• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rubidium-induced phase transitions among metallic,band-insulating,Mott-insulating phases in 1T-TaS2

    2023-11-02 08:12:30ZhengguoWang王政國(guó)WeiliangYao姚偉良YudiWang王宇迪ZimingXin信子鳴TingtingHan韓婷婷LeiChen陳磊YiOu歐儀YuZhu朱玉CongCai蔡淙YuanLi李源andYanZhang張焱
    Chinese Physics B 2023年10期
    關(guān)鍵詞:陳磊

    Zhengguo Wang(王政國(guó)), Weiliang Yao(姚偉良), Yudi Wang(王宇迪), Ziming Xin(信子鳴),Tingting Han(韓婷婷), Lei Chen(陳磊), Yi Ou(歐儀), Yu Zhu(朱玉),Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(張焱)

    International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    Keywords: angle-resolved photoemission spectroscopy,metal-insulator transition,transition metal dichalcogenides

    1.Introduction

    Interactions among different degrees of freedom compete with each other in materials,resulting in an emergence of electronic phases with distinctive electronic properties.[1-6]In order to manipulate these electron phases in functional devices or to understand their underlying physics, being able to tune the interactions in materials and realize phase transitions using non-thermal experimental methods is important and becomes one of the central issues of condensed matter physics.Pressurizing and carrier doping are two commonly used methods that drive phase transitions.Pressurizing normally modulates the itineracy of electrons,[1,2,6]while carrier doping shifts the chemical potential of materials and modulates the screening of Coulomb interactions.[1-4]

    The 1T-TaS2is a two-dimensional (2D) transition metal dichalcogenide that shows complex and intriguing phasetransition behaviors.[6-11]It is metallic at high temperature.Upon cooling, it undergoes successive phase transitions and enters an insulating phase with apR13.9°commensurate charge-density-wave (C-CDW) order.In the early studies, it was proposed that the low temperature insulating phase(LTIP)is a Mott insulator.[6-10]The electronic structure reconstructs in the C-CDW state forming a single half-filled band at the Fermi energy(EF).The effective in-plane hopping of electrons (t‖) is strongly suppressed due to the large unit cell of the CDW order, which allows the Mott-insulator transition to arise in the presence of a moderate on-site Coulomb interaction(U).Recently,the Mott scenario is seriously challenged by the observation of interlayer dimerization in 1TTaS2.[11-17]Considering the presence of a moderate inter-layer hopping(t⊥),dimerization of two nearest TaS2layers occurs.The unit cell consists of two electrons, suggesting that the low-energy band is full-filled and the LTIP is a band insulator.While the Mott insulating phase may not be found in bulk 1TTaS2at low temperature, a high temperature insulating phase(HTIP)was discovered recently in a small temperature region close to the C-CDW transition.[17]It was found that the interlayer dimerization vanishes in the HTIP, which makes the HTIP a promising candidate for realizing a Mott localization in 1T-TaS2.

    Different degrees of freedom compete with each other in 1T-TaS2,making it an ideal system to search for phase transitions that are manipulated by non-thermal experimental methods.It was found that the insulating property of this system is unstable against various perturbations.Metal-insulator transitions (MIT) can be induced by laser pulse, current pulse,strain,gating,local electric field,pressure,chemical substitution,etc.[6,15,18-24]In this work,we succeed in driving a MIT in 1T-TaS2via rubidium surface deposition.Utilizing angleresolved photoemission spectroscopy(ARPES),we found that the rubidium-induced MIT occurs in two different ways.In the LTIP at 205 K, the rubidium deposition dopes electrons into the conduction band and drives a normal MIT via bandfilling,while in the HTIP at 225 K,when doping with a small amount of rubidium, the insulating gap collapses rapidly and meanwhile the spectral weight transfers from the high binding energy toEF, manifesting a bandwidth-controlled Mott transition.Our observation of the two distinct MITs not only confirms the existence of both Mottness and interlayer dimerization in 1T-TaS2from a carrier-doping perspective, reflecting a close competition amongt‖,t⊥, andU, but also highlights the rubidium deposition as an effective method to tune the phase transitions in 1T-TaS2.The high sensitivity of 1TTaS2to temperature and rubidium deposition can be used in searching for exotic phases and also help to design functional phase-changing devices.

    2.Materials and methods

    High quality single crystals of 1T-TaS2were synthesized using chemical vapor transport method.After mixing the appropriate ratio of Ta powder and S pieces(2%excess)well,the compound was sealed in a quartz tube with ICl3as the transport agent.The quartz tube was put in a two-zone furnace with thermal gradient between 750°C-850°C for 2 weeks,and then quenched in water.ARPES measurements were performed at Peking University using a DA30L analyzer and a helium discharging lamp.The photon energy was 21.2 eV.The overall energy resolution was~12 meV and the angular resolution was~0.3°.The crystals were cleavedin-situand measured in vacuum with a base pressure better than 6×10-11mbar.To measure the metallic phase of 1T-TaS2,the sample was cooled down directly from room temperature to 240 K.To measure the LTIP and HTIP,the sample was first cooled down to 80 K rapidly (~20 K per minute), and then heated up slowly (~2 K per minute) to 205 K and 225 K respectively.[17]The rubidium deposition was conductedinsituusing a rubidium dispenser.The deposition process repeated several times with a 5.6 A working current.The doping level of each doping step was represented using the total deposition time.For each doping level,the data collection duration was set to be around 10-20 min to avoid the desorption of rubidium adatoms from the sample surface at high temperature.

    3.Results and discussion

    While 1T-TaS2has been well studied at both the room temperature and the liquid-helium temperature, we focus on an intermediate temperature region near the C-CDW transition where three different phases have been identified.[17]Figure 1 shows the low-energy band structure of 1T-TaS2taken at 205 K, 225 K and 240 K.At 205 K, the system is in the LTIP.The low energy electronic structure is characterized by a flat band,whose band dispersion is relatively flat along the inplane (t‖) direction.However, according to previous photonenergy dependent ARPES studies,[13,17,23,25]the out-of-plane(kz) band dispersion of the flat band is moderate.ARPES is surface sensitive, and thus sees the surface projection of the bulk electronic structure.Band dispersions from differentkzproject into one cut,resulting in a significantkz-broadening of the APRES spectra[Fig.1(a)].When the sample temperature is increased to 225 K, the system undergoes an insulator-toinsulator transition(~217 K)and enters the HTIP.[17]Thekzdispersion of the flat band is strongly suppressed as characterized by the vanishing of thekz-broadening effect [Fig.1(b)].Such a band reconstruction indicates a suppression oft⊥and was used as an evidence to support the presence of Mott localization in the HTIP.[17]When the sample temperature is increased to 240 K above the C-CDW transition(~233 K),the insulating gap is closed and the system is in the metallic phase[Fig.1(c)].

    Fig.1.Characterization of the different electronic phases of 1T-TaS2.(a)Raw(left panel)and second derivative(right panel)images of the energymomentum cut taken along the Brillouin center(Γ)-Brillouin boundary(M)direction at 205 K and the corresponding schematic illustration of the density of states (DOS) of the flat band.(b) and (c) are similar to (a) but taken at 225 K and 240 K, respectively.Inset panel illustrates the Fermi surface of 1T-TaS2 (blue line)and the location of the energy-momentum cut(red line).

    Figure 2 shows how different phases respond to the rubidium deposition.Note that,the influence of alkali-metal deposition has been studied previously in 1T-TaS2.[26-29]It was reported that the alkali-metal intercalation plays a dominating role and drives various CDW transitions.Here,the total rubidium coverage is estimated to be below 0.1 monolayer (ML),which is much lower in comparison to the large amount of alkali-metal used in previous studies.[26-29]Furthermore, the alkali-metal intercalation in 1T-TaS2leads to an opening of a huge gap(~500 meV)atEF.[27]Such signature of intercalation is not observed in the entire doping range in our experiments.Therefore, the alkali-metal intercalation is less relevant here.Instead, the alkali-metal adatoms could be viewed as carrier donors that donate electrons to the sample surface.In Figs.2(a)-2(c),we observe a clear rubidium-induced doping effect in the metallic state as characterized by a shifting of Fermi crossings(kFs).The Fermi surface of 1T-TaS2consists of six ellipse-like electron pockets at theMpoints.If we assume that the ellipse-like electron pockets expand uniformly with rubidium doping and calculate the Fermi surface volume according to the measuredkFs along theΓ-Mdirection,we estimate that the total doping level is~0.08 electrons per unit cell for a~90 s deposition time, which corresponds to a~0.08 ML total coverage of rubidium(see supplementary material for details).

    For a normal band insulator, the doped electrons would fill into the bottom of the conduction band.As a result, the Fermi level would shift rapidly from the gap center to the conduction band bottom.This is what we observed in the LTIP[Figs.2(d)-2(f)].With the rubidium deposition,the flat bands shift to higher binding energy, indicating a chemical potential shift, and the conduction band bottom emerges atEF.In contrast to the rigid-band shift behavior observed in the LTIP,the HTIP responds to the rubidium deposition in a completely different way.It is manifested in a rapid collapsing of the insulating gap[Figs.2(g)-2(i)].When doping with a small amount of rubidium,the flat band fades away and a new band emerges atEF.Note that, aside from the flat band, all other bands are almost doping independent,which suggests that the CDW gap is little affected by rubidium in this dilute doping range.

    To characterize the rubidium-induced gap collapsing observed in the HTIP, Fig.3 plots the detailed doping dependence of the energy distribution curves(EDCs)taken at thekFs of the flat band.The backgrounds in Fig.3(a)originate from the tail of a broad peak at high binding energy(~-0.35 eV)[Fig.2(e)].We then fit the background using a tail of a Gaussian function.After subtracting the backgrounds, we fit the spectra using two Gaussian peaks[Figs.3(a)and 3(b)].Such a two-peak fitting may not be the best fitting of the spectral line shape, but it provides a relatively accurate estimation of the peak positions and peak areas.Figures 3(c)and 3(d)show the fitting results.While the fitted peak positions are almost doping independent,the spectral weight transfer between the two peaks in a nearly one-to-one ratio.The fitting results clearly indicate that the insulating gap collapsing is manifested not in a band shift but in a spectral weight transfer between two separate bands.

    Fig.3.Characterization of the rubidium-induced MIT in the high temperature insulating phase(HTIP).(a)Doping dependence of the energy distribution curves(EDCs)intergraded at the kF of the flat band in the momentum region[-0.4,-0.3] °A-1.Dotted lines represent the backgrounds that are contributed from the bands at higher binding energy.Blue and red areas highlight the evolution of the spectral weight of the high energy band(HEB)and the low energy band(LEB),respectively.(b)Doping dependence of the background-subtracted EDCs.Blue and red Gaussian peaks represent the fitting results of the HEB and LEB,respectively.The fitted curve is illustrated using the red shaded line.(c)Peak positions and(d)normalized peak areas of LEB and HEB as a function of the deposition time.The error bars are estimated considering the fitting errors and experimental resolution.

    The two insulating phases respond to the rubidium deposition differently, indicating that the two insulating phases have different origins.For the LTIP, the system is well described as a band insulator.The insulating gap originates from a spontaneous symmetry breaking, the interlayer dimerization.[11-14]The insulating gap is stable against the rubidium deposition,suggesting that the interlayer dimerization is insensitive to carrier doping in this doping range.For the HTIP,the insulating gap is expected to originate from a Mott localization and the flat band could be attributed to the lower Hubbard band.To drive a Mott transition, there are normally two different ways, the filling-controlled Mott transition and the bandwidth-controlled Mott transition.[1-6]Here, the doping level is lower than 0.1 electrons per unit cell.In the fillingcontrolled scenario, such a low carrier doping cannot explain the complete vanishing of the lower Hubbard band.Moreover,it is expected that the Fermi level should shift to the band bottom of the upper Hubbard band where the filled electrons pile up.This also contradicts to our observation that the band positions are little affected by the rubidium deposition.Therefore, the MIT observed in the HTIP cannot be attributed to a filling-controlled Mott transition but is better described as a bandwidth-controlled Mott transition.

    In the bandwidth-controlled scenario, when the ratio betweenUandtdecreases to a certain level, the Mott insulating gap collapses and the spectral weight transfers from the lower Hubbard band to the in-gap metallic band that emerges atEF.This scenario not only explains the one-to-one spectral weight transfer observed here,but also explains the persistence of the band position of the flat band.Therefore, our observation suggests that the rubidium deposition drives a bandwidthcontrolled Mott transition in the HTIP.One scenario is that,in 1T-TaS2,Uis the Coulomb repulsion of two electrons in one star-of-David structure with 13 Ta atoms andtdescribes the hopping of electrons from one star-of-David structure to the other.Therefore, bothUandtare determined by the lattice deformation of the CDW order.[6]Theoretically, it has been proposed that the carrier doping could modulate the energy differences between different CDW phases and trigger a doping-induced CDW transition.[30]Such a CDW transition could reduce the lattice deformation of the star-of-David structure,which simultaneously reduces theU/tratio,resulting in a bandwidth-controlled Mott transition.Another scenario is that the alkali-metal adatoms could reduce the repulsive Coulomb interactions locally in one star-of-David structure due to the Coulomb attraction of the alkali-metal cation.[31]Such suppression ofUcould also drive a bandwidth-controlled Mott transition.To verify these possibilities, further experiments,such as high-resolution elastic and inelastic diffraction experiments,are required.

    The phase diagram of 1T-TaS2is summarized in Fig.4.

    Fig.4.Schematic depiction of the phase diagram of 1T-TaS2.Different phases are illustrated using different colors.Black arrows show the phase transitions driven by the modulation of interactions in different degrees of freedom.

    4.Conclusion and perspectives

    In summary,we show that the rubidium deposition drives two distinctive MITs at 205 K and 225 K in 1T-TaS2(Fig.4).Our results not only confirm that the LTIP is a normal band insulator,but also point out the existence of a Mott insulating phase at high temperature.This is consistent with the suppression oft⊥in the HTIP[17]and also the observation of Mottness in monolayer 1T-TaS2and 1T-TaSe2,[32-34]suggesting that the insulating property of 1T-TaS2originates from both the Mott localization and interlayer dimerization.By reducing thet⊥via temperature or reducing the layer thickness, a band-insulator-to-Mott-insulator transition occurs.Along the doping axis, the band gap or interlayer dimerization of the LTIP is robust against rubidium doping.The metallic state is achieved below 217 K by doping a band insulator.On contrary, the interlayer dimerization is absent above 217 K.A small amount of rubidium deposition leads to a collapse of the Mott gap.A metallic state is achieved at 225 K whose band structure resembles the metallic state above the C-CDW transition.Our results thus show that the metallic, band insulating and Mott insulating phases intersect in a small temperature and doping region in the phase diagram of 1T-TaS2(Fig.4).In this region,t‖,t⊥, andUmaintain a delicate balance in 1T-TaS2,making the electronic properties of 1T-TaS2very sensitive to various perturbations.Such a high sensitivity of 1T-TaS2to both temperature and rubidium deposition could be potentially used in constructing 2D functional phasechanging devices.[19-22,35-37]

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11888101, 91421107, and 11574004) and the National Key Research and Development Program of China (Grant Nos.2018YFA0305602 and 2016YFA0301003).

    猜你喜歡
    陳磊
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    孔子都做了些什么
    作者更正啟示
    陳磊
    楚漢之爭(zhēng)(七)
    楚 漢 之 爭(zhēng)(八)
    一夜夜www| 女人高潮潮喷娇喘18禁视频| 禁无遮挡网站| 免费在线观看影片大全网站| 午夜久久久久精精品| 国内毛片毛片毛片毛片毛片| 亚洲精品在线美女| 久久人人爽av亚洲精品天堂| 国产午夜精品久久久久久| 岛国在线观看网站| 久久久久久亚洲精品国产蜜桃av| 麻豆一二三区av精品| 99国产精品一区二区蜜桃av| 美女大奶头视频| 九色亚洲精品在线播放| 搞女人的毛片| www日本在线高清视频| 岛国在线观看网站| 777久久人妻少妇嫩草av网站| 欧美性长视频在线观看| 国产成+人综合+亚洲专区| 国产亚洲精品一区二区www| 国产熟女xx| 好看av亚洲va欧美ⅴa在| 免费在线观看日本一区| 久久 成人 亚洲| 欧美最黄视频在线播放免费| 怎么达到女性高潮| 99精品在免费线老司机午夜| 一级毛片女人18水好多| 午夜免费鲁丝| 久久国产亚洲av麻豆专区| 欧美另类亚洲清纯唯美| 亚洲男人的天堂狠狠| 国产激情久久老熟女| 亚洲男人的天堂狠狠| 亚洲国产精品久久男人天堂| 欧美成人免费av一区二区三区| 99久久国产精品久久久| 国产麻豆成人av免费视频| 免费在线观看黄色视频的| 人人妻人人澡人人看| 国产成人av教育| x7x7x7水蜜桃| 国产97色在线日韩免费| 国产区一区二久久| 亚洲av电影不卡..在线观看| 成熟少妇高潮喷水视频| 首页视频小说图片口味搜索| 亚洲精品国产一区二区精华液| 日韩欧美在线二视频| 精品第一国产精品| 黄色a级毛片大全视频| 久久人人爽av亚洲精品天堂| 欧美色欧美亚洲另类二区 | cao死你这个sao货| 欧美激情 高清一区二区三区| 亚洲成人久久性| 国产亚洲精品av在线| 国产成人欧美在线观看| 久久精品91无色码中文字幕| 国产精品一区二区三区四区久久 | 男人操女人黄网站| av有码第一页| 涩涩av久久男人的天堂| 757午夜福利合集在线观看| √禁漫天堂资源中文www| 国产色视频综合| 国产一区二区激情短视频| 美女免费视频网站| 美女国产高潮福利片在线看| 人人澡人人妻人| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女 | tocl精华| 国产麻豆69| 十分钟在线观看高清视频www| 日韩欧美在线二视频| 我的亚洲天堂| 国产亚洲精品综合一区在线观看 | 精品熟女少妇八av免费久了| 欧美黄色淫秽网站| 午夜久久久久精精品| 久久人人爽av亚洲精品天堂| 搡老熟女国产l中国老女人| 岛国在线观看网站| 一区二区三区激情视频| 妹子高潮喷水视频| 亚洲成人精品中文字幕电影| 久久亚洲精品不卡| 99在线人妻在线中文字幕| 久久人妻福利社区极品人妻图片| 男女下面插进去视频免费观看| a在线观看视频网站| 欧美日韩福利视频一区二区| www国产在线视频色| 午夜成年电影在线免费观看| 国内精品久久久久精免费| 在线观看舔阴道视频| 又黄又爽又免费观看的视频| 亚洲中文字幕一区二区三区有码在线看 | 在线十欧美十亚洲十日本专区| 中文字幕另类日韩欧美亚洲嫩草| 日本免费a在线| 在线观看午夜福利视频| 免费在线观看黄色视频的| 大码成人一级视频| 制服人妻中文乱码| 免费观看精品视频网站| 欧美绝顶高潮抽搐喷水| 精品少妇一区二区三区视频日本电影| 亚洲 欧美 日韩 在线 免费| 伊人久久大香线蕉亚洲五| 999久久久国产精品视频| 免费少妇av软件| 国产成年人精品一区二区| 日韩视频一区二区在线观看| 国产精品久久久久久人妻精品电影| 一本久久中文字幕| 热99re8久久精品国产| 精品午夜福利视频在线观看一区| 欧美日韩亚洲国产一区二区在线观看| 久久影院123| 国产99久久九九免费精品| 久久精品亚洲精品国产色婷小说| 亚洲国产高清在线一区二区三 | 天天一区二区日本电影三级 | 免费搜索国产男女视频| 99riav亚洲国产免费| 天天添夜夜摸| 午夜a级毛片| 国产成人系列免费观看| 亚洲 欧美 日韩 在线 免费| 成人永久免费在线观看视频| 国产亚洲欧美精品永久| 在线观看免费日韩欧美大片| 18禁美女被吸乳视频| av有码第一页| 黄色女人牲交| 无遮挡黄片免费观看| 激情视频va一区二区三区| 久久精品亚洲精品国产色婷小说| 黄色毛片三级朝国网站| 九色国产91popny在线| 自拍欧美九色日韩亚洲蝌蚪91| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 欧美不卡视频在线免费观看 | 成人亚洲精品av一区二区| 色尼玛亚洲综合影院| 热re99久久国产66热| 又紧又爽又黄一区二区| 99久久久亚洲精品蜜臀av| 搡老岳熟女国产| 日韩三级视频一区二区三区| 丝袜人妻中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产在线精品亚洲第一网站| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区在线观看成人免费| 99热只有精品国产| 两个人视频免费观看高清| 99香蕉大伊视频| 亚洲avbb在线观看| 中文字幕av电影在线播放| 欧美精品亚洲一区二区| 人人妻,人人澡人人爽秒播| 老汉色av国产亚洲站长工具| 免费看美女性在线毛片视频| 后天国语完整版免费观看| 亚洲精品国产一区二区精华液| 精品久久久久久久人妻蜜臀av | 久热这里只有精品99| 99久久国产精品久久久| 国产乱人伦免费视频| 色综合婷婷激情| 国产精品98久久久久久宅男小说| 精品人妻1区二区| 19禁男女啪啪无遮挡网站| 又大又爽又粗| 亚洲精品国产一区二区精华液| 美国免费a级毛片| 此物有八面人人有两片| 亚洲熟妇熟女久久| 大型av网站在线播放| 久久久久久亚洲精品国产蜜桃av| 精品国内亚洲2022精品成人| 九色亚洲精品在线播放| 伊人久久大香线蕉亚洲五| 亚洲视频免费观看视频| 欧美激情高清一区二区三区| 一本久久中文字幕| 成人亚洲精品av一区二区| 久久青草综合色| 免费无遮挡裸体视频| 精品人妻1区二区| 岛国视频午夜一区免费看| 69av精品久久久久久| 非洲黑人性xxxx精品又粗又长| 日本三级黄在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品免费视频内射| 涩涩av久久男人的天堂| 久久精品人人爽人人爽视色| 午夜精品久久久久久毛片777| 桃色一区二区三区在线观看| 怎么达到女性高潮| 夜夜看夜夜爽夜夜摸| 在线观看免费视频网站a站| 欧美日本中文国产一区发布| 电影成人av| 国产亚洲欧美98| 日日夜夜操网爽| 黄色成人免费大全| 99re在线观看精品视频| 大陆偷拍与自拍| 这个男人来自地球电影免费观看| 女人精品久久久久毛片| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 国产精品久久久久久亚洲av鲁大| 欧美激情极品国产一区二区三区| av超薄肉色丝袜交足视频| 操美女的视频在线观看| 欧美最黄视频在线播放免费| 午夜激情av网站| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 国产国语露脸激情在线看| 午夜福利成人在线免费观看| 精品国产国语对白av| 少妇粗大呻吟视频| 免费在线观看完整版高清| 久久精品91无色码中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产成+人综合+亚洲专区| 欧美日本亚洲视频在线播放| 国产一区二区三区综合在线观看| 香蕉国产在线看| 亚洲avbb在线观看| 日韩精品中文字幕看吧| 中文字幕人成人乱码亚洲影| 成在线人永久免费视频| 在线观看日韩欧美| 国产精品电影一区二区三区| 亚洲专区国产一区二区| 搡老岳熟女国产| 国内毛片毛片毛片毛片毛片| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 老熟妇仑乱视频hdxx| 黄色视频不卡| 久久九九热精品免费| 中文字幕最新亚洲高清| 亚洲精品一卡2卡三卡4卡5卡| 一级a爱片免费观看的视频| 丝袜美腿诱惑在线| 操美女的视频在线观看| 丝袜美足系列| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站 | 国产成人精品在线电影| 非洲黑人性xxxx精品又粗又长| 一级毛片精品| ponron亚洲| 欧美激情极品国产一区二区三区| 久久九九热精品免费| 日韩大尺度精品在线看网址 | 亚洲成av人片免费观看| 成人18禁在线播放| 午夜激情av网站| 午夜a级毛片| 黄色视频,在线免费观看| av免费在线观看网站| 一级黄色大片毛片| 国产蜜桃级精品一区二区三区| 亚洲av第一区精品v没综合| 色综合欧美亚洲国产小说| 亚洲午夜精品一区,二区,三区| av在线播放免费不卡| 久久精品成人免费网站| 老司机福利观看| 97人妻天天添夜夜摸| 国产免费av片在线观看野外av| 午夜福利视频1000在线观看 | 97人妻精品一区二区三区麻豆 | 欧美在线黄色| 日日干狠狠操夜夜爽| 国产精品 欧美亚洲| 国产精品1区2区在线观看.| 欧美黄色片欧美黄色片| 午夜福利视频1000在线观看 | 99精品欧美一区二区三区四区| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 亚洲专区中文字幕在线| videosex国产| 欧美中文日本在线观看视频| 成人永久免费在线观看视频| av天堂在线播放| 啦啦啦 在线观看视频| 操出白浆在线播放| 中文字幕av电影在线播放| 纯流量卡能插随身wifi吗| 91成年电影在线观看| e午夜精品久久久久久久| 香蕉久久夜色| 日本欧美视频一区| 免费人成视频x8x8入口观看| 亚洲男人的天堂狠狠| 国产乱人伦免费视频| 美女高潮喷水抽搐中文字幕| 在线观看免费午夜福利视频| 看片在线看免费视频| 亚洲少妇的诱惑av| 久久人妻福利社区极品人妻图片| 老司机午夜福利在线观看视频| 亚洲最大成人中文| 国产av一区二区精品久久| www.www免费av| 久久热在线av| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 99久久精品国产亚洲精品| 在线十欧美十亚洲十日本专区| 日韩 欧美 亚洲 中文字幕| 免费搜索国产男女视频| 国产av一区在线观看免费| 国产欧美日韩一区二区三区在线| 极品教师在线免费播放| 亚洲第一欧美日韩一区二区三区| 一本大道久久a久久精品| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 好男人电影高清在线观看| 亚洲av第一区精品v没综合| 日本三级黄在线观看| 久久香蕉精品热| 亚洲av成人av| 性欧美人与动物交配| 九色亚洲精品在线播放| 亚洲av成人av| 美女 人体艺术 gogo| 色老头精品视频在线观看| 在线永久观看黄色视频| 黄色视频不卡| 国产色视频综合| 精品卡一卡二卡四卡免费| 国产真人三级小视频在线观看| 一个人观看的视频www高清免费观看 | 亚洲,欧美精品.| 操出白浆在线播放| 欧美日韩瑟瑟在线播放| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 日韩高清综合在线| 50天的宝宝边吃奶边哭怎么回事| 此物有八面人人有两片| 一夜夜www| 国内精品久久久久精免费| 日本免费一区二区三区高清不卡 | 男男h啪啪无遮挡| 亚洲国产毛片av蜜桃av| 人成视频在线观看免费观看| 多毛熟女@视频| 欧美亚洲日本最大视频资源| 女性生殖器流出的白浆| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 看免费av毛片| www.自偷自拍.com| 国产精品精品国产色婷婷| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 88av欧美| 18禁黄网站禁片午夜丰满| 美国免费a级毛片| 午夜福利一区二区在线看| 青草久久国产| 99国产精品99久久久久| 91成人精品电影| 人成视频在线观看免费观看| 国产人伦9x9x在线观看| 亚洲成人久久性| 亚洲av电影在线进入| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 亚洲精品av麻豆狂野| 久久国产乱子伦精品免费另类| a在线观看视频网站| 淫妇啪啪啪对白视频| 国产精品综合久久久久久久免费 | 自拍欧美九色日韩亚洲蝌蚪91| 好男人电影高清在线观看| 18美女黄网站色大片免费观看| 91在线观看av| 在线免费观看的www视频| 老司机午夜十八禁免费视频| 9热在线视频观看99| 中文字幕人妻丝袜一区二区| 国产成人欧美在线观看| 久久精品91蜜桃| 国产亚洲精品久久久久5区| 怎么达到女性高潮| 日本 av在线| 国产单亲对白刺激| 黑人巨大精品欧美一区二区mp4| 啦啦啦 在线观看视频| 伦理电影免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 国产一区二区三区综合在线观看| 亚洲男人的天堂狠狠| 乱人伦中国视频| 欧美成狂野欧美在线观看| 激情在线观看视频在线高清| 久久久精品欧美日韩精品| 久久久久久久久免费视频了| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| 亚洲成人免费电影在线观看| av视频在线观看入口| 一区二区三区国产精品乱码| 午夜福利,免费看| 亚洲精品国产一区二区精华液| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 久热爱精品视频在线9| 欧美日韩乱码在线| 国产激情欧美一区二区| 在线免费观看的www视频| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 黄片大片在线免费观看| 久久人人精品亚洲av| 亚洲精品国产精品久久久不卡| 欧美成人免费av一区二区三区| 欧美成人午夜精品| 亚洲av熟女| 丝袜美足系列| 国产免费av片在线观看野外av| 欧美日韩中文字幕国产精品一区二区三区 | 两个人免费观看高清视频| 黄色 视频免费看| 亚洲人成网站在线播放欧美日韩| 一本综合久久免费| av欧美777| 午夜福利成人在线免费观看| av免费在线观看网站| 色av中文字幕| 99国产极品粉嫩在线观看| 亚洲av日韩精品久久久久久密| 国产激情久久老熟女| 久久狼人影院| 一本久久中文字幕| 精品国产国语对白av| 黄色视频,在线免费观看| 日本在线视频免费播放| 午夜激情av网站| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 欧美日韩乱码在线| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 成人18禁在线播放| 亚洲少妇的诱惑av| 校园春色视频在线观看| 男女午夜视频在线观看| 啪啪无遮挡十八禁网站| 亚洲欧美激情在线| 久久精品国产亚洲av高清一级| 国产精品一区二区在线不卡| 人人妻人人爽人人添夜夜欢视频| 欧美中文综合在线视频| 99热只有精品国产| 亚洲国产精品久久男人天堂| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 精品国产亚洲在线| 国产精品久久视频播放| 99riav亚洲国产免费| 黄色片一级片一级黄色片| or卡值多少钱| 麻豆av在线久日| 日韩有码中文字幕| 看片在线看免费视频| 麻豆一二三区av精品| 又黄又粗又硬又大视频| 久久欧美精品欧美久久欧美| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| 一进一出抽搐gif免费好疼| 久久久国产精品麻豆| 国产人伦9x9x在线观看| avwww免费| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区| 欧美久久黑人一区二区| 成人亚洲精品一区在线观看| 亚洲色图综合在线观看| 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 精品国产乱码久久久久久男人| 亚洲午夜理论影院| 久久久久久久精品吃奶| 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 9191精品国产免费久久| 亚洲黑人精品在线| 免费在线观看影片大全网站| 青草久久国产| 欧美性长视频在线观看| 国产三级黄色录像| 欧美日韩福利视频一区二区| 一进一出抽搐gif免费好疼| 亚洲欧美精品综合久久99| 看黄色毛片网站| 满18在线观看网站| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 丝袜在线中文字幕| 亚洲成av人片免费观看| 亚洲美女黄片视频| 男人操女人黄网站| 亚洲欧美日韩无卡精品| 午夜久久久久精精品| 久久婷婷人人爽人人干人人爱 | 一边摸一边做爽爽视频免费| 久9热在线精品视频| 久久香蕉精品热| 三级毛片av免费| 亚洲国产欧美日韩在线播放| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 国产97色在线日韩免费| 午夜福利,免费看| 久久影院123| 国产精品精品国产色婷婷| 欧美最黄视频在线播放免费| 人成视频在线观看免费观看| 老司机靠b影院| 久久精品91无色码中文字幕| 亚洲精品国产区一区二| 欧美人与性动交α欧美精品济南到| 99国产极品粉嫩在线观看| 操美女的视频在线观看| 一区二区日韩欧美中文字幕| 日韩欧美在线二视频| 欧美一区二区精品小视频在线| 国产亚洲欧美精品永久| 亚洲国产精品sss在线观看| 久久热在线av| 国产蜜桃级精品一区二区三区| 看片在线看免费视频| 90打野战视频偷拍视频| 97人妻天天添夜夜摸| 欧美在线一区亚洲| 国产精品综合久久久久久久免费 | 桃色一区二区三区在线观看| 国产av一区二区精品久久| 欧美乱妇无乱码| 在线视频色国产色| 女人精品久久久久毛片| 在线免费观看的www视频| 国产成人啪精品午夜网站| 午夜福利免费观看在线| 看片在线看免费视频| 1024视频免费在线观看| 美女国产高潮福利片在线看| 久99久视频精品免费| 身体一侧抽搐| www国产在线视频色| 97人妻精品一区二区三区麻豆 | 免费高清视频大片| 国产伦一二天堂av在线观看| 如日韩欧美国产精品一区二区三区| 色在线成人网| 亚洲欧洲精品一区二区精品久久久| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清在线视频| 欧美日韩亚洲综合一区二区三区_| 中文亚洲av片在线观看爽| 成年人黄色毛片网站| 日韩精品青青久久久久久| 久久久久国产一级毛片高清牌| 啦啦啦 在线观看视频| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| 免费少妇av软件| 99精品在免费线老司机午夜| 亚洲第一av免费看| 9色porny在线观看| cao死你这个sao货| 欧美+亚洲+日韩+国产| 九色国产91popny在线| 日本a在线网址| 午夜视频精品福利| 亚洲欧洲精品一区二区精品久久久| 久久人妻熟女aⅴ| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产中文字幕在线视频| 露出奶头的视频| 亚洲熟女毛片儿| 桃色一区二区三区在线观看| 99在线人妻在线中文字幕| 国语自产精品视频在线第100页| x7x7x7水蜜桃| 在线免费观看的www视频| 咕卡用的链子|