• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ambipolar performance improvement of the C-shaped pocket TFET with dual metal gate and gate-drain underlap

    2023-11-02 08:13:36ZiMiaoZhao趙梓淼ZiXinChen陳子馨WeiJingLiu劉偉景NaiYunTang湯乃云JiangNanLiu劉江南XianTingLiu劉先婷XuanLinLi李宣霖XinFuPan潘信甫MinTang唐敏QingHuaLi李清華WeiBai白偉andXiaoDongTang唐曉東
    Chinese Physics B 2023年10期
    關鍵詞:趙梓

    Zi-Miao Zhao(趙梓淼), Zi-Xin Chen(陳子馨), Wei-Jing Liu(劉偉景),?, Nai-Yun Tang(湯乃云),Jiang-Nan Liu(劉江南), Xian-Ting Liu(劉先婷), Xuan-Lin Li(李宣霖), Xin-Fu Pan(潘信甫),Min Tang(唐敏), Qing-Hua Li(李清華), Wei Bai(白偉), and Xiao-Dong Tang(唐曉東)

    1College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China

    2Semiconductor Manufacturing International Corporation,Shanghai 201203,China

    3Radiwave Technologies Corporation Limited,Shenzhen 518172,China

    4Key Laboratory of Polar Materials and Devices,East China Normal University,Shanghai 200041,China

    Keywords: tunnel field effect transistor,ambipolar current,dual metal gate,gate-drain underlap

    1.Introduction

    With Moore’s law, MOSFET devices have scaled to the nanometer size, the number of devices and components on a single chip has increased dramatically, and today we have a significant increase in the ability of data processing.However, to further scale, MOSFETs start to face a series of challenges: short-channel effects (SCEs), hot-carrier effects(HCEs), higher power consumption, etc.To meet these challenges, one of the solutions is to find new devices to replace MOSFETs.The tunneling field-effect transistor (TFET) is one of the promising devices to replace CMOS for low-power applications.[1]The conduction mechanism of TFETs is bandto-band tunneling (BTBT), which is the key phenomenon for the conduction of current in this quintessential reversebiased gated p-i-n structure, unlike MOSFETs, where conduction is due to the transition of charge.[2]With a lower subthreshold swing (SS), TFETs can break the 60 mV/decade limit at room temperature, and achieve lower off-state currents and better immunity to short-channel effects.However,there are still two main problems with TFETs: the low onstate currentIon, and the ambipolar characteristics.To address the low on-state current problem, researchers have now proposed a number of solutions, such as the introduction of heterostructures,including heterogeneous gate dielectrics,[3-5]source channel heterojunctions,[6-8]and heterogeneous gate materials;[9,10]the introduction of line tunneling structures to increase the tunneling area;[11-16]utilization of black phosphorus instead of silicon materials;[17,18]insertion of a metal strip in the gate oxide layer;[19]and the introduction of pocket structures.[20,21]Ambipolar conduction makes the TFET less effective in complementary circuits and restricts its utility in digital circuit design.Several solutions have been proposed to suppress ambipolar currents: using asymmetric doping,[22-24]gate-drain underlap,[23,25,26]gate-drain overlap,[27]heterogeneous dielectrics,[23,28,29]work function engineering,[23,30,31]recessed drains[32]and spacer engineering.[33]

    To solve these issues,a TFET with a C-type pocket(CSPTFET)[34]was proposed in previous work by our team,which improved the low on-state current while further reducing the sub-threshold swing;however,the ambipolar behavior was not fully suppressed.Further work is needed to optimize the structure of the device to completely suppress the ambipolar current while ensuring that the on-state current is not affected as much as possible, thus improving the performance of the device.Therefore,this work investigates the effects of both dualmetal gate and gate-drain underlap designs on the ambipolar characteristics of the device based on the CSP-TFET,respectively,and combines the two designs to propose the C-shaped pocket dual metal underlap TFET (CSP-DMUN-TFET).The effects of the work function of the metal gate and the gatedrain underlap length on the DC and analog/RF characteristics of the device are analyzed in detail.The optimum values of these two parameters are also determined to achieve a high on-state current with significant suppression of the ambipolar behavior.

    The article is arranged as follows:Section 2 describes the basic structure of the proposed device,parameters,the model used for simulation and the calibration of the model.Section 3 discusses the DC and analog/RF characteristics of the device and the structure optimization process.Section 4 summarizes the work performed.

    2.Device structure and simulation model

    The C-type pocket TFET (CSP-TFET) structure is characteristically based on a conventional double-gate siliconbased tunneling field-effect transistor structure with a pocket region added to the source and channel regions with the opposite type of doping concentration to the source region.The aim of the mechanism is to enhance the electric field by fully depleting the pocket region under the action of the electric field, thus increasing the band-band tunneling rate between the source region and the channel and further improving the on-state current.

    The structure parameters of the C-type pocket TFET with a dual-metal gate structure (CSP-DM-TFET) and the C-type pocket TFET with a gate-drain underlap (CSP-UN-TFET)proposed in this paper are as follows: to suppress ambipolar characteristics,the doping concentration of the source and drain are 1×1020cm-3and 5×1018cm-3, respectively.Also, the channel is doped with a doping concentration of 1×1017cm-3.All regions are assumed to be uniformly doped.SiO2was used as the gate oxide layer with a thickness of 2 nm.Based on the team’s previous work,[34]we found that increasing theTpandLp2in the C-pocket would increase the leakage current and prevent the device from switching off,and increasing theTpwould also reduce the on-state current of the device.Therefore,theTpandLp2should not be large,and we also considered the fabrication issues.[35]Finally, the parameters of the C-type pocket were selected to beLp1=30 nm,Tp=2 nm andLp2=1 nm.The device structures of the CSPDM-TFET and CSP-UN-TFET are shown in Fig.1.

    All the electrical characteristics simulations were carried out by Synopsys Sentaurus TCAD.The Fermi-Dirac model,the bandgap narrowing model,the doping-dependent mobility model,the carrier Shockley-Read-Hall(SRH)model,and the Auger model were used in the simulation.Since the silicon thickness (Tsi) is 20 nm (larger than 7 nm), quantum effects are not considered in this simulation.In this paper,we employ the dynamic non-local band-to-band tunneling(BTBT)model,which can consider the spatial variation of energy bands and apply to arbitrary tunneling potentials with abrupt or asymptotic heterojunctions, and can simulate the tunneling process more accurately.The non-local BTBT model used in this paper is calibrated using the work by Boucart and Ionescu.[3]The calibration of transfer characteristics is depicted in Fig.2.

    Table 1.The device parameters.

    Fig.1.A 2-D schematic view of(a)the CSP-DM-TFET and(b)the CSPUN-TFET.

    Fig.2.Calibration of the TCAD model parameters obtained by comparing the simulated and experimental Ids-Vgs characteristics of Ref.[3].

    3.Results and discussion

    The effects of the D-gate work functionφ2, the D-gate lengthLφ2, and the gate-drain underlap lengthLunderon device performance are investigated to obtain better suppression of ambipolar characteristics.TheIon,Iamb,Ion/Ioff,and SSavgare important indicators of DC characteristics, andgm,fT,and GBP are important indicators of analog/RF characteristics.The drain voltageVDSis set to 1 V,and the gate voltageVgsis varied from-1.5 V to 2 V.The currents in the statesVDS=1 V,Vgs=2 V,VDS=1 V,Vgs=-1.5 V andVDS=1 V,Vgs=0 V are defined as the on-state currentIon,the ambipolar currentIamband the off-state currentIoff, respectively.Note that in this work, the energy band diagrams and electric field diagrams are obtained at the location of 1 nm (line A-A'in Fig.1)below the interface of the silicon and gate oxide layer along the channel direction.

    3.1.DC characteristics analysis

    3.1.1.Effect ofφ2andLφ2on the device

    Figure 3 shows the energy band diagram of the CSPTFET device in the on, off, and ambipolar states.When a positive voltage is applied to the gate, the energy band in the channel bends downwards, resulting in a partial overlap between the source valence band and the channel conduction band,and carriers tunneling from the valence band to the conduction band to form a current.This phenomenon is called band-to-band tunneling (BTBT).Similarly, when a negative voltage is applied to the gate, the energy band of the channel bends upwards,causing the drain valence band and the channel conduction band to partially overlap,generating a tunneling current.Since the device conducts in both gate polarities,this characteristic is called ambipolarity.This current is created when a negative voltage is applied to the gate and is called the ambipolar current.Ambipolarity is undesirable as it causes malfunction of the inverter-based logic circuits.[36]

    Thus this work takes two designs to suppress ambipolar currents, namely, the dual metal gate and the gate-drain underlap, and analysis the effects of these two designs on the ambipolar characteristics of the CSP-TEFT.The present work focuses on the suppression of ambipolar currents and therefore focuses on the channel-drain junction.

    The transmission characteristics of the CSP-DM-TFET are shown in Fig.4.We setLp1as 30 nm andLDGas 0.5(LDGis the D-gate gate length factor,which is the proportion of Dgate to the total channel area gate length), change the D-gate gate work functionφ2from 4.0 eV to 4.6 eV, and keep the S-gate gate work function at 4.5 eV.It can be seen from Fig.4 that the ambipolar current decreases as the D-gate gate work functionφ2decreases.This is due to the fact that as the D-gate work functionφ2continues to decrease,it leads to a reduction in the degree of energy band bending,an increase in the width of the tunneling barrier, and an increasing depletion width at the drain-channel junction, as shown in Fig.5(a), which reduces the incidence of tunneling and suppresses the ambipolar current.

    Fig.3.Energy band diagrams of CSP-TFET devices in the on-state(VDS =1 V,Vgs =2 V), off-state (VDS =1 V,Vgs =0 V) and ambipolar state(VDS=1 V,Vgs=-1.5 V),respectively.

    Fig.4.Effects of the work function φ2 on the transmission characteristics of CSP-DM-TFET devices,where the left Y-axis corresponds to the logarithmic curve and the right Y-axis to the linear curve.

    Fig.5.(a) An energy band diagram of the CSP-DM-TFET in the ambipolar state corresponding to the variation of the work function φ2 from 4.0 eV to 4.6 eV (VDS =0 V,Vgs =-1.5 V).(b) The lateral electric field intensity of the CSP-DM-TFET in the off-state (VDS =0 V,Vgs =0 V) and in the ambipolar state(VDS=0 V,Vgs=-1.5 V).(c)An energy band diagram corresponding to the CSP-DM-TFET in the off-state(VDS=0 V,Vgs=0 V)and the ambipolar state(VDS=0 V,Vgs=-1.5 V).

    Furthermore,it can be seen from Fig.4 that as the negative gate voltage continues to increase, the ambipolar current shows a decreasing trend and then increases.The reason for this,as shown in Fig.5(b),is that the existence of the C-type pocket, as well as the gate full overlap structure, results in a high lateral electric field in the pocket region of the device in the off-state, leading to a high leakage current.As the negative gate voltage increases, the leakage current is suppressed.In other words, the leakage current is dominant in the negative gate voltage range of 0 V to-1 V.As shown in Fig.5(c),as the negative voltage rises,the energy band gradually bends upwards,the tunneling barrier decreases,and the reverse conduction takes place.At this point,the tunneling current at the drain-channel junction becomes dominant.

    To further optimize the CSP-DM-TFET,the effect of theLφ2on the ambipolar and on-state currents is analyzed.TheLφ2is the length of the D-gate and is defined asLDG×Lg(0<LDG≤1).The effect of theLDGon the DC characteristics of the CSP-DM-TFET withLp1at 30 nm,Lp2at 1 nm,andφ1andφ2at 4.5 eV and 4.0 eV, is shown in Fig.6(a).TheLDGvaries from 0.1 to 0.9,with the ambipolar current decreasing with the increasingLDGuntil it goes to 0.6.It can be seen in Fig.6(b) that as theLDGincreases, the degree of energy band bending at the channel/drain junction decreases,leading to an increase in the tunneling barrier and suppression of the ambipolar current.As theLDGcontinues to increase beyond 0.6, there is no significant change in the ambipolar current, but the leakage current in the off-state increases and the device cannot be switched off.As shown in Fig.6(c),due to the increasedLDG, which brings the D-gate with its lower work function closer to the source-channel junction,the electric field strength near the source-channel junction is increased, thus reducing the tunneling barrier width and allowing the device to have a higher leakage current in the off-state.In addition,Ionslightly increases with the increasingLDG.Based on the above analysis, theLDGwas optimally set to 0.6,withIon=9.66×10-4A/μm,Iamb=6.94×10-17A/μm,SSavg=17.7 mV/dec,andIon/Ioff≈1×1011.In this work,the average subthreshold swing is used as a performance metric.Bhuwalka[37]and Boucart and Ionescu[3]proposed a definition for calculating SSavgwith the following equation:[38]

    whereVTHis the threshold voltage,whose value is the voltage corresponding to a drain currentITHof 10-7A/μm.AndVOFFtakes the value of the gate voltage corresponding to a drain currentIoffof 10-14A/μm.

    3.1.2.Effect ofLunderon the device

    The CSP-UN-TFET retains full overlap of the gate at the source, varying the value of theLunderfrom 5 nm to 25 nm,and its transfer characteristics are shown in Fig.7(a).As the length of theLunderincreases,the ambipolar current decreases.When it reaches 25 nm, the ambipolar current decreases by about six orders of scale.As shown in Fig.7(b),the decreased ambipolar current is caused by gate-drain underlap,which results in a reduced electric field at the channel/drain junction.As theLunderincreases,the electric field density at the channeldrain junction becomes smaller,which reduces the probability of tunneling and thus suppresses the ambipolar current.In addition, from the energy band diagram, as shown in Fig.7(c),the energy band bending at the channel-drain junction decreases as theLunderincreases, which increases the width of the tunneling barrier.Similarly, when theLunderis 25 nm,the ambipolar current decreases with an increasing negative gate voltage in the 0 to-1 V range.Because the leakage current dominates in this range, there is a relatively small increase in the tunneling current at the channel/drain junction.As the negative gate voltage continues to increase after-1 V,the tunneling current at the channel/drain junction dominates,at which point it rises slightly as the negative gate voltage increases.Compared to the CSP-DM-TFET,the CSP-UN-TFET is more effective at suppressing ambipolar currents,which remains low by~10-16orders of scale at the gate voltage of-1.5 V.Furthermore, as shown in Fig.7(a), the on-state currentIondecreases as the length of theLunderincreases, but the reduction is limited.Therefore, to suppress the ambipolar current more effectively, theLunderlength is set to 25 nm.The DC characteristics of the CSP-UN-TFET device in this case areIon=8.34×10-4A/μm,Iamb=2.79×10-17A/μm,SSavg=16.9 mV/dec,andIon/Ioff≈1×1011.

    Fig.7.(a)The effect of the Lunder change from 5 nm to 25 nm on the transfer characteristics of CSP-UN-TFET devices.CSP-UN-TFET devices in the ambipolar state(VDS=1 V,Vgs=-1.5 V)with the Lunder change from 5 nm to 25 nm,corresponding to(b)the energy band diagram,and(c)the lateral electric field.

    In summary, the ambipolar characteristics of both the CSP-DM-TFET and CSP-UN-TFET devices are suppressed.But compared to the CSP-DM-TFET,the CSP-UN-TFET can suppress the ambipolar current better with the disadvantage of the reducedIon.

    Therefore,to ensure that the ambipolar currents are suppressed without affecting the on-state currents as much as possible,a combination of these two methods is used to compensate for the negative effects on the on-state currents caused by the gate-drain underlap structure.During the combination process of optimization,the following principles were applied: minimal reduction of the on-state current and complete suppression of the ambipolar current.The finalized improved device CSP-DMUN-TFET structure is shown in Fig.8.The device parameters are:LDGof 0.4,Lunderof 20 nm, andφ2of 4.0.Figure 9 shows a comparison of the transfer characteristic curves of the CSP-DM-TFET, CSP-UN-TFET, and CSP-DMUN-TFET devices.It can be seen that the ambipolar current of the CSP-DMUN-TFET device remains at the same level as that of the CSP-UN-TFET, and theIonof the CSPDMUN-TFET is larger than that of the CSP-UN-TFET.In this case,the DC characteristics of the CSP-DMUN-TFET device areIon=9.03×10-4A/μm,Iamb=2.15×10-17A/μm,SSavg=13.3 mV/dec,andIon/Ioff≈1×1011.

    Fig.8.A 2-D schematic view of the CSP-DMUN-TFET.

    Fig.9.A comparison of transmission characteristics curves for the CSPDM-TFET,CSP-UN-TFET,and CSP-DMUN-TFET devices.

    3.2.Analog/RF characteristics analysis

    In this section, the effects ofφ2andLunderon the analog/RF characteristics of the CSP-DM-TFET and CSP-UNTFET devices are investigated,including the transconductance(gm), cut-off frequency(fT), gain-bandwidth product(GBP),etc., respectively.These parameters are extracted at the frequency of 1 MHz.Thegmis an important indicator that is used to measure the analog characteristics of devices,[39]and a highergmindicates better performance for analog applications.Analysis of the analog parametergmplays a critical role in obtaining a higherfTand GBP.[40]

    Figures 10(a)and 10(b)shows the effect ofφ2andLunderparameters on thegmof the CSP-DM-TFET and CSP-UNTFET devices, respectively.It can be seen from Figs.10(a)and 10(b)that as the gate voltage increases, the drain current increases,which leads to an increase in thegm.However,due to the decrease in carrier mobility, the higher theVgsvoltage is, the lower thegmis.Furthermore, it can be noted that theLunderhas a greater effect on thegmthan theφ2, as a largerLunderreduces the drain current.

    Fig.10.(a)Variation of φ2 from 4.0 eV to 4.6 eV,corresponding to the gm of the CSP-DM-TFET device.(b) Variation of Lunder from 5 nm to 25 nm,corresponding to the gm of the CSP-UN-TFET device.

    Figures 11(a)and 11(b)show the effect ofφ2andLunderon theCgdof the CSP-DM-TFET and CSP-UN-TFET devices,respectively.It can be seen from Fig.11(a)that varying theφ2has a greater effect on theCgdof the CSP-DM-TFET device at low voltages.As the lower work function increases, the coupling between the gate and drain,Cgd,gradually increases asφ2decreases, affecting the switching speed of the device.In addition, theCgddecreases with the increasingLunder, as seen in Fig.11(b), due to the fact that the gate-drain underlap structure increases the distance between the gate and drain regions,weakens the capacitive coupling,and reduces the effective charge concentration in the uncovered region of the gate.[41,42]

    The cut-off frequency is the frequency at which the current gain becomes unity, and plays a significant role in deciding the device performance at high frequency,[43]as shown below:

    As can be seen from Eq.(2),fTis positively proportional togmand inversely proportional toCgg.

    As shown in Fig.12,thefTincreases as theVgsincreases initially and after thefTreaches its peak, it begins to fall sharply, due to the fact that thegmbegins to fall after reaching its maximum value and is accompanied by an increase in theCgd.From Fig.12(a), it can be seen that changing theφ2has an apparent effect on thefTof the CSP-DM-TFET device,due to the fact that a decrease in theφ2increases the coupling between the gate-drain and theCgdincreases.When theφ2is 4.0 eV,it obviously reduces the cut-off frequency of the CSPDM-TFET.Figure 12(b) shows that the effect of theLunderis not very significant on thefT, because both thegmin the numerator and theCgdin the denominator decrease as theLunderincreases.

    Another important parameter for RF analysis is the GBP,which signifies the product of gain and bandwidth at a constant DC gain value 10.[44]The value of the GBP is expressed as follows:

    As shown in Figs.12(c)and 12(d),the tendency of the GBP is similar to that of thefT.

    Fig.12.(a)and(c)The change of φ2 from 4.0 eV to 4.6 eV,corresponding to the variation of the fT and GBP of the CSP-DM-TFET device,respectively.(b) and (d) The change of Lunder from 5 nm to 25 nm, corresponding to the variation of the fT and GBP of the CSP-UN-TFET device,respectively.

    In summary,the CSP-DM-TFET device reduces the analog/RF characteristics by increasing the gate-drain capacitance due to the use of a lower work function in the D-gate.The CSP-UN-TFET improves the analog/RF performance by reducing the gate drain capacitance due to the presence of the underlap in the gate-drain.The CSP-DMUN-TFET device proposed in this work combines the advantages of both designs,with an analog/RF performance somewhere between the above two devices:gm=1.27×10-3S,fT=5.99×1010Hz,GBP=2.06×1010Hz.

    4.Conclusion and perspectives

    This work investigated the effects of dual metal gate and gate-drain underlap designs on the ambipolar characteristics of devices based on silicon-based dual-gate CSP-TFETs.Both designs are capable of suppressing ambipolar currents, with the gate-drain underlap being more effective,but with a small reduction in the on-state current, while the dual metal gate barely effects the on-state current.In addition,the dual metal gate structure causes a degradation of the analog/RF performance of the device compared to the gate-drain underlap structure.Therefore, a combination of both designs is proposed for the CSP-DMUN-TFET.Due to the full gate overlap in the pocket area, the CSP-DMUN-TFET has a high onstate current while being able to fully suppress ambipolar currents:Ion=9.08×10-4A/μm,Iamb=2.15×10-17A/μm,SSavg=13.3 mV/dec,Ion/Ioff≈1×1011,gm=1.27×10-3S,fT= 5.99×1010Hz, GBP = 2.06×1010Hz.The CSPDMUN-TFET effectively solves the problems of low on-state current and ambipolar characteristics of conventional dualgate TFETs and is more suitable for low-power applications.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.52177185 and 62174055).

    猜你喜歡
    趙梓
    夏天的喜歡
    Matrix effect suppressing in the element analysis of soils by laser-induced breakdown spectroscopy with acoustic correction
    很忙
    再生水水質安全的研究進展
    突破與重構:教師AI接納的復雜擴散機制探究與建模
    兔子小棕
    有趣的“知己知彼”游戲
    省檔案館開展“圓夢助學”活動
    陜西檔案(2019年5期)2019-01-09 21:58:02
    《綠色行,迎“全運”》
    堅強少女用愛撐起半邊天
    下一代英才(2018年3期)2018-06-23 11:23:20
    国产黄色小视频在线观看| 一个人免费在线观看的高清视频| 国产伦人伦偷精品视频| 久久久久久亚洲精品国产蜜桃av| 国产免费男女视频| 久久人人精品亚洲av| 免费电影在线观看免费观看| 亚洲国产欧美一区二区综合| 久久久久性生活片| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频日本深夜| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品论理片| 欧美三级亚洲精品| 免费在线观看完整版高清| 久久精品国产亚洲av高清一级| 中文字幕精品亚洲无线码一区| 91大片在线观看| 亚洲专区字幕在线| 精品久久久久久,| 久久久久久大精品| 亚洲欧美激情综合另类| 国产熟女xx| 18禁观看日本| 国产精品爽爽va在线观看网站| 午夜精品在线福利| 中文字幕久久专区| 亚洲熟女毛片儿| 久久久国产欧美日韩av| 香蕉丝袜av| 非洲黑人性xxxx精品又粗又长| 午夜精品一区二区三区免费看| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 一个人观看的视频www高清免费观看 | 男女床上黄色一级片免费看| 最近在线观看免费完整版| 天堂影院成人在线观看| 亚洲 欧美 日韩 在线 免费| 欧美黄色片欧美黄色片| 后天国语完整版免费观看| 久久午夜综合久久蜜桃| 欧美日韩黄片免| 国产91精品成人一区二区三区| 中国美女看黄片| 亚洲男人的天堂狠狠| 亚洲一区二区三区不卡视频| 久久久久亚洲av毛片大全| 久久精品影院6| www.www免费av| 亚洲欧洲精品一区二区精品久久久| 日本熟妇午夜| 2021天堂中文幕一二区在线观| 九九热线精品视视频播放| 欧美日韩一级在线毛片| 亚洲午夜理论影院| 欧美在线黄色| 久久精品91无色码中文字幕| 99热这里只有是精品50| 精品电影一区二区在线| 99国产综合亚洲精品| 最新在线观看一区二区三区| 欧美最黄视频在线播放免费| 成人国产一区最新在线观看| 丝袜美腿诱惑在线| 美女 人体艺术 gogo| 国产精品野战在线观看| 午夜视频精品福利| 亚洲av日韩精品久久久久久密| bbb黄色大片| 日日摸夜夜添夜夜添小说| 99久久久亚洲精品蜜臀av| 99精品欧美一区二区三区四区| 高清毛片免费观看视频网站| 淫妇啪啪啪对白视频| 国产精品一区二区精品视频观看| 亚洲精品色激情综合| 嫁个100分男人电影在线观看| 伦理电影免费视频| 悠悠久久av| 天堂√8在线中文| 亚洲欧美日韩高清专用| 精品国产乱子伦一区二区三区| 在线观看www视频免费| 五月玫瑰六月丁香| 成人午夜高清在线视频| 麻豆国产av国片精品| 人妻久久中文字幕网| 久久人妻av系列| 成人精品一区二区免费| 成人永久免费在线观看视频| 精品国产超薄肉色丝袜足j| 村上凉子中文字幕在线| 国产av一区二区精品久久| 免费在线观看完整版高清| 麻豆国产97在线/欧美 | av片东京热男人的天堂| 久久伊人香网站| 91老司机精品| 国产成+人综合+亚洲专区| 亚洲av成人一区二区三| 在线十欧美十亚洲十日本专区| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久人人做人人爽| 一边摸一边抽搐一进一小说| 脱女人内裤的视频| 国产精品影院久久| 欧美日韩乱码在线| 狂野欧美白嫩少妇大欣赏| 久久精品国产99精品国产亚洲性色| 97超级碰碰碰精品色视频在线观看| 国内精品久久久久久久电影| 婷婷丁香在线五月| 日本一区二区免费在线视频| 人妻久久中文字幕网| 国内精品久久久久精免费| 婷婷亚洲欧美| 精品电影一区二区在线| 国产不卡一卡二| 久久香蕉国产精品| 最近最新免费中文字幕在线| 亚洲成av人片免费观看| 色综合欧美亚洲国产小说| 波多野结衣巨乳人妻| 精品一区二区三区视频在线观看免费| 男女午夜视频在线观看| 黑人巨大精品欧美一区二区mp4| 狂野欧美白嫩少妇大欣赏| 国产精华一区二区三区| 精品一区二区三区四区五区乱码| 精品欧美一区二区三区在线| 欧美中文日本在线观看视频| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添小说| av免费在线观看网站| 少妇粗大呻吟视频| 在线视频色国产色| 88av欧美| 免费观看人在逋| 久久午夜亚洲精品久久| 欧美丝袜亚洲另类 | 99在线人妻在线中文字幕| 日韩av在线大香蕉| 1024手机看黄色片| 又黄又爽又免费观看的视频| 老汉色av国产亚洲站长工具| 亚洲av电影不卡..在线观看| 午夜福利高清视频| 69av精品久久久久久| 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 亚洲人成77777在线视频| 欧美中文日本在线观看视频| 老汉色∧v一级毛片| 色综合站精品国产| 久久伊人香网站| 两个人的视频大全免费| 成在线人永久免费视频| 亚洲国产精品久久男人天堂| 天天躁夜夜躁狠狠躁躁| 99久久无色码亚洲精品果冻| 国产亚洲精品综合一区在线观看 | 久久久久久久久免费视频了| 18禁观看日本| 人成视频在线观看免费观看| 日日摸夜夜添夜夜添小说| 亚洲成人精品中文字幕电影| 国模一区二区三区四区视频 | 老司机靠b影院| 中文字幕熟女人妻在线| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 舔av片在线| 亚洲av电影不卡..在线观看| 老汉色∧v一级毛片| 叶爱在线成人免费视频播放| 日韩欧美国产在线观看| 男人舔奶头视频| 亚洲黑人精品在线| 成人欧美大片| 精品久久久久久,| 又大又爽又粗| 好看av亚洲va欧美ⅴa在| 91国产中文字幕| 久久 成人 亚洲| 日韩成人在线观看一区二区三区| 麻豆成人午夜福利视频| 白带黄色成豆腐渣| 国产高清视频在线观看网站| 精品欧美一区二区三区在线| 好男人电影高清在线观看| 99国产精品一区二区蜜桃av| 中文在线观看免费www的网站 | 狂野欧美激情性xxxx| 岛国在线观看网站| 亚洲av电影在线进入| 校园春色视频在线观看| 人妻夜夜爽99麻豆av| 黄色视频不卡| 国产精品永久免费网站| 亚洲真实伦在线观看| 成人午夜高清在线视频| 国产激情欧美一区二区| 99久久精品热视频| e午夜精品久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 校园春色视频在线观看| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 亚洲国产欧美人成| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| 精品一区二区三区四区五区乱码| 日本黄大片高清| 搡老妇女老女人老熟妇| 一级毛片精品| 午夜免费观看网址| 久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| 99国产精品一区二区蜜桃av| 久久人妻av系列| 在线国产一区二区在线| 国产精品乱码一区二三区的特点| 三级毛片av免费| 亚洲精华国产精华精| 精品一区二区三区四区五区乱码| 欧美黄色淫秽网站| 精品国产乱子伦一区二区三区| 午夜激情av网站| 亚洲国产精品sss在线观看| 俄罗斯特黄特色一大片| 狂野欧美白嫩少妇大欣赏| 国产99久久九九免费精品| www日本在线高清视频| 久久久久久人人人人人| 免费在线观看完整版高清| 亚洲av熟女| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合| 女同久久另类99精品国产91| 精华霜和精华液先用哪个| 国产精品av久久久久免费| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 久久久久久九九精品二区国产 | 91麻豆av在线| 日韩欧美国产一区二区入口| 好男人在线观看高清免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 国产一区二区在线观看日韩 | 久久香蕉国产精品| 精品一区二区三区av网在线观看| 他把我摸到了高潮在线观看| 欧美丝袜亚洲另类 | 久久精品国产亚洲av香蕉五月| 黄色片一级片一级黄色片| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 欧美最黄视频在线播放免费| 欧美黄色片欧美黄色片| 亚洲第一电影网av| 99re在线观看精品视频| 久久久久性生活片| 又粗又爽又猛毛片免费看| a在线观看视频网站| 国产精品乱码一区二三区的特点| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清在线视频| 久久亚洲精品不卡| 免费在线观看亚洲国产| 老熟妇仑乱视频hdxx| 老鸭窝网址在线观看| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 我的老师免费观看完整版| 啪啪无遮挡十八禁网站| 日韩国内少妇激情av| АⅤ资源中文在线天堂| 久久久精品大字幕| 国产精品一及| 蜜桃久久精品国产亚洲av| 成人国产一区最新在线观看| 最近在线观看免费完整版| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 日日夜夜操网爽| 黄色女人牲交| 免费看日本二区| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 亚洲精品一区av在线观看| 亚洲欧美日韩高清专用| 身体一侧抽搐| 禁无遮挡网站| 日本黄色视频三级网站网址| 黄片大片在线免费观看| 亚洲熟女毛片儿| 色播亚洲综合网| 搞女人的毛片| 国产黄色小视频在线观看| 日韩欧美在线乱码| or卡值多少钱| 国产亚洲精品av在线| 天堂√8在线中文| 久久人妻av系列| 国产精品av视频在线免费观看| 可以免费在线观看a视频的电影网站| 亚洲全国av大片| 一本一本综合久久| 亚洲电影在线观看av| 国产精品久久久久久人妻精品电影| 国产精品亚洲美女久久久| 九九热线精品视视频播放| 免费在线观看日本一区| 亚洲激情在线av| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 又爽又黄无遮挡网站| 午夜福利在线在线| 中文字幕精品亚洲无线码一区| 久久婷婷成人综合色麻豆| 桃红色精品国产亚洲av| 欧美三级亚洲精品| 香蕉国产在线看| 亚洲国产精品久久男人天堂| 久久亚洲精品不卡| svipshipincom国产片| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 午夜福利在线在线| 一本一本综合久久| 国产午夜精品论理片| 欧美一级毛片孕妇| 国产午夜精品论理片| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 悠悠久久av| 在线观看美女被高潮喷水网站 | 男女之事视频高清在线观看| 欧美日本视频| 成在线人永久免费视频| 欧美乱色亚洲激情| 两个人视频免费观看高清| 好看av亚洲va欧美ⅴa在| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品综合一区在线观看 | 少妇熟女aⅴ在线视频| 听说在线观看完整版免费高清| 日日爽夜夜爽网站| 国产三级黄色录像| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| 99国产精品99久久久久| or卡值多少钱| 久久精品亚洲精品国产色婷小说| 亚洲精品中文字幕一二三四区| 好看av亚洲va欧美ⅴa在| av在线天堂中文字幕| 国产成人精品久久二区二区免费| 极品教师在线免费播放| 国产熟女xx| 久久久精品欧美日韩精品| 黑人操中国人逼视频| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| 国产精品av久久久久免费| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 国产成人精品久久二区二区免费| 叶爱在线成人免费视频播放| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 特级一级黄色大片| 69av精品久久久久久| 白带黄色成豆腐渣| 十八禁人妻一区二区| 国产精品亚洲一级av第二区| 制服诱惑二区| 国产高清视频在线播放一区| 免费在线观看亚洲国产| 丁香欧美五月| 99热这里只有精品一区 | 丰满人妻一区二区三区视频av | 久久久久九九精品影院| 亚洲精品在线美女| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 欧美日韩福利视频一区二区| www.自偷自拍.com| 国产欧美日韩一区二区精品| 嫩草影视91久久| 日本撒尿小便嘘嘘汇集6| 亚洲美女黄片视频| 91麻豆av在线| 国产精品久久久人人做人人爽| 中文在线观看免费www的网站 | 91九色精品人成在线观看| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 大型av网站在线播放| 国产精品99久久99久久久不卡| 中国美女看黄片| 亚洲 欧美 日韩 在线 免费| 免费在线观看黄色视频的| 国产爱豆传媒在线观看 | 久久精品aⅴ一区二区三区四区| 国产精品久久电影中文字幕| 久久天堂一区二区三区四区| 看免费av毛片| 欧美性猛交╳xxx乱大交人| 老司机深夜福利视频在线观看| 美女大奶头视频| 免费在线观看亚洲国产| www日本黄色视频网| 成熟少妇高潮喷水视频| 国产91精品成人一区二区三区| 精品久久久久久久久久免费视频| 久久久水蜜桃国产精品网| 黄色毛片三级朝国网站| 我要搜黄色片| 老司机在亚洲福利影院| 国产成人影院久久av| 久久精品91蜜桃| tocl精华| av中文乱码字幕在线| 国产精品亚洲av一区麻豆| 美女免费视频网站| 国产精品永久免费网站| 天堂√8在线中文| 午夜日韩欧美国产| 亚洲无线在线观看| 精品国内亚洲2022精品成人| 国内揄拍国产精品人妻在线| 久久这里只有精品中国| 日韩大码丰满熟妇| 欧美 亚洲 国产 日韩一| 国产黄a三级三级三级人| 精品第一国产精品| 亚洲片人在线观看| 成年免费大片在线观看| 不卡一级毛片| 老鸭窝网址在线观看| 久久久久免费精品人妻一区二区| 美女高潮喷水抽搐中文字幕| 日本三级黄在线观看| 少妇人妻一区二区三区视频| 可以在线观看的亚洲视频| 亚洲 欧美 日韩 在线 免费| 夜夜爽天天搞| 99国产精品一区二区三区| 成在线人永久免费视频| 一级毛片精品| 五月玫瑰六月丁香| 国产av一区在线观看免费| 国产真人三级小视频在线观看| 欧美色欧美亚洲另类二区| 国产午夜福利久久久久久| 亚洲国产欧美一区二区综合| 99国产精品一区二区三区| 叶爱在线成人免费视频播放| 99国产精品99久久久久| 听说在线观看完整版免费高清| 又黄又爽又免费观看的视频| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 校园春色视频在线观看| 亚洲国产欧洲综合997久久,| 国产亚洲精品一区二区www| 一级片免费观看大全| 999精品在线视频| av片东京热男人的天堂| 日韩欧美一区二区三区在线观看| 黄色毛片三级朝国网站| 岛国在线免费视频观看| 国产99白浆流出| 国产成人一区二区三区免费视频网站| 五月伊人婷婷丁香| 国产成人av激情在线播放| 嫩草影院精品99| 777久久人妻少妇嫩草av网站| 欧美色视频一区免费| 色在线成人网| 精品久久久久久久久久久久久| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| a在线观看视频网站| 国产三级中文精品| 久久伊人香网站| 麻豆国产97在线/欧美 | 国产高清激情床上av| 亚洲av成人精品一区久久| 嫩草影院精品99| 亚洲欧美精品综合一区二区三区| 99在线视频只有这里精品首页| 日本五十路高清| 日本在线视频免费播放| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区| 欧美色视频一区免费| 在线视频色国产色| 亚洲人成网站高清观看| 成在线人永久免费视频| 在线观看免费视频日本深夜| 在线看三级毛片| avwww免费| 日韩三级视频一区二区三区| 欧美精品啪啪一区二区三区| 好男人在线观看高清免费视频| 久久久国产欧美日韩av| xxx96com| 制服丝袜大香蕉在线| 成人特级黄色片久久久久久久| aaaaa片日本免费| 精品国产美女av久久久久小说| 精品高清国产在线一区| 色精品久久人妻99蜜桃| 神马国产精品三级电影在线观看 | 国产午夜精品久久久久久| 在线十欧美十亚洲十日本专区| 久久性视频一级片| 日韩成人在线观看一区二区三区| 日本一本二区三区精品| 国产伦人伦偷精品视频| 亚洲一区二区三区色噜噜| 免费看日本二区| 天堂动漫精品| 免费在线观看视频国产中文字幕亚洲| www.www免费av| 男人舔奶头视频| www.熟女人妻精品国产| 色综合站精品国产| 久热爱精品视频在线9| 日本一区二区免费在线视频| 男女做爰动态图高潮gif福利片| 看片在线看免费视频| 99久久无色码亚洲精品果冻| 亚洲 国产 在线| 色尼玛亚洲综合影院| av有码第一页| 黄色成人免费大全| 免费在线观看成人毛片| 国产精品免费一区二区三区在线| 亚洲成av人片在线播放无| 久久精品91无色码中文字幕| 国产av在哪里看| 久久热在线av| 91av网站免费观看| 动漫黄色视频在线观看| e午夜精品久久久久久久| 在线免费观看的www视频| 日韩欧美在线乱码| 色精品久久人妻99蜜桃| 国产男靠女视频免费网站| 成人18禁高潮啪啪吃奶动态图| 我要搜黄色片| 老汉色∧v一级毛片| 校园春色视频在线观看| 欧美性猛交黑人性爽| 精品少妇一区二区三区视频日本电影| 亚洲成a人片在线一区二区| 亚洲男人天堂网一区| 日本熟妇午夜| 可以在线观看的亚洲视频| 久久99热这里只有精品18| 韩国av一区二区三区四区| 十八禁人妻一区二区| 成人三级黄色视频| 亚洲精品av麻豆狂野| 久久天躁狠狠躁夜夜2o2o| 人人妻人人澡欧美一区二区| 亚洲在线自拍视频| 亚洲国产精品成人综合色| 日韩免费av在线播放| 伦理电影免费视频| 制服丝袜大香蕉在线| 99久久久亚洲精品蜜臀av| 久久伊人香网站| 香蕉丝袜av| 悠悠久久av| 国产精品永久免费网站| 香蕉丝袜av| 久久久久久人人人人人| 黄色丝袜av网址大全| 日本免费a在线| 欧美一区二区精品小视频在线| 在线播放国产精品三级| 国产亚洲精品久久久久5区| 国产高清视频在线播放一区| 高清在线国产一区| 国产亚洲精品久久久久5区| ponron亚洲| 日韩欧美国产在线观看| 51午夜福利影视在线观看| 国产高清视频在线播放一区| 国产片内射在线| 男女之事视频高清在线观看| 大型黄色视频在线免费观看| 最近最新中文字幕大全电影3| 亚洲一码二码三码区别大吗| 久久久久亚洲av毛片大全| 精品第一国产精品|