lβ(h,η).Lower panels: the scaling exponent β(h,η)versus η obtained(c)at the transition point and(d)in the extended phase.

    To characterize the scaling of the QFI with the probe size, in Figs.2(a) and 2(b), we plotFQversusLfor some values ofηboth at the transition point, i.e.,h=hmax, and in the extended phase, i.e.,h/J= 10-4, respectively.In both panels, the markers represent the QFI obtained by numerical simulation and the lines are the best fitting function of the formFQ(h,η)∝Lβ(h,η).The best obtained exponentβ(h,η)has been plotted as a function ofηin Figs.2(c)and 2(d),forh=hmaxandh/J=10-4, respectively.Some interesting observations can be highlighted.First,regardless of the interaction rangeη, one can obtain super-Heisenberg sensitivity for our probe (i.e.,β >2) both at the transition point and in the extended regime.Second, as discussed before, by decreasingη(i.e., making interaction more long-range)the effective Zeeman energy splitting enhances the localization and thus reduces the QFI as well as the exponentβ.Asηfurther decreases,the probe becomes effectively fully connected,implying that all spin configurations induce equal energy splitting that does not contribute to the localization anymore.Therefore,βchanges its behavior and starts rising asηdecreases towards zero.

    4.2.Finite-size scaling analysis

    The observed trend of the QFI in Figs.1(b)-1(d)(shown with dashed lines)strongly implies the algebraic divergence of the QFI in the thermodynamic limit asFQ∝|h-hmax|-α.For the sake of the abbreviation, we drop the dependency of the parameters onηandh.This behavior which is attributed to all second-order phase transitions in the thermodynamic limit is accompanied by the emergence of a diverging length scale asξ~|h-hc|-ν,withνknown as the critical exponent.To extract the parametersαandνin finite-size systems one needs to establish finite-size scaling analysis.In this technical method,the QFI is rescaled as

    whereg(·) is an arbitrary function.Plotting the rescaled QFI, namelyL-α/νFQ, versusL1/ν(h-hc) collapses all the curves of different probe sizes and the best data collapse can be obtained for accurate selection of critical properties, i.e.,(hc,α,ν).Figures 3(a) and 3(b) illustrate the best-achieved data collapse for probes of sizeL= 20,...,30 for selectedη=0 andη=1,respectively.The critical properties for both panels, obtained using Python package PYFSSA,[122,123]are(hc,α,ν)=(1.04×10-5,4.00,1.01)and(hc,α,ν)=(0.70×10-5,4.94,1.39).For the sake of completeness,in Table 1 we report the exponentsαandνfor different values ofη.

    Fig.3.Finite-size scaling analysis of the QFI following the ansatz Eq.(6)in (a) a fully connected probe η =0 and (b) a probe with η =1.The optimal data collapses are obtained for the attached critical properties(hc,α,ν)in each panel.

    Table 1.Extracted critical exponents including α, ν, their ratio α/ν, and the exponent β for various values of η.Here, reported α and ν that control the speed of algebraic divergence of the QFI FQ ∝|h-hmax|-α and the length scale ξ ~|h-hc|-ν in the thermodynamic limit,respectively,are obtained through finite-size scaling analysis.As it is evident from the values in the table,α/ν and β are very close to each other,which guarantees the validation of Eq.(8)for all ranges of interaction.Small deviations between α/ν and β are due to finite-size effects.

    Since in the finite-size systems, the peaks of the QFI athmaxare cutoff by the system size,one hasFQ∝Lβ.The two expected behaviors of the QFI,namelyFQ∝|h-hc|-αin the thermodynamic limit andFQ(hmax)∝Lβfor finite systems at the transition point,suggest a unified ansatz for the QFI as

    whereAis a constant.One can indeed retrieve the two behaviors from the above ansatz by either choosingL →∞orh=hmax.Note that, the two ansatzes of Eqs.(6) and (7) describe the same quantity and thus have to match with each other.A simple factorization ofL-βfrom the denominator of Eq.(7) shows that the two ansatzes are the same provided that the exponents satisfy

    The validity of the above equation for all the consideredηis evidenced in the presented data in Table 1, in whichα/νobtained from finite-size scaling analysis of Eq.(6), matches closely withβ,obtained from scaling analysis in Fig.2(a).

    4.3.Resource analysis

    Up to now, we have shown that quantum criticality can indeed offer significant advantages for quantum sensing.Nevertheless, this advantage is usually hindered by the time required to prepare the ground state close to the critical points.Initializing a probe in its ground state via, for instance, adiabatic evolution,[43]demands a time that scales with the probe size ast∝Lz,[53]in which the exponentzis known as dynamical exponent and determines the rate of the energy gap closing,namely ΔE∝L-z, for a system approaching to its criticality.Taking initialization time into consideration offers the normalized QFI, i.e.,FQ/tas a new figure of merit.[42,53,86]SinceFQ(hmax)∝Lβone can easily show that the normalized QFI scales as

    In order to estimate the dynamical exponentz,one has to numerically compute the energy gap ΔEversus the system sizeL.In Fig.4(a),we plot energy gap ΔEobtained through exact diagonalization as a function ofLfor a fully connected probe(η=0)in the extended phase(i.e., 0.0001 ≤h≤0.1),at the transition point(i.e.,h=hmax)and in the localized phase(i.e.,h/J=1).An algebraic decay as a function ofLfor energy gap is observed in the extended phase withz=0.91,at the transition point withz=1.04,and in the localized phase withz=0.In Fig.4(b), we plot the dynamical exponentzas a function ofηfor a probe in the extended phase (h/J=10-4) and at the transition point(h=hmax).As the results show,the exponentzqualitatively behaves similarly to the exponentβas the interaction rangeηvaries.It is worth emphasizing that even by considering time into the resource analysis, the exponentβ-zremains larger than 2 in all interaction ranges.This super-Heisenberg scaling can indeed provide a significant advantage for weak-field sensing.

    4.4.Optimal measurement

    Recovering the precision enhancement offered by the QFI, generally, demand performing complex measurements that may dependent on the unknown parameter.This makes it crucial to provide a suboptimal yet local and experimentally achievable set of measurements that capture the precision enhancement.Remarkably,in our probe measuring spin configurations described by observable ∑Li=1σziin the sectorSz=0 closely saturates the Cram′er-Rao inequality Eq.(3).To show this,in Fig.5 we plot both CFI(markers)and QFI(lines)captured by Eqs.(1) and (4), respectively.The curves show the sensitivity of the probe as a function of the Stark fieldhfor a system of sizeL=20 which is prepared in the ground state ofH(h)withη ∈{0,0.1,1,2}.Clearly,regardless of the interaction range, the CFI and QFI closely match showing that spin configuration is indeed an optimal measurement.The maximum of CFI happens exactly at the transition point, namelyhmax,and this quantity resembles the behavior of QFI with respect toη.

    Fig.5.The QFI(filled lines)and the CFI(markers)versus Stark filed h/J for a probe of size L=20 prepared in the ground state of Hamiltonian Eq.(5)with different η.

    5.Filling factor analysis

    Having described the many-body Stark probe in a halffilling sector of the Hilbert space, we now focus on the effect of the filling factornon the performance of our sensor.In Figs.6(a) and 6(b), we plot the QFI at the transition pointh=hmaxas a function ofηfor filling factorsn=1/4 andn= 1/8, respectively.Clearly, analogs to the scenario ofn=1/2 (see Fig.1(a)) asηdecreases (the interaction becomes more long-range)the QFI goes down and then revives as the effective localization impact disappears.Interestingly,for larger filling factors(e.g.,n=1/2 and somehown=1/4),a fully connected probe withη= 0 outperforms the other choices ofη.As the filling factor reduces, the best performance belongs to the nearest-neighbor probe withη →∞.In addition,our results evidence that decreasingncan remarkably boost the achievable QFI.This can be observed in Fig.6(c)which representsFQ(hmax)in a probe of sizeL=32 prepared in various sectors ofn=1/2,1/4 and 1/8.These results are in line with our previous results in which the highest advance was obtained for a Stark probe with single excitation.[70]

    To characterize the impact of the filling factor on the scaling of the QFI with respect toL,similar to the scenario of then=1/2,we fit the obtained QFI for different probe sizeLwith functionFQ∝Lβ(h,η).The best fits result in reportedβas a function ofηin Figs.7(a)and 7(b)forn=1/4 andn=1/8,respectively.In each panel, we report the obtainedβat the transition point (h=hmax) as well as in the extended phase(h/J=10-4).As the Figs.7(a) and 7(b) show, the exponentβshows qualitatively similar behavior to the half-filling case as the interaction becomes more long-ranged.Importantly,for all interaction ranges the exponentβshows super-Heisenberg scaling, and the best performance is always obtained for a nearest-neighbor probe.By decreasing the filling factorn,the performance of the probe in the extended phase gets closer to the one at the transition point.This is in full agreement with our previous results obtained for the Stark probe with single particle[70]in which for the nearest-neighbor probe both cases yield the sameβ.

    Fig.7.The scaling of the QFI, namely FQ(h,η)∝Lβ(h,η), as a function of η for (a) n=1/4 and (b) n=1/8.In both panels the extracted β is reported for the transition point h=hmax and the extended phase h/J=10-4.

    6.Conclusion

    Stark localization transition in many-body systems, as a result of applying a gradient field in the lattice,has been harnessed to generate an ultra-precise sensor for measuring weak gradient fields.In this paper, we address the effect of longrange interactions on the capability of these probes.Our study shows that strong super-Heisenberg precision of the Stark probe can be obtained in all ranges of interaction in the extended phase until the transition point.However,as the interaction becomes more long-range two different behaviors can be observed.Initially,by making the system more long-ranged the sensing power, quantified by QFI and its exponentβ, decreases.Then, aroundη~0.1, where the system becomes effectively a fully connected graph, the sensitivity enhances again which can be seen in the rise of both QFI andβ.These different trends can be explained through long-range interaction induced localization.In long-range interacting systems,keeping the filling factor fixed,every given spin configuration induces a different Zeeman energy splitting at each site.This energy splitting behaves like an effective random disorder that enhances localization and decreases the sensing power.When the interaction becomes almost fully connected, the energy splitting of all spin configurations becomes equal and effective localization disappears,which boosts the sensitivity of the probe.Interestingly, even by incorporating state preparation time in our resource analysis, the super-Heisenberg scaling still remains valid.In the localized phase,the system becomes size-independent and QFI follows a universal function.Several critical exponents governing the localization transition as well as their relationship have been extracted through extensive finite-size scaling analysis.Finally, we have shown that the sensitivity decreases by increasing the filling factor.

    Acknowledgments

    Project supported by the National Key R&D Program of China (Grant No.2018YFA0306703), the National Science Foundation of China (Grant Nos.12050410253, 92065115,and 12274059), and the Ministry of Science and Technology of China (Grant No.QNJ2021167001L).Rozhin Yousefjani thanks the National Science Foundation of China for the International Young Scientists Fund(Grant No.12250410242).

    猜你喜歡
    行健
    陳雨瑄 顧行健
    From“TheUglyDuckling”to“TheWildSwan”
    淺析獨立學院應用型人才培養(yǎng)模式下的新聞采寫課程改革——以行健文理學院為例
    新聞傳播(2016年17期)2016-07-19 10:12:05
    莘莘學子來遠方 行健不息須自強
    空中之家(2016年1期)2016-05-17 04:47:52
    “騎行教育”讓網(wǎng)癮胖墩變身陽光少年
    萬里騎行戒網(wǎng)癮
    Les fleurs de Papa se fanent
    法語學習(2015年1期)2015-04-17 06:13:06
    老習慣
    故事會(2012年17期)2012-08-29 10:01:28
    愛“高達”,愛生活
    雙魚座女孩
    亚洲精品久久午夜乱码| 卡戴珊不雅视频在线播放| 99久久中文字幕三级久久日本| 亚洲欧洲日产国产| 在线 av 中文字幕| 久久久久久久亚洲中文字幕| 黄色日韩在线| 少妇被粗大猛烈的视频| 国产乱人视频| 一区在线观看完整版| 各种免费的搞黄视频| 波野结衣二区三区在线| 有码 亚洲区| 亚洲欧洲国产日韩| freevideosex欧美| 精华霜和精华液先用哪个| 色婷婷av一区二区三区视频| 国产亚洲91精品色在线| 亚洲av男天堂| 在线观看三级黄色| 国产精品av视频在线免费观看| 亚洲精品456在线播放app| 人人妻人人添人人爽欧美一区卜 | 亚洲精品亚洲一区二区| freevideosex欧美| 一区在线观看完整版| av一本久久久久| 99久国产av精品国产电影| 国产一区二区三区av在线| 久久精品久久久久久噜噜老黄| 国产一区亚洲一区在线观看| 久久ye,这里只有精品| 男男h啪啪无遮挡| av卡一久久| 好男人视频免费观看在线| 18禁在线播放成人免费| 毛片一级片免费看久久久久| 美女cb高潮喷水在线观看| 人妻系列 视频| 中文字幕制服av| av在线app专区| 中文字幕免费在线视频6| 亚洲av中文字字幕乱码综合| 久久久精品免费免费高清| 尾随美女入室| 免费黄网站久久成人精品| 国产日韩欧美在线精品| 人人妻人人看人人澡| 国产高清三级在线| 又大又黄又爽视频免费| 精品久久久久久电影网| 美女主播在线视频| 亚洲一区二区三区欧美精品| 亚洲天堂av无毛| av免费在线看不卡| 多毛熟女@视频| 午夜老司机福利剧场| 99热这里只有是精品在线观看| 精品亚洲乱码少妇综合久久| 午夜免费男女啪啪视频观看| 欧美日韩综合久久久久久| 亚洲精品日韩在线中文字幕| 亚洲av.av天堂| 一级二级三级毛片免费看| 在线观看免费高清a一片| 在线 av 中文字幕| 天堂俺去俺来也www色官网| 女人十人毛片免费观看3o分钟| 简卡轻食公司| 精品亚洲成国产av| 日本黄色日本黄色录像| 亚洲av中文av极速乱| 黑人高潮一二区| 在线观看免费高清a一片| 婷婷色av中文字幕| 国产v大片淫在线免费观看| av线在线观看网站| 夜夜爽夜夜爽视频| 国产精品不卡视频一区二区| 国产欧美亚洲国产| 亚洲第一区二区三区不卡| 午夜日本视频在线| 九九在线视频观看精品| 免费人成在线观看视频色| 日韩一区二区三区影片| 国产成人a∨麻豆精品| 色视频在线一区二区三区| 亚洲国产欧美在线一区| 国产黄色免费在线视频| 日韩av不卡免费在线播放| www.av在线官网国产| av黄色大香蕉| 亚洲av综合色区一区| 99久久精品国产国产毛片| 91精品国产国语对白视频| 欧美精品国产亚洲| 美女主播在线视频| 最新中文字幕久久久久| 成人特级av手机在线观看| 中文字幕精品免费在线观看视频 | 啦啦啦啦在线视频资源| 日本一二三区视频观看| 国产视频首页在线观看| av在线播放精品| 亚洲一级一片aⅴ在线观看| 视频区图区小说| 一本色道久久久久久精品综合| 大片电影免费在线观看免费| av在线播放精品| 天堂俺去俺来也www色官网| 欧美日本视频| 91久久精品电影网| 日韩中字成人| 男女国产视频网站| 精品人妻熟女av久视频| 精品久久久噜噜| a级一级毛片免费在线观看| 精品久久久久久久久av| 国模一区二区三区四区视频| 日日啪夜夜爽| 大香蕉久久网| 伦理电影大哥的女人| 少妇被粗大猛烈的视频| 亚洲av福利一区| 亚洲精品久久午夜乱码| 黄色视频在线播放观看不卡| 老司机影院成人| 精品一品国产午夜福利视频| 插逼视频在线观看| 日韩中字成人| 精品少妇久久久久久888优播| 春色校园在线视频观看| 色视频www国产| 亚洲久久久国产精品| 亚洲精品日韩av片在线观看| 人人妻人人添人人爽欧美一区卜 | 日本色播在线视频| 男女啪啪激烈高潮av片| 波野结衣二区三区在线| 亚洲成色77777| 中文字幕久久专区| av专区在线播放| 99热这里只有精品一区| 麻豆精品久久久久久蜜桃| 成年免费大片在线观看| 熟女人妻精品中文字幕| 亚洲精品日本国产第一区| 中文字幕精品免费在线观看视频 | 99re6热这里在线精品视频| 中文字幕制服av| 国产深夜福利视频在线观看| 国产老妇伦熟女老妇高清| 一区二区三区四区激情视频| 成人影院久久| av一本久久久久| 亚州av有码| 激情五月婷婷亚洲| 国产免费一区二区三区四区乱码| 少妇人妻精品综合一区二区| 又爽又黄a免费视频| 日韩国内少妇激情av| 国产永久视频网站| 亚洲av福利一区| a 毛片基地| 老女人水多毛片| 大陆偷拍与自拍| 又大又黄又爽视频免费| 国产亚洲最大av| 日韩一区二区三区影片| 国产av一区二区精品久久 | 亚洲国产精品一区三区| 日韩欧美精品免费久久| 欧美 日韩 精品 国产| 成人高潮视频无遮挡免费网站| 国产精品福利在线免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 91久久精品国产一区二区三区| 国内精品宾馆在线| 中文字幕亚洲精品专区| 久久av网站| 色网站视频免费| 街头女战士在线观看网站| 免费久久久久久久精品成人欧美视频 | 亚洲美女搞黄在线观看| 久久婷婷青草| 午夜福利在线观看免费完整高清在| 99久久精品热视频| 久久国产亚洲av麻豆专区| 日韩一区二区三区影片| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 日日撸夜夜添| 国产精品欧美亚洲77777| 青春草国产在线视频| 国产 一区 欧美 日韩| 九九在线视频观看精品| 一本色道久久久久久精品综合| 大香蕉97超碰在线| 精品一区二区三卡| 男人舔奶头视频| 午夜免费鲁丝| 内地一区二区视频在线| 人体艺术视频欧美日本| 五月玫瑰六月丁香| 国产亚洲精品久久久com| 亚洲国产毛片av蜜桃av| 我的老师免费观看完整版| 男女边吃奶边做爰视频| 亚洲人与动物交配视频| 欧美zozozo另类| 欧美精品亚洲一区二区| 黄色欧美视频在线观看| 免费大片黄手机在线观看| 日本午夜av视频| 校园人妻丝袜中文字幕| 性色av一级| 一个人看视频在线观看www免费| 久久久久精品久久久久真实原创| av一本久久久久| 网址你懂的国产日韩在线| 国内少妇人妻偷人精品xxx网站| 日韩制服骚丝袜av| 春色校园在线视频观看| 极品少妇高潮喷水抽搐| 国产黄片美女视频| 大陆偷拍与自拍| 精品国产露脸久久av麻豆| 国产精品.久久久| 久久女婷五月综合色啪小说| 成人免费观看视频高清| 五月开心婷婷网| 大香蕉久久网| 国产白丝娇喘喷水9色精品| .国产精品久久| 国产精品久久久久久久电影| 伊人久久精品亚洲午夜| 在线天堂最新版资源| 只有这里有精品99| 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品三级大全| a 毛片基地| 另类亚洲欧美激情| 午夜日本视频在线| 18禁在线播放成人免费| 精品亚洲乱码少妇综合久久| 身体一侧抽搐| 精品一区在线观看国产| 成年免费大片在线观看| 大香蕉久久网| 日本vs欧美在线观看视频 | 国产av国产精品国产| 青春草国产在线视频| 亚洲在久久综合| 成人国产麻豆网| av女优亚洲男人天堂| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 精品少妇黑人巨大在线播放| 日韩伦理黄色片| 毛片一级片免费看久久久久| 伊人久久国产一区二区| 亚洲电影在线观看av| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线| 国产在线男女| 日本色播在线视频| 97热精品久久久久久| 亚洲第一av免费看| 日韩欧美 国产精品| 一级毛片久久久久久久久女| 欧美成人精品欧美一级黄| av福利片在线观看| 我的女老师完整版在线观看| videossex国产| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 久久97久久精品| 老女人水多毛片| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 三级国产精品欧美在线观看| 丰满乱子伦码专区| 免费在线观看成人毛片| 亚洲欧美日韩东京热| 国产精品秋霞免费鲁丝片| 大香蕉97超碰在线| 国产伦理片在线播放av一区| 少妇人妻 视频| 久久久久网色| 不卡视频在线观看欧美| 色婷婷av一区二区三区视频| 国产成人aa在线观看| 亚洲国产日韩一区二区| 高清日韩中文字幕在线| 欧美xxxx性猛交bbbb| 精品少妇黑人巨大在线播放| 菩萨蛮人人尽说江南好唐韦庄| 插阴视频在线观看视频| 成人美女网站在线观看视频| 蜜臀久久99精品久久宅男| 王馨瑶露胸无遮挡在线观看| 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕| 久久人人爽av亚洲精品天堂 | 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| 精品久久久噜噜| 一区在线观看完整版| 欧美日韩国产mv在线观看视频 | 国产精品免费大片| 免费在线观看成人毛片| 国产在线视频一区二区| 精品久久国产蜜桃| 精品99又大又爽又粗少妇毛片| 三级经典国产精品| 亚洲av成人精品一二三区| 亚洲国产精品成人久久小说| a级一级毛片免费在线观看| 2022亚洲国产成人精品| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 国产极品天堂在线| 免费观看无遮挡的男女| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 久久影院123| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 日本猛色少妇xxxxx猛交久久| 干丝袜人妻中文字幕| 久久久久久久久久久免费av| 九色成人免费人妻av| 亚洲精品中文字幕在线视频 | 搡老乐熟女国产| 老师上课跳d突然被开到最大视频| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| 精品人妻一区二区三区麻豆| 久久热精品热| 人人妻人人添人人爽欧美一区卜 | 亚洲成色77777| 多毛熟女@视频| 青春草国产在线视频| 国产精品国产三级国产专区5o| 久久久久久人妻| 亚洲欧美精品专区久久| 欧美日韩国产mv在线观看视频 | 一区二区av电影网| 下体分泌物呈黄色| 岛国毛片在线播放| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 最近中文字幕2019免费版| 在线观看国产h片| 欧美97在线视频| 人体艺术视频欧美日本| 精品一区二区免费观看| 美女内射精品一级片tv| 一级爰片在线观看| 男女免费视频国产| 观看美女的网站| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 极品少妇高潮喷水抽搐| 国产精品av视频在线免费观看| 如何舔出高潮| 国产黄色免费在线视频| 久久久久精品性色| 亚洲电影在线观看av| 国产成人a∨麻豆精品| 97超碰精品成人国产| 99久久精品热视频| 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| 99久久综合免费| 久久久欧美国产精品| 国产成人91sexporn| 久久久久久久大尺度免费视频| 91久久精品电影网| 亚洲国产最新在线播放| 亚洲精品一二三| 有码 亚洲区| 精品久久久噜噜| 五月伊人婷婷丁香| 亚洲欧美日韩另类电影网站 | 97在线视频观看| 亚洲av成人精品一区久久| 国产真实伦视频高清在线观看| 国产 精品1| 夜夜看夜夜爽夜夜摸| 91在线精品国自产拍蜜月| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 观看免费一级毛片| 亚洲欧洲国产日韩| 国产欧美日韩一区二区三区在线 | 亚洲久久久国产精品| 国产精品一区二区在线不卡| 久久精品熟女亚洲av麻豆精品| 免费不卡的大黄色大毛片视频在线观看| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 久久精品国产亚洲网站| 国产女主播在线喷水免费视频网站| 一本久久精品| 五月开心婷婷网| 人人妻人人添人人爽欧美一区卜 | 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 夜夜看夜夜爽夜夜摸| 18禁在线无遮挡免费观看视频| 亚洲在久久综合| 天天躁夜夜躁狠狠久久av| 天堂8中文在线网| 亚洲无线观看免费| 精品久久国产蜜桃| 联通29元200g的流量卡| 十分钟在线观看高清视频www | 久久精品久久精品一区二区三区| 如何舔出高潮| 国产精品一区二区性色av| 免费观看无遮挡的男女| 男人添女人高潮全过程视频| 国产精品成人在线| 插阴视频在线观看视频| 国产伦理片在线播放av一区| av免费在线看不卡| 一级黄片播放器| 色网站视频免费| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 亚洲熟女精品中文字幕| 久久99热6这里只有精品| 交换朋友夫妻互换小说| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 久久久a久久爽久久v久久| 少妇丰满av| 婷婷色av中文字幕| 日韩欧美 国产精品| 国产淫片久久久久久久久| 午夜福利网站1000一区二区三区| 国内精品宾馆在线| 久久人妻熟女aⅴ| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花 | 亚洲国产av新网站| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 日韩亚洲欧美综合| 最近中文字幕2019免费版| 午夜福利视频精品| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 精品一品国产午夜福利视频| av又黄又爽大尺度在线免费看| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 蜜桃久久精品国产亚洲av| 亚洲美女搞黄在线观看| 久久精品久久久久久噜噜老黄| 国产亚洲av片在线观看秒播厂| 麻豆国产97在线/欧美| 久久亚洲国产成人精品v| 久久国产亚洲av麻豆专区| 日本-黄色视频高清免费观看| a 毛片基地| 亚洲熟女精品中文字幕| 一个人免费看片子| 国产高清国产精品国产三级 | av不卡在线播放| 在线观看av片永久免费下载| 国产精品伦人一区二区| 99久久中文字幕三级久久日本| 成人毛片60女人毛片免费| 国产精品一区www在线观看| 国产午夜精品久久久久久一区二区三区| 免费看日本二区| 免费播放大片免费观看视频在线观看| 涩涩av久久男人的天堂| 国产亚洲最大av| 久久久久国产网址| 日韩亚洲欧美综合| 精品人妻视频免费看| 久久精品国产亚洲av天美| 亚洲国产欧美在线一区| 亚洲久久久国产精品| 精品久久久精品久久久| 国产乱人视频| 99热这里只有精品一区| 高清av免费在线| 国产成人一区二区在线| 一区二区三区乱码不卡18| 亚洲激情五月婷婷啪啪| 亚洲美女搞黄在线观看| 夫妻午夜视频| 欧美激情极品国产一区二区三区 | av在线观看视频网站免费| 欧美高清性xxxxhd video| 2018国产大陆天天弄谢| 看免费成人av毛片| 日韩亚洲欧美综合| 亚洲欧美精品专区久久| 观看免费一级毛片| 偷拍熟女少妇极品色| 国产黄片美女视频| 最后的刺客免费高清国语| 精品国产露脸久久av麻豆| 亚洲国产色片| av国产免费在线观看| 亚洲图色成人| 久久久久久伊人网av| 一个人免费看片子| 在线观看美女被高潮喷水网站| 高清午夜精品一区二区三区| 国产乱来视频区| 国产精品秋霞免费鲁丝片| 久久久精品免费免费高清| 久久国产亚洲av麻豆专区| av网站免费在线观看视频| 晚上一个人看的免费电影| av又黄又爽大尺度在线免费看| 亚洲,欧美,日韩| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 又爽又黄a免费视频| 激情 狠狠 欧美| 久久国产精品大桥未久av | 97超碰精品成人国产| 久久午夜福利片| 国产黄色免费在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线不卡| 精品国产露脸久久av麻豆| 国产亚洲一区二区精品| 国产欧美另类精品又又久久亚洲欧美| 日韩国内少妇激情av| 性色avwww在线观看| 一区二区三区精品91| 少妇精品久久久久久久| 日本av手机在线免费观看| 亚洲第一区二区三区不卡| 一级av片app| 又粗又硬又长又爽又黄的视频| 成人高潮视频无遮挡免费网站| 一本一本综合久久| 亚洲天堂av无毛| 黄色欧美视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 交换朋友夫妻互换小说| 亚洲精品乱码久久久v下载方式| 有码 亚洲区| 黄色日韩在线| 天堂俺去俺来也www色官网| 各种免费的搞黄视频| 不卡视频在线观看欧美| 国产人妻一区二区三区在| 一区二区av电影网| 91精品一卡2卡3卡4卡| 美女cb高潮喷水在线观看| 日本av免费视频播放| 日韩视频在线欧美| 美女福利国产在线 | 久久久久人妻精品一区果冻| 人妻制服诱惑在线中文字幕| 插阴视频在线观看视频| 国产永久视频网站| 老熟女久久久| 国产精品女同一区二区软件| 成年美女黄网站色视频大全免费 | 99热全是精品| 亚洲精品色激情综合| 欧美激情极品国产一区二区三区 | 最近中文字幕高清免费大全6| 熟女电影av网| 大码成人一级视频| 亚洲人成网站在线播| 亚洲国产av新网站| 直男gayav资源| 一区二区av电影网| 一级毛片aaaaaa免费看小| 一级毛片久久久久久久久女| 免费大片黄手机在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品视频女| 国产淫片久久久久久久久| 日日啪夜夜撸| av线在线观看网站| 一级片'在线观看视频| av视频免费观看在线观看| 国产视频首页在线观看| 久久精品国产亚洲av涩爱| 久久韩国三级中文字幕| 亚洲成人av在线免费| 国产美女午夜福利| 五月伊人婷婷丁香| 国产高清三级在线| 中国国产av一级| 亚洲中文av在线| 在现免费观看毛片| 免费高清在线观看视频在线观看| 中文字幕制服av| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 一二三四中文在线观看免费高清| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久小说| 大又大粗又爽又黄少妇毛片口| av国产精品久久久久影院| 男女免费视频国产|