• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel GaN-based double-channel p-heterostructure field-effect transistors with a p-GaN insertion layer

    2023-11-02 08:12:52XueruiNiu牛雪銳BinHou侯斌MengZhang張濛LingYang楊凌MeiWu武玫XinchuangZhang張新創(chuàng)FuchunJia賈富春ChongWang王沖XiaohuaMa馬曉華andYueHao郝躍
    Chinese Physics B 2023年10期
    關(guān)鍵詞:楊凌新創(chuàng)

    Xuerui Niu(牛雪銳), Bin Hou(侯斌),?, Meng Zhang(張濛), Ling Yang(楊凌),?, Mei Wu(武玫),Xinchuang Zhang(張新創(chuàng)), Fuchun Jia(賈富春), Chong Wang(王沖), Xiaohua Ma(馬曉華), and Yue Hao(郝躍)

    1Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices,School of Microelectronics,Xidian University,Xi’an 710071,China

    2School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China

    Keywords: GaN, double-channel heterostructure field-effect transistors, p-GaN insertion layer, C-doped buffer layer

    1.Introduction

    In recent years, GaN has demonstrated great prospects in the field of power electronics due to its wide bandgap and high electron mobility.GaN-based high electron mobility transistors (HEMTs) on Si substrates have been widely explored in research, and fabricated as power switches with a high breakdown voltage for commercial usage.[1,2]The application of discrete GaN-based power switches requires the collaboration of Si-based peripheral circuit structures such as gate driver,controller and protection modules.However,the differences between the two materials and the interconnections between devices can introduce extra parasitic effects to the power conversion circuit, which induce instability of GaN power switches and circuits.[3-5]Furthermore, the high-temperature stability of Si is worse than that of GaN.These problems deteriorate the performance of GaN-based HEMTs and have seriously hindered the industrialization process.

    GaN-based monolithic integration technology is an emerging but promising solution to solve these problems; it not only allows GaN-based devices to have more functions but also enhances circuit robustness and promotes the miniaturization of the power conversion system.[6,7]Therefore, there has been great interest in researching the integration of GaNbased gate drivers and power switches.So far, most of the developed GaN-based gate drivers are based on the combination of enhancement mode (E-mode) and depletion mode(D-mode) n-channel HEMTs (n-HEMTs).But such directcoupled FET logic circuits suffer from serious power losses that are not conducive to the efficiency of the power conversion system.[8,9]Given these considerations, a complementary logic circuit prepared from GaN-based E-mode p-channel heterostructure field-effect transistors(p-HFETs)and E-mode n-HEMTs has been proposed as a promising alternative to greatly suppress power losses.

    However,p-HFETs have encountered many challenges in their development.One of the major challenges is the much lower mobility of the holes in GaN than that of the electrons,which will lead to a low on-state current and decreased driving capability of p-HFETs.To address this issue, aggressive lateral scaling of p-HFETs,the fin configuration,[10]GaN/AlN heterostructures[11,12]and multi-channel structures[13,14]have been proposed.The reported multi-channel p-HFETs introduced Mg doping in each layer, but the presence of the large number of Mg impurities in the heterostructure resulted in severe ionized-impurity scattering, which in turn reduced the mobility of the holes.

    In this work, we propose a double heterostructure with a p-GaN insertion layer to realize double-channel p-HFETs,where holes can be distributed in two channels.By using Silvaco TCAD simulations,the influences of the thickness of the upper AlGaN layer, the doping impurities and concentrations of the GaN buffer layer,and the thickness and doping concentration of the p-GaN insertion layer on the densities of the twodimensional hole gas (2DHG) and valence band energies of two channels are discussed;this complements the mechanisms concerning the impact of doping on the modulation of energy bands in double heterostructures.The increased 2DHG density in the lower channel and the reduced doping concentration in the GaN buffer layer can be achieved by the insertion of a p-GaN layer between the AlGaN layer and C-doped GaN buffer layer.It is worth noting that the distribution of the 2DHG between the two channels is mainly affected by the variation in the thickness of the upper AlGaN layer.Our results suggest that a double heterostructure with a p-GaN insertion layer is an attractive approach for realizing double-channel p-HFETs.

    2.Device structure

    The typical cross-sectional structure of a double-channel p-HFET is exhibited in Fig.1(a).The designed epilayer,from top to the bottom, consists of a 20 nm p++-GaN layer (Mg:5×1019cm-3), a 40 nm p-GaN layer (Mg: 1×1019cm-3),a 10 nm upper unintentionally doped(UID)-GaN layer,an upper Al0.25GaN layer,a 10 nm UID-GaN layer,a 20 nm lower Al0.25GaN layer and a 3 μm GaN buffer layer with residual background electrons of 1×1015cm-3.Mg can diffuse from the p-GaN layer to the UID-GaN layer during the growth of the heterostructure, which makes the upper UID-GaN layer into a p-type one.The diffusion coefficient of Mg is set to be 0.2.All the results in this work were obtained using Silvaco TCAD.The model used in these simulations has been calibrated to match the published results.[15]

    C doping and Fe doping play a key role in achieving a highly resistive GaN buffer layer,[16,17]which will also influence the energy band and density of the 2DHG in the double heterostructure.C doping in the simulations is modeled as deep acceptor traps with energyEV+0.9 eV,[18]while Fe doping is modeled as acceptor traps with energyEC-0.57 eV.[19]The ionized densities are calculated according to a literature study.[20]The 2DHG density is the integral of hole concentration in the GaN channel layer with respect to its channel thickness.Figures 2(a)and 2(b)show the influence of the C-doping induced acceptor concentration in the GaN buffer layer on the distribution of holes and the variation of the valence band(i.e.,in the access region).As shown in Fig.2(a), the density of the 2DHG in the upper channel is almost unaffected.However, the 2DHG density in the lower channel increases significantly when the concentration rises from 1×1018cm-3to 1×1019cm-3, and even gets close to that of the upper channel when the concentration is between 5×1018cm-3and 1×1019cm-3.As shown in Fig.2(b), the valence band of the GaN buffer layer rises with the increase in C-doping induced acceptor concentration, which explains the significant increase in the 2DHG density in the lower channel when the concentration exceeds 1×1018cm-3.

    The effect of Fe doping in the GaN buffer layer on the 2DHG density in the access region of the two channels is now discussed.It can be seen in Fig.3(a)that when the concentration varies from 1×1016cm-3to 1×1019cm-3, the 2DHG density remains constant in the upper channel but changes slightly in the lower one.Figure 3(b)displays the variation of the valence band according to different Fe-doping induced acceptor concentrations.The rise of the valence band for the Fedoped GaN buffer layer is not obvious,suggesting that the Fedoped buffer layer is not preferred for the double heterostructure compared with the C-doped one.

    Fig.3.Schematic illustration of(a)the distribution of 2DHG density and(b)the variation of the valence band of two channels in the access region with the Fe-doping induced acceptor trap concentration.

    3.Results and discussion

    Based on the above results,the buffer layer of the double heterostructure utilized in this work is selected to be C doped.For the structure shown in Fig.1(a), the main way to improve the carrier density of the lower channel is to increase the C-doping induced acceptor concentration in the GaN buffer layer.If the concentration is 1×1019cm-3,the carrier density of the lower channel can increase to 5×1012cm-2.Although a highly C-doped buffer layer facilitates the presence of an increased 2DHG density in the lower channel, it introduces other challenges.On the one hand, a C-doped GaN buffer should be grown at a relatively low temperature to enhance incorporation of C in the GaN layer, so that the buffer layer will have poor structural quality resulting in the degradation of hole mobility.[21]On the other hand, acceptor traps introduced by the high C-doped buffer layer will seriously affect the carriers,which leads to the hot-carrier effect,trapping effect and current collapse.[22,23]Since p-GaN has a low trap concentration[24]and its energy band modulation can enhance the 2DHG density in the lower channel,the introduction of the p-GaN insertion layer can improve device performance and reliability without reducing the carrier density.As a result, the C-doping induced trap concentration can be reduced, and the performance of devices can be improved.

    Figure 1(b) demonstrates the proposed double heterostructure with a p-GaN layer inserted between the C-doped buffer layer and the AlGaN layer.Based on this heterostructure,the variation of 2DHG density with different thicknesses of the upper AlGaN layer (t1) is discussed, as shown in Fig.4(a).The thickness of the p-GaN insertion layer was set to be 20 nm, while the Mg-doping concentration was 4×1018cm-3.It can be seen from Fig.4(a) that the distribution of the holes between the two channels is critically influenced byt1.Whent1is small, the density of the 2DHG in the lower channel is larger than that in the upper channel, and vice versa.This is mainly because a largert1will increase the density of the 2DHG at the upper GaN/AlGaN interface and screen the holes at the lower GaN/AlGaN interface.Figure 4(b)shows the effect of differentt1values on the valence band energy.It can be observed that the hole quantum well (QW) only exists in the lower/upper channel whent1=2 nm/13 nm,while hole QWs exist in both channels whent1=6 nm.

    During the fabrication process, the p-GaN layer in the gate region requires etching followed by the deposition of a dielectric layer.These two steps will inevitably cause damage and create a high density of interface states in the recessed region,leading to the degradation of carrier mobility and operational stability.[25,26]Hence, a low 2DHG density in the upper channel is preferred.When the AlGaN layer is thinner than 5 nm, the 2DHG density in the lower channel is much higher than that in the upper channel.Nevertheless,this is not conducive to the optimization of performance of p-HFETs.A much higher density of 2DHG in the lower channel will not only affect the off-state characteristics of the devices but also increase the scattering effect between holes.As a result, a 5 nm AlGaN layer is selected in our simulations.

    Fig.5.Variation of(a)2DHG density and(b)valence band energy of two channels in the access region with the Mg-doping concentration in p-GaN insertion layer.

    The effect of doping concentrationnMgin the p-GaN insertion layer on the density of the 2DHG in the access region was evaluated, as shown in Fig.5(a).The thicknesses of the upper AlGaN layer and p-GaN insertion layer were set to be 5 nm and 20 nm, respectively.It can be observed thatnMgin the p-GaN layer greatly influences the lower channel while demonstrating little impact on the upper one.The larger thenMg,the higher the 2DHG density in the lower channel.WhennMgincreases from 2×1018cm-3to 4×1018cm-3,nsin the lower channel increases significantly.This is mainly a result of the fact that the valence band energy of the p-GaN insertion layer appears to be close to the Fermi level whennMg=4×1018cm-3, as shown in Fig.5(b), thus causing an increase in 2DHG density in the lower channel.WithnMgincreasing to 1×1019cm-3,the valence band of the p-GaN layer is even closer to the Fermi level.However, a highernMgwill lead to difficulties in achieving excellent off-state characteristics for p-HFETs and intensify the ionized-impurity scattering effect with lower hole mobility.

    In addition tonMgin the p-GaN insertion layer,the thickness of the p-GaN insertion layer(t2)was also analyzed.The Mg-doping concentration in the p-GaN layer was set to be 4×1018cm-3and C-doping induced acceptor concentration in the GaN buffer layer was 5×1018cm-3.Figure 6(a) illustrates the variation in the 2DHG density of two channels in the access region with increasingt2.Ast2increases from 0 to 60 nm, the 2DHG density in the lower channel first demonstrates an overall upward trend and then tends to saturate at the end.But a sudden drop can also be observed whent2reaches 15 nm.To explain such nonmonotonic behavior, the variation of 2DHG density according tot2with different Cdoping induced acceptor trap concentrations in the GaN buffer layer was further analyzed,as shown in Fig.6(b).Whent2is small,the 2DHG density in the lower channel changes significantly across different C-doping induced acceptor trap concentrations.The 2DHG density in the lower channel is completely determined by the p-GaN insertion layer when the C-doping induced acceptor trap concentration is low,but it is gradually dominated by the buffer layer as the concentration increases.However,whent2reaches 15 nm,the p-GaN insertion layer is sufficient to screen the impact of the GaN buffer layer.Therefore,the nonmonotonic behavior of 2DHG density in the lower channel at smallt2is a combined effect of both the C-doped buffer layer and the p-GaN insertion layer.

    According to the previous simulation results, the evaluated baseline structure of the device can provide a reasonably satisfactory performance.The schematic illustration of a cross-section of p-HFET is shown in Fig.1(b), wheret1,t2,nMgand the C-doping induced acceptor trap concentration are 5 nm, 20 nm, 4×1018cm-3and 5×1018cm-3, respectively.For the device without a p-GaN insertion layer,the Cdoping induced acceptor trap concentration in the buffer layer is 1×1019cm-3.Hence,2DHG densities in the upper channel and lower channel for the two devices are almost equal.The thickness of the upper GaN channel in the gate region is 5 nm.The gate length(LG)is 0.5μm andLGS=LGD=1μm.The mobility model used in the simulations is the Albrecht model.Figure 7(a) shows the transfer characteristics of the two devices.The threshold voltages of the two devices are 2.4 V and 2.6 V, respectively.The gate-control ability is better for the device with a p-GaN insertion layer.Figures 7(b)and 7(c)display the output characteristics of the two devices.The maximum current density of the device without a p-GaN insertion layer is-42 mA·mm-1and that of the device with a p-GaN insertion layer is-46 mA·mm-1.These values demonstrate that the performance of the device with a p-GaN insertion layer is improved.Although devices are D-mode,other methods such as fin configuration and plasma treatment can be developed to realize E-mode double-channel p-HFETs.

    Fig.7.(a) Transfer characteristics of two devices at VDS =-5 V.Output characteristics of the devices (b) with a p-GaN insertion layer and(c)without a p-GaN insertion layer.

    4.Conclusion

    In this study, we have proposed a double heterostructure with a p-GaN insertion layer that is promising for the realization of double-channel p-HFETs.The influences of parameters of the different layers on the 2DHG densities and valence band energies of two channels were analyzed using Silvaco TCAD.The mechanisms concerning the influence of doping on the modulation of the energy band in the double heterostructure were also discussed.The enhanced 2DHG density and the reduced doping concentration in GaN buffer layer demonstrate that employing a p-GaN insertion layer in the double heterostructure is a better approach for realizing double-channel p-HFETs than using a highly C-doped buffer alone.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.62104184,62234009,62090014,62188102, 62104178, and 62104179), the Fundamental Research Funds for the Central Universities of China (Grant Nos.YJSJ23019, XJSJ23047, and ZDRC2002), the China National Postdoctoral Program for Innovative Talents (Grant No.BX20200262),and the China Postdoctoral Science Foundation(Grant No.2021M692499)

    猜你喜歡
    楊凌新創(chuàng)
    陜西楊凌成立彩色小麥團隊
    楊凌推出穩(wěn)農(nóng)助農(nóng)“定心丸”
    解碼楊凌:不老的農(nóng)業(yè)
    當代陜西(2020年14期)2021-01-08 09:30:32
    楊凌深耕服務“田園”
    當代陜西(2019年12期)2019-07-12 09:12:08
    新創(chuàng)企業(yè)網(wǎng)絡導向?qū)ζ髽I(yè)績效的影響:戰(zhàn)略能力的中介效應
    陜西青年作家采風團走進陜西楊凌
    2017山西省新春新創(chuàng)優(yōu)秀劇目展演
    戲友(2017年1期)2017-06-19 19:33:43
    藏戲表演舞臺調(diào)度傳承與發(fā)展的點滴思考——以新創(chuàng)藏戲劇目《圖蘭朵》為例
    結(jié)句的新創(chuàng)(外一題)——李清照《武陵春》
    中華詩詞(2017年9期)2017-04-18 14:04:37
    新創(chuàng)企業(yè)的滯漲
    9色porny在线观看| 亚洲电影在线观看av| 精品久久久久久久久亚洲| a级毛片免费高清观看在线播放| 啦啦啦视频在线资源免费观看| 97精品久久久久久久久久精品| 少妇精品久久久久久久| 高清午夜精品一区二区三区| 七月丁香在线播放| av不卡在线播放| 国产爽快片一区二区三区| 中文资源天堂在线| 伊人亚洲综合成人网| av免费在线看不卡| 亚洲四区av| av黄色大香蕉| 欧美日韩综合久久久久久| 欧美日韩精品成人综合77777| 国产日韩一区二区三区精品不卡 | 麻豆精品久久久久久蜜桃| h视频一区二区三区| 久久人妻熟女aⅴ| 亚洲伊人久久精品综合| 亚洲四区av| 一个人免费看片子| 国产精品一区二区性色av| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 三上悠亚av全集在线观看 | 美女内射精品一级片tv| av在线app专区| 成人亚洲精品一区在线观看| 亚洲综合色惰| 在现免费观看毛片| h视频一区二区三区| 高清黄色对白视频在线免费看 | 国产精品人妻久久久久久| 在线观看av片永久免费下载| 多毛熟女@视频| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 纵有疾风起免费观看全集完整版| 色哟哟·www| 男人爽女人下面视频在线观看| 成人美女网站在线观看视频| 男女免费视频国产| 激情五月婷婷亚洲| 另类精品久久| 一个人看视频在线观看www免费| 一区二区三区精品91| 成人特级av手机在线观看| 黄色视频在线播放观看不卡| kizo精华| 欧美精品一区二区免费开放| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 黄色配什么色好看| 一级毛片 在线播放| 久久午夜福利片| 久久久久久久久久久丰满| 色94色欧美一区二区| 久久精品久久久久久噜噜老黄| 一区二区三区四区激情视频| 国产乱人偷精品视频| 亚洲成人av在线免费| 亚洲国产av新网站| 欧美 亚洲 国产 日韩一| 久久久国产欧美日韩av| 91久久精品电影网| 亚洲国产精品一区三区| 如何舔出高潮| 免费观看av网站的网址| 亚洲av福利一区| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 黄色毛片三级朝国网站 | 日本猛色少妇xxxxx猛交久久| 亚洲国产色片| 久久久欧美国产精品| 一区二区三区精品91| 人人妻人人添人人爽欧美一区卜| 内地一区二区视频在线| 国产精品一区二区性色av| 精品久久久久久久久av| 亚洲av综合色区一区| 不卡视频在线观看欧美| 日韩精品有码人妻一区| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 成人国产麻豆网| 欧美日韩国产mv在线观看视频| 极品少妇高潮喷水抽搐| 成年美女黄网站色视频大全免费 | 男人和女人高潮做爰伦理| 午夜影院在线不卡| av在线观看视频网站免费| 日韩成人av中文字幕在线观看| 国产精品伦人一区二区| 三级经典国产精品| 色哟哟·www| 精品久久久精品久久久| 成人美女网站在线观看视频| 国产精品福利在线免费观看| 亚洲成人手机| 黄色欧美视频在线观看| 男人舔奶头视频| 一级二级三级毛片免费看| 成人二区视频| 国产av码专区亚洲av| xxx大片免费视频| a 毛片基地| 中国美白少妇内射xxxbb| 国产精品无大码| 免费观看性生交大片5| 国产欧美日韩一区二区三区在线 | 日本vs欧美在线观看视频 | 免费人妻精品一区二区三区视频| 美女福利国产在线| 精品视频人人做人人爽| 3wmmmm亚洲av在线观看| 亚洲国产最新在线播放| 午夜视频国产福利| 91久久精品电影网| 久久 成人 亚洲| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美日韩在线播放 | 亚洲国产精品成人久久小说| 久久久久久久久久成人| 色吧在线观看| 一级黄片播放器| 99re6热这里在线精品视频| 国产一区二区在线观看日韩| 丰满少妇做爰视频| 免费看不卡的av| 69精品国产乱码久久久| 久久久久精品性色| 高清视频免费观看一区二区| 国产一区亚洲一区在线观看| 久久精品国产亚洲网站| 国产精品一区二区在线观看99| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品日本国产第一区| 久久亚洲国产成人精品v| 69精品国产乱码久久久| 国产精品嫩草影院av在线观看| 99久久精品一区二区三区| 在线观看免费日韩欧美大片 | av线在线观看网站| 日韩人妻高清精品专区| 91精品国产国语对白视频| 又爽又黄a免费视频| 国产精品一区二区性色av| 亚洲国产精品一区三区| 老女人水多毛片| 欧美精品人与动牲交sv欧美| 高清不卡的av网站| 免费少妇av软件| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站 | 一级毛片久久久久久久久女| 国产日韩欧美亚洲二区| a级毛片在线看网站| 久久青草综合色| 日日啪夜夜爽| 亚洲激情五月婷婷啪啪| 久久精品久久精品一区二区三区| 人妻少妇偷人精品九色| 国产精品一区二区三区四区免费观看| 亚洲欧美成人综合另类久久久| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 国产亚洲5aaaaa淫片| 91精品伊人久久大香线蕉| 在线观看一区二区三区激情| 婷婷色综合大香蕉| 在线 av 中文字幕| 精品酒店卫生间| 午夜激情久久久久久久| 如何舔出高潮| 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 日韩电影二区| 一区二区av电影网| 久久精品国产亚洲网站| 亚洲电影在线观看av| 9色porny在线观看| 一级毛片aaaaaa免费看小| 免费观看a级毛片全部| 免费观看的影片在线观看| 亚洲人成网站在线观看播放| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 9色porny在线观看| 亚洲丝袜综合中文字幕| av免费观看日本| 女性被躁到高潮视频| 亚洲久久久国产精品| 久久久久久久久大av| 日韩一区二区三区影片| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 久久狼人影院| 亚洲国产精品专区欧美| 在线免费观看不下载黄p国产| 大香蕉久久网| 成人18禁高潮啪啪吃奶动态图 | 久久国产精品男人的天堂亚洲 | 日日啪夜夜撸| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 亚洲国产欧美在线一区| 高清毛片免费看| 亚洲一区二区三区欧美精品| 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| 日韩强制内射视频| 国产精品麻豆人妻色哟哟久久| 国产精品偷伦视频观看了| 人妻人人澡人人爽人人| 国产一区二区三区综合在线观看 | 亚洲伊人久久精品综合| 啦啦啦啦在线视频资源| 91午夜精品亚洲一区二区三区| 亚洲成人手机| 不卡视频在线观看欧美| 国产日韩一区二区三区精品不卡 | a级片在线免费高清观看视频| 精品一区二区免费观看| 亚洲av不卡在线观看| 国产成人精品无人区| 免费观看性生交大片5| 日韩电影二区| 一本色道久久久久久精品综合| 啦啦啦啦在线视频资源| 男女边摸边吃奶| 精品国产国语对白av| 日日摸夜夜添夜夜添av毛片| 国产亚洲午夜精品一区二区久久| 国产成人精品一,二区| 69精品国产乱码久久久| 久久精品久久久久久久性| 中文字幕人妻丝袜制服| 美女内射精品一级片tv| 欧美激情极品国产一区二区三区 | 91精品国产九色| 久久99一区二区三区| 久久97久久精品| 少妇被粗大的猛进出69影院 | 全区人妻精品视频| 毛片一级片免费看久久久久| 国产精品人妻久久久久久| 一本色道久久久久久精品综合| 国产精品久久久久久久久免| 交换朋友夫妻互换小说| 国内精品宾馆在线| 国产精品久久久久久久电影| 亚洲精品久久午夜乱码| 精品一品国产午夜福利视频| 亚洲国产欧美在线一区| 一个人免费看片子| av福利片在线| 在线免费观看不下载黄p国产| 中文字幕人妻丝袜制服| 久久午夜福利片| 久久精品国产亚洲av涩爱| 久久久国产一区二区| 亚洲国产精品国产精品| 日韩伦理黄色片| 麻豆成人午夜福利视频| 男女免费视频国产| 国产精品久久久久成人av| 日本黄色日本黄色录像| 9色porny在线观看| 99久久精品一区二区三区| 亚洲av.av天堂| 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 中文字幕av电影在线播放| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 成年人午夜在线观看视频| 最近中文字幕2019免费版| 亚洲精品久久午夜乱码| 免费看不卡的av| 高清av免费在线| 久久精品国产亚洲av天美| 国产精品福利在线免费观看| 建设人人有责人人尽责人人享有的| 国产成人精品无人区| 人妻人人澡人人爽人人| 九九在线视频观看精品| videossex国产| 国产成人精品福利久久| 18禁在线播放成人免费| 免费看不卡的av| 免费久久久久久久精品成人欧美视频 | 国产成人精品久久久久久| 久久午夜福利片| 欧美激情极品国产一区二区三区 | 夫妻午夜视频| 日韩欧美一区视频在线观看 | 国产精品不卡视频一区二区| 久久久久人妻精品一区果冻| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 午夜精品国产一区二区电影| 国产免费一级a男人的天堂| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 国产黄频视频在线观看| a级毛色黄片| 亚洲精品视频女| 老司机影院成人| 精品国产露脸久久av麻豆| 国产成人a∨麻豆精品| 在线精品无人区一区二区三| 亚洲精品久久午夜乱码| 成年人免费黄色播放视频 | 成年女人在线观看亚洲视频| 有码 亚洲区| 亚洲第一av免费看| 国产男人的电影天堂91| 少妇精品久久久久久久| 777米奇影视久久| 新久久久久国产一级毛片| 搡女人真爽免费视频火全软件| 一级av片app| 亚洲精品,欧美精品| 午夜激情福利司机影院| 亚洲精品乱码久久久久久按摩| 国产淫片久久久久久久久| av.在线天堂| 亚洲综合精品二区| 欧美三级亚洲精品| 亚洲四区av| 欧美三级亚洲精品| 五月天丁香电影| 男女免费视频国产| a 毛片基地| 91久久精品电影网| 少妇人妻精品综合一区二区| 日产精品乱码卡一卡2卡三| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 欧美xxxx性猛交bbbb| 天天操日日干夜夜撸| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 亚洲va在线va天堂va国产| 精品国产一区二区三区久久久樱花| 美女福利国产在线| 人体艺术视频欧美日本| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 日韩精品免费视频一区二区三区 | 狂野欧美白嫩少妇大欣赏| 99国产精品免费福利视频| 国产精品欧美亚洲77777| 丝瓜视频免费看黄片| 国产午夜精品久久久久久一区二区三区| 99久久精品国产国产毛片| 人人妻人人爽人人添夜夜欢视频 | 春色校园在线视频观看| 午夜福利,免费看| 日韩三级伦理在线观看| 亚洲av综合色区一区| 国产精品一区二区性色av| 久久 成人 亚洲| 久久久精品免费免费高清| 极品人妻少妇av视频| 三级国产精品片| 国产精品久久久久久久电影| 国产黄片视频在线免费观看| 日韩视频在线欧美| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 免费av不卡在线播放| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 日本午夜av视频| 免费黄色在线免费观看| 久久久久久久久久久免费av| 久久ye,这里只有精品| 成人综合一区亚洲| 精品一区二区免费观看| 国产精品久久久久久久久免| freevideosex欧美| 在线 av 中文字幕| 国产av精品麻豆| 免费观看无遮挡的男女| 精品视频人人做人人爽| 亚洲国产av新网站| 韩国av在线不卡| 肉色欧美久久久久久久蜜桃| 久久久久久久精品精品| 大又大粗又爽又黄少妇毛片口| 美女主播在线视频| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 一级片'在线观看视频| 伊人久久国产一区二区| 国产精品无大码| a 毛片基地| 一级毛片黄色毛片免费观看视频| 色视频在线一区二区三区| 国产av一区二区精品久久| 如日韩欧美国产精品一区二区三区 | 国产av码专区亚洲av| 日日摸夜夜添夜夜爱| 秋霞伦理黄片| 亚洲av男天堂| 亚洲精品国产av蜜桃| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 亚洲经典国产精华液单| 9色porny在线观看| 一级毛片aaaaaa免费看小| 亚洲伊人久久精品综合| 成人二区视频| 亚洲精品视频女| 老司机影院成人| 国产高清不卡午夜福利| 亚洲色图综合在线观看| 熟女av电影| 噜噜噜噜噜久久久久久91| 在线观看一区二区三区激情| 亚洲一级一片aⅴ在线观看| 日韩电影二区| a级毛片免费高清观看在线播放| 国产精品麻豆人妻色哟哟久久| 99久久精品热视频| 亚洲精品中文字幕在线视频 | √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| 少妇人妻一区二区三区视频| 少妇熟女欧美另类| 国产精品一区二区性色av| 能在线免费看毛片的网站| 国产成人精品福利久久| 一级毛片久久久久久久久女| 日韩一区二区视频免费看| 97超视频在线观看视频| 久久精品国产a三级三级三级| 69精品国产乱码久久久| 国产精品国产三级国产专区5o| 久久久久久久久久久久大奶| 日韩亚洲欧美综合| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 久久久久国产网址| 久久综合国产亚洲精品| 在线播放无遮挡| 欧美少妇被猛烈插入视频| 成年女人在线观看亚洲视频| 中文字幕av电影在线播放| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 九草在线视频观看| 一级二级三级毛片免费看| 精品一品国产午夜福利视频| 久久久久视频综合| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 色视频www国产| 2022亚洲国产成人精品| 欧美xxxx性猛交bbbb| 中文天堂在线官网| 五月天丁香电影| 亚洲欧美精品自产自拍| 日韩欧美精品免费久久| 国产黄片美女视频| 91精品伊人久久大香线蕉| 一个人看视频在线观看www免费| 18禁在线播放成人免费| 欧美高清成人免费视频www| 成人特级av手机在线观看| 久久婷婷青草| 免费久久久久久久精品成人欧美视频 | 日韩 亚洲 欧美在线| 边亲边吃奶的免费视频| 亚洲精品日本国产第一区| 亚洲av日韩在线播放| 在线 av 中文字幕| 22中文网久久字幕| 乱系列少妇在线播放| 男人舔奶头视频| 国产中年淑女户外野战色| 91久久精品电影网| 日韩亚洲欧美综合| 大话2 男鬼变身卡| 99久国产av精品国产电影| 肉色欧美久久久久久久蜜桃| 美女内射精品一级片tv| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 精品酒店卫生间| 中文字幕av电影在线播放| 国产成人精品福利久久| 免费观看无遮挡的男女| 亚洲中文av在线| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看 | 天天躁夜夜躁狠狠久久av| 久久久久精品性色| a级毛片在线看网站| 在线免费观看不下载黄p国产| 男人舔奶头视频| 三级国产精品片| 日本av免费视频播放| 日本黄色片子视频| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| 搡女人真爽免费视频火全软件| 亚洲图色成人| 桃花免费在线播放| 亚洲国产精品999| 午夜福利影视在线免费观看| 日本与韩国留学比较| 高清在线视频一区二区三区| 狂野欧美激情性xxxx在线观看| 国产白丝娇喘喷水9色精品| 精品一区二区三区视频在线| 日韩伦理黄色片| 亚洲丝袜综合中文字幕| 国产成人a∨麻豆精品| 日韩一本色道免费dvd| 黑人巨大精品欧美一区二区蜜桃 | 欧美精品国产亚洲| 成年人免费黄色播放视频 | 九九在线视频观看精品| 国产视频内射| 免费不卡的大黄色大毛片视频在线观看| 国产毛片在线视频| 日本欧美国产在线视频| 最黄视频免费看| 青春草视频在线免费观看| 高清不卡的av网站| 日韩一本色道免费dvd| 乱人伦中国视频| 噜噜噜噜噜久久久久久91| 精品国产一区二区三区久久久樱花| 三级国产精品片| 一本色道久久久久久精品综合| 欧美激情国产日韩精品一区| 2021少妇久久久久久久久久久| 黄片无遮挡物在线观看| 亚洲国产毛片av蜜桃av| 人人妻人人添人人爽欧美一区卜| 男女免费视频国产| 国产91av在线免费观看| 伦理电影免费视频| 99视频精品全部免费 在线| 性色av一级| 亚州av有码| 91精品一卡2卡3卡4卡| 国语对白做爰xxxⅹ性视频网站| 国产精品成人在线| 99热这里只有是精品50| 亚洲,一卡二卡三卡| 日韩一本色道免费dvd| 97在线人人人人妻| 少妇裸体淫交视频免费看高清| 男女免费视频国产| 免费黄网站久久成人精品| 日韩强制内射视频| 亚洲电影在线观看av| 香蕉精品网在线| 九色成人免费人妻av| 久久女婷五月综合色啪小说| 麻豆乱淫一区二区| 大码成人一级视频| 黄色配什么色好看| 亚洲欧美日韩另类电影网站| 桃花免费在线播放| 国产成人freesex在线| 亚洲欧美一区二区三区国产| 美女国产视频在线观看| 99re6热这里在线精品视频| 下体分泌物呈黄色| 99热网站在线观看| 免费看光身美女| 人妻少妇偷人精品九色| 久久久久久伊人网av| 伊人久久精品亚洲午夜| 久久久久国产精品人妻一区二区| 亚洲伊人久久精品综合| 99国产精品免费福利视频| 国产美女午夜福利| 桃花免费在线播放| 人妻制服诱惑在线中文字幕| 在线免费观看不下载黄p国产| 免费不卡的大黄色大毛片视频在线观看| 少妇人妻一区二区三区视频| 久久这里有精品视频免费| 精品久久久精品久久久| 婷婷色综合大香蕉| 蜜桃在线观看..| 国产精品嫩草影院av在线观看| 日韩不卡一区二区三区视频在线| 久久av网站| 成年人午夜在线观看视频| 国产成人91sexporn| 国产一区二区三区综合在线观看 | 在现免费观看毛片| 日韩制服骚丝袜av| 欧美+日韩+精品|