• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface

    2023-11-02 08:12:08GangWang王剛ShanGuan管閃ZhiGangSong宋志剛andJunWeiLuo駱軍委
    Chinese Physics B 2023年10期
    關鍵詞:軍委王剛

    Gang Wang(王剛), Shan Guan(管閃), Zhi-Gang Song(宋志剛), and Jun-Wei Luo(駱軍委),?

    1State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: quantum wells,valley splitting,alloy concentration fluctuation

    1.Introduction

    In the pursuit of universal fault-tolerant quantum computing, the realization of quantum error correction requires a substantial number of qubits that can be effectively controlled and coherently coupled.[1]Leveraging advanced semiconductor fabrication techniques capable of integrating billions of transistors on a single Si chip,[2]electron spins confined in Si quantum dots have emerged as a highly promising platform for quantum computing.[3]Notably, the weak intrinsic spin-orbit interaction and the presence of nuclear zero-spin isotopes contribute to a prolonged coherence time for the electron spin,effectively suppressing both spin relaxation[4,5]and dephasing.[6-8]Despite recent progress[9-16]has been made,Si spin qubits still face the challenge of valley degeneracy,which obstructs the isolation of individual two-level spin-1/2 states[9,10,14,17,18]and introduces a significant leakage channel,thereby impeding high fidelity.[5,19-22]However,the presence of discontinuous heterointerfaces, coupled with strong quantum confinement, can lift the low-lying two-fold valley degeneracy and establish an energy separation known as the valley splitting(EVS).This approach effectively addresses fidelity degradation in spin-only qubits in Si.Unfortunately,the measuredEVSin Si/SiGe quantum wells tends to be relatively narrow,typically around tens to hundreds ofμeV.[23-29]This narrow energy splitting exacerbates challenges related to rapid spin relaxation,[5,19,20]dephasing,[21,22]and errors in spin transport.[30]Moreover,the disorder in the SiGe alloy barrier introduces significant fluctuations in the valley splitting energy, ranging from nearly zero to thousands of μeV.[31-34]Consequently, this poses a significant challenge to the scalability of silicon qubits within the context of universal faulttolerant quantum computing.[34]

    Both extensive theoretical work[32,35-49]and experimental observations[24,27,28,34,50-55]have pointed out that theEVSdepends sensitively on the microscopic details near the interface.Particularly, a recent investigation[34]delves into the atomic-scale reconstruction of the Si/SiGe interface and reveals its three-dimensional(3D)morphology,highlighting the microscopic alloying concentration fluctuation along the confinement direction (i.e.,zaxis in Fig.1(a)) as the underlying cause of the substantial spread observed in theEVSmeasurements of various quantum dot devices.However,the in-plane randomness is inevitably ignored in their analysis since the concentration was obtained with its in-plane components averaged in advance,as illustrated in Fig.1(b).It is worth noting that by carefully controlling the epitaxial growth of Si/SiGe heterostructures, the one-dimensional concentration fluctuationδρGe(z) can be effectively minimized to a satisfactory extent, whereas the atomic random distribution within each SiGe barrier layerρGe(x,y) remains uncontrollable.Therefore, the effect of in-plane randomness onEVSis supposed to be more important than the out-of-plane one in terms of device preparation process.Nevertheless, the impact of this type of randomness has been largely disregarded in prior investigations,[35,37-40,43,56-60]partially due to the limitations of the adopted conventional theoretical methods.

    Fig.1.(a) The three-dimensional (3D) representation showcasing the landscape of a Si/Si0.7Ge0.3 QW.(b)Schematic diagram illustrating the process of performing in-plane averaging on the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/Si0.7Ge0.3 to derive the one-dimensional(1D)concentration profiles,ρGe(z).

    In this study, we employ the atomistic empirical pseudopotential computation method(EPM)to investigate the impact of alloy disorder on theEVSin Si/SiGe quantum well(QW).Surprisingly,we discover a remarkable and significant spread in theEVS, even in the absence of alloy concentration fluctuation along the quantum confinement direction in Si/SiGe QW.Notably,we find that the minimum extent of the spread inEVSis attributed to the stochastic distribution of Si and Ge atoms within the plane, independent of vertical alloy concentration fluctuations.Moreover, we elucidate the concept of in-plane random distribution of Si and Ge atoms as a consequence of changes in the interface step morphology,providing insights into the occurrence of fluctuation in theEVSinduced by in-plane randomness.Our results thus offer valuable guidance for enhancing the performance of Si-based spin qubits through interface engineering, highlighting the significance of addressing in-plane randomness for achieving improved qubit performance.

    2.Atomistic computation method

    We calculate the electronic structures of Si/SiGe QWs by directly diagonalizing the band Hamiltonian,which is described by its potential,V(r).This potential encompasses spin-orbit-coupled and nonlocal empirical pseudopotentials.For the system’s pseudopotential, we employ a superposition of screened pseudopotentialsvα(r) of the constituent atom,[61,62]

    To emulate the epitaxy growth of a Si/SiGe QW on a Si0.7Ge0.3buffer layer, where the Si QW is subject to biaxial tensile strain,we initially set the in-plane lattice constant of the supercell to the lattice constant of bulk Si0.7Ge0.3,obtained by Vegard’s law.Subsequently, we determine the optimized lattice constant in the vertical direction and atomic equilibrium positions by minimizing the strain energy of the entire supercell through the use of the atomistic valence force field(VFF)method.[71,72]

    3.Results and discussions

    3.1.Considerable EVS fluctuation in the absence of alloy concentration fluctuation

    We first study the impact of alloy concentration fluctuation in the Si0.7Ge0.3barrier on theEVSof Si/Si0.7Ge0.3QWs using EPM.To simulate the actual setups, numerous Si/Si0.7Ge0.3QW structures are constructed through the direct sampling methods and the Si0.7Ge0.3random alloy part comprises 3600 atoms.Each constructed Si/Si0.7Ge0.3QWs feature distinct random alloy configurations within the Si0.7Ge0.3barriers.Consequently,these Si/Si0.7Ge0.3QW structures exhibit varying degrees of alloy concentration fluctuation.To quantify the extent of alloy concentration fluctuation in different Si/Si0.7Ge0.3QW structures, we utilizeσ(ρGe(z))as a measure, as defined in the caption of Fig.2.As illustrated in Figs.2(a)-2(b),the representative Ge concentration profiles clearly show the reduction in size of the alloy concentration fluctuation within the Si/Si0.7Ge0.3QW.Notably, it is challenging to precisely control the magnitude of alloy concentration fluctuation to achieve sufficiently small values through random sampling of the Si0.7Ge0.3barrier.To address this issue,we build Si0.7Ge0.3by spatially restricting the degrees of freedom of the random configuration space.Specifically, we systematically produce a set of Si/Si0.7Ge0.3QWs by maintaining a constant Si-to-Ge atom ratio per atomic monolayer(ML)along the vertical direction.Meanwhile,the distribution of Si and Ge atoms is randomized within each barrier layer.In this way,we obtain the concentration profile of ideal laterally infinite Si/Si0.7Ge0.3QW(see Fig.2(c)).

    Upon obtaining a range of Si/Si0.7Ge0.3QW structures with varying degrees of alloy concentration fluctuation, we then carry out calculation to determine the correspondingEVS.Within the atomistic simulation,a 10 MV/m of electric field is applied in the QW confinement direction.There are two reasons for applying an electric field: First, in real SiGe quantum devices, there is typically a perpendicular electric field across the SiGe heterostructure in the order of a few MV/m.Second, it is well studied that the valley splitting in Si/SiGe quantum wells fast decays with an increasing thickness of the quantum well and exhibits oscillations at the atomic scale(~3 ML).[37,38,40,58]To ensure a focused investigation on the electronic states near the interface of one side of the quantum well and avoid the influence of the interface on the other side,an electric field is applied in thez-direction which confines the electronic states to the desired region of interest.However,the presence of an electric field can exacerbate the effect of potential variation resulting from SiGe disorder on the electronic states within the Si quantum well.Specifically,a higher electric field strength can lead to more pronounced fluctuations in the valley splitting in Si/SiGe quantum wells.From Fig.2(d),one observes that an increased degree of alloy concentration fluctuation within the Si/Si0.7Ge0.3QW leads to a greater energy fluctuation ofEVS,as denoted by the green empty circles in Fig.2(d).Moreover, increasing the degree of alloy concentration fluctuation generally increases theEVS.These findings align with the conclusions drawn in Ref.[34],indicating that alloy concentration fluctuation alongzis responsible for the spreading of the energy fluctuation inEVS.However, our atomistic calculations(depicted by the orange empty circles in Fig.2(d))show that,even in the absence of alloy concentration fluctuation within the Si/Si0.7Ge0.3QW, a substantial energy fluctuation inEVS, amounting to±0.33 meV, persists.This significant fluctuation arises solely from the random in-plane distribution of Si and Ge atoms within the Si0.7Ge0.3barrier layer.Remarkably, this fluctuation inEVSis comparable in magnitude to the one caused by the alloy concentration fluctuation.It is crucial to emphasize that while the concentration fluctuation of the Si0.7Ge0.3barrier in the vertical direction can be mitigated through the epitaxial growth of Si/Si0.7Ge0.3heterostructures with low-temperature budget,the atomic random distribution within the SiGe barrier layer remains uncontrollable.Consequently, such a uncertainEVSresulting from the in-plane atomic randomness is an inherent characteristic and represents the lower bound of the energy fluctuation in Si/Si0.7Ge0.3QWs.

    It should be clarified that, in the process of generating SiGe random alloys, we deliberately opted for a finite supercell size,a choice that unavoidably introduces some hypothetical order within the SiGe alloys.Nevertheless, we wish to reiterate our stance that our study is primarily centered on the comparative evaluation of the energy ranges associated withEVSvariations within the two distinct Si/SiGe QW structural categories(σ(ρGe(z))/=0 andσ(ρGe(z))=0).The utilization of a finite supercell size inherently contributes to an augmentation of theEVSfluctuation in both classes of Si/SiGe QW structures.However, it is noteworthy that the inherent characteristics of the supercell size exert minimal influence on the relative magnitudes of these energy ranges.Our focus remains directed toward discerning the relative size ofEVSfluctuation between the two aforementioned structural categories.

    3.2.Effect of interface atomic step on EVS

    Having identified the lower bound of theEVSspread in Si/Si0.7Ge0.3QWs, we next clarify its origin by using a simplified atomic step model.SinceEVSis recognized as an interface-related phenomenon, the in-plane atomic randomness effect within the barrier alloying layer predominantly relies on the behavior of interface roughness.This behavior can be basically described by a sequence of atomic step edges at the interfaces,as depicted in Figs.3(a)-3(b).To streamline the discussion and focus on the impact of a single interface atomic step edge onEVS,we deliberately select pure Ge as the barrier material for the Si QWs,instead of Si0.7Ge0.3.By doing so,we isolate the influence of alloy disorder and direct our attention specifically toward the interface step effect.

    We consider a scenario where a one-monolayer-tall(a/4)interface atomic step edge,along they-direction,is positioned atx=γLx(whereais the Si lattice constant andLxrepresents the supercell size in thex-direction), as depicted in Fig.3(c).The calculatedEVSdependent on the step position is plotted in Fig.3(d).Notably, one observes a significant alteration in theEVSwhen the interface step is moved along thexdirection, with the magnitude ofEVSreaching its minimum when the interface step is located at 0.4Lx.

    To elucidate the suppressive effect of the interface step onEVS, we establish an effective mass model.The interface atomic step depicted in Fig.3(c)can be conceptualized as dividing one interface (atzI/F) into two halves and vertically shifting one half upward by one ML(a/4).This process gives rise to two laterally distributed half-interfaces,labeled as I/F-1 and I/F-2.When an external electric fieldFis applied along the QW growth(z)direction,the electronic states primarily localize at the upper interface containing the atomic step.The corresponding confinement potential can be expressed as[47,48]

    hereεdenotes the dielectric constant and rect(x) represents the rectangle function.[73]The vertical coordinates of the two laterally distributed single interfaces are related byzI/F-2=zI/F-1+.For a single interface(I/F)located atzI/F,the valley coupling matrix can be expressed using the effective mass approximation theory[40,48,60]as follows:

    where eiωrepresents an extra phase change induced by the valley coupling.[38]To validate the effective model developed above,we perform a fitting procedure using our atomistic calculation results ofEVSand Eq.(5),with adjustments made to the parametersC,ω, andα/β.The results, as depicted in Fig.3(d),demonstrate the capability of the model,incorporating two laterally distributed interfaces, to accurately describe the impact of the interface atomic step onEVS.The effective model reveals that the atomic-step-position-dependent behavior ofEVSarises from a phase difference e-ik0a/2between the two laterally distributed interfaces, which are vertically separated by one ML.

    3.3.Effect of in-plane random distribution of Si,Ge atoms on EVS

    The effective model can be easily extended to investigate scenarios involving multiple interface atomic steps,which contain the changes in the surface topography and can largely reflect the in-plane random distribution of Si and Ge atoms in the absence of alloy concentration fluctuations along the quantum confinement axis.To explore the effects of multiple interface atomic steps onEVS, we initially consider the case of a single interface step positioned atγLx, where the Ge concentration in the nearest neighboring SiGe atomic layer to the Si QW isγ.In order to approximate the random distribution of Si and Ge atoms within the SiGe layer while maintaining a constant Ge concentration, we divide the entire width of the in-plane Ge section,observed in the case of a single step,into two sections separated by a distance ofλLx, as depicted in Fig.4(a).This separation generates four interface segments,each characterized by its vertical coordinatezI/F-i,center positionxiand widthwialong thexdirection.As a result, the QW potential takes on a specific form denoted as

    Having determined the parametersC,ω, andα/βin Eq.(5)through fitting the results of atomistic simulations, we can readily compute theEVSfor multiple interface steps using the derived equation

    Figure 4(b)represents the dependence ofEVSon two factors:the fractional width of the in-plane Ge section before the step separation,denoted asγ,and the fractional distance of the step separation,denoted asλ.It is evident that,for a fixedγcorresponding to the intra-layer Ge concentration,varying the separation distancesλleads to distinct values ofEVS.This observation underscores how the rearrangement of Si and Ge atoms within a 1 ML-thick interface layer can induce changes inEVS.

    Fig.4.(a)A schematic diagram illustrating the separation of interface atomic steps.The initial in-plane Ge section with a width of γLx is equally divided into two subsections,which are separated by a distance of λLx.(b)The valley splitting energy is calculated using the step separation model,represented by Eq.(8).The parameters C,ω,and α/β in Eq.(8)(multiple steps)are consistent with those in Eq.(5)(single step).The variation of EVS is shown as a function of the fractional width of the in-plane Ge section before the step separation, denoted as γ, and the fractional separation spacing,denoted as λ.The values of γ and λ adhere to the constraint γ+λ <1.

    3.4.Eliminating the EVS fluctuation caused by in-plane random distribution of Si,Ge atoms

    Based on the preceding discussions,it is evident that the fluctuation of valley splitting induced by in-plane randomness imposes a lower limit on the wide spectrum ofEVSin Si/Si0.7Ge0.3QWs,presenting a challenge to the integration of Si electron spin qubits.To tackle this issue,we explore strategies to mitigate this lower limit through interface engineering.Our proposed approach involves the epitaxial growth of a thin Ge layer before the heterogeneous growth of Si0.7Ge0.3on the Si active layer.The inclusion of a thin Ge layer at the Si/Si0.7Ge0.3interface effectively separates the Si well and SiGe barrier, ensuring that the wave function ofΔ±zvalley states remains immune to in-plane potential fluctuations arising from the disorder in the distribution of Si and Ge atoms within the Si0.7Ge0.3barrier layer, as depicted in Figs.5(a)-5(b).Consequently,both the valley coupling and valley splitting in the Si active layer remain unaffected by the disorder within the Si0.7Ge0.3barrier.We substantiate this proposition through atomistic EPM simulations,as illustrated in Fig.5(c).These simulations demonstrate an exponential reduction in the fluctuation ofEVSresulting from the random distribution of Si and Ge atoms within the Si0.7Ge0.3barrier layer as the thickness of the interfacial Ge layer increases.Remarkably, the introduction of a 4-ML thick interfacial Ge layer diminishes the fluctuation inEVSto one-tenth of its original magnitude.It is worth emphasizing that our prior calculations[33,74]have shown a significant amplification ofEVSwith the incorporation of a 4-ML thick Ge layer at the Si QW interface,and this result has also been experimentally validated.[75]

    Fig.5.(a) Schematic diagram illustrating the structure of the Si/Si0.7Ge0.3 QW is presented,where the white solid line represents the distribution of Ge concentration, while the red and blue solid lines depict the wave functions of the split Δ±z valley states.(b) Schematic diagram showcasing the structure of the Si/nGe-thick Ge/Si0.7Ge0.3 QW is displayed,with emphasis on the Ge concentration profile and the wave function of the split Δ±z valley states.(c)The energy fluctuation of valley splitting,resulting from the in-plane random distribution of Si and Ge atoms near the Si/Si0.7Ge0.3 interface in the Si0.7Ge0.3 barrier, is effectively mitigated through the insertion of a few Ge layers at the interface.The magnitude of EVS fluctuation,quantified by δEVS,is plotted on the vertical axis,while the thickness of the inserted Ge layer in monolayers(ML)is shown on the horizontal axis. δEVSLB at nGe=0ML is the lower bound of EVS fluctuation in Si/Si0.7Ge0.3 QWs,labeled with superscript“LB”.

    4.Conclusions

    Our investigation has provided significant insights into the phenomenon ofEVSin Si/SiGe QWs.Surprisingly, we have demonstrated that a substantial spread ofEVScan occur even in the absence of concentration fluctuation.This spread, which arises solely from the in-plane random distribution of Si and Ge atoms within the SiGe barrier,represents the lower bound of the wide spectrum ofEVSobserved in various Si/SiGe devices.We have developed effective atomic step models to describe the impact of in-plane disorder onEVS.By recognizing and incorporating the influence of in-plane randomness, we propose an experimentally feasible method to mitigate the fluctuation ofEVSthrough the design of the interface atomic structure.Specifically, we suggest the inclusion of a thin Ge layer at the Si/SiGe interface, which effectively reduces the alloying-disorder-inducedEVSfluctuations.Our study thus paves the way for the development of more reliable Si-based electron spin qubits.

    Appendix A:Local interface induced valley coupling

    where the periodic Bloch waves are expanded as plane wavesu±(r)=, andΣdenotes the summation of coefficients of plane wavesΣ=,here onlyG1=G2case is considered sinceG1/=G2terms would lead to fast oscillations in the integrand that average to zero.In Eq.(A1)we integrate by parts the first term

    Fig.A1.The contribution of each term in Eq.(A2).The thickness of Si/Ge QW is 10 nm.The barrier height is 150 meV.For the summation of the plane expansion coefficients of Bloch waves,Σ=-0.2607.[48,60]

    Acknowledgements

    Project supported by the National Science Fund for Distinguished Young Scholars (Grant No.11925407), the Basic Science Center Program of the National Natural Science Foundation of China(Grant No.61888102),and the Key Research Program of Frontier Sciences of CAS(Grant No.ZDBS-LYJSC019), and CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026).

    猜你喜歡
    軍委王剛
    重慶談判期間的軍委通訊工作
    歌劇《天下黃河》
    受不了
    對《也談對“軍委參”的解讀》的問與答
    軍事歷史(2015年2期)2015-05-21 06:35:38
    原野上的花
    名人讀意林
    意林(2010年11期)2010-05-14 16:48:46
    你報我寫
    你報我寫
    故事林(2007年2期)2007-05-14 15:37:47
    1975年軍委擴大會議的歷史意義
    軍事歷史(2001年6期)2001-08-21 06:50:32
    紅軍長征時期組成左路軍及右路軍后的軍委和總部
    軍事歷史(1993年6期)1993-08-16 02:18:44
    国产亚洲av高清不卡| 精品一区二区三区四区五区乱码| 少妇被粗大的猛进出69影院| 波多野结衣高清无吗| 自线自在国产av| av免费在线观看网站| 成人国产综合亚洲| 中文亚洲av片在线观看爽| 久久精品亚洲精品国产色婷小说| 亚洲avbb在线观看| a在线观看视频网站| 亚洲av日韩精品久久久久久密| 国产午夜福利久久久久久| 91大片在线观看| 两人在一起打扑克的视频| 日韩大尺度精品在线看网址 | 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 级片在线观看| 国产精品亚洲一级av第二区| 在线免费观看的www视频| 一级片免费观看大全| 欧美一级毛片孕妇| 女性被躁到高潮视频| 日韩成人在线观看一区二区三区| 日本a在线网址| 国产亚洲欧美98| 日韩欧美在线二视频| 久久午夜综合久久蜜桃| 免费观看精品视频网站| 国产在线精品亚洲第一网站| 久久久久国产精品人妻aⅴ院| 日韩成人在线观看一区二区三区| 丝袜美腿诱惑在线| 国产精品 国内视频| 岛国视频午夜一区免费看| 91成年电影在线观看| 波多野结衣一区麻豆| 久久午夜综合久久蜜桃| 少妇粗大呻吟视频| 精品久久久久久久毛片微露脸| 国产国语露脸激情在线看| 欧美最黄视频在线播放免费| 亚洲伊人色综图| 色综合站精品国产| 日本撒尿小便嘘嘘汇集6| 99久久99久久久精品蜜桃| 自线自在国产av| 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 亚洲国产欧美网| 亚洲 国产 在线| 女性生殖器流出的白浆| 热99re8久久精品国产| 成人精品一区二区免费| 亚洲国产精品sss在线观看| 性色av乱码一区二区三区2| 女人精品久久久久毛片| 欧美日韩瑟瑟在线播放| 久久天堂一区二区三区四区| 欧美色视频一区免费| 人妻丰满熟妇av一区二区三区| 国产午夜福利久久久久久| 十八禁网站免费在线| 久久九九热精品免费| 久久国产精品人妻蜜桃| 一二三四在线观看免费中文在| 日本五十路高清| 亚洲片人在线观看| 国产一区二区三区综合在线观看| 亚洲性夜色夜夜综合| 人人妻人人澡人人看| 色播在线永久视频| 亚洲一区二区三区色噜噜| 精品卡一卡二卡四卡免费| 午夜久久久久精精品| 韩国av一区二区三区四区| 日本五十路高清| 少妇裸体淫交视频免费看高清 | 国产成人精品在线电影| 欧美另类亚洲清纯唯美| 亚洲 欧美 日韩 在线 免费| 久久久水蜜桃国产精品网| 久久性视频一级片| 亚洲国产欧美网| 亚洲自拍偷在线| 一夜夜www| 校园春色视频在线观看| 亚洲 欧美 日韩 在线 免费| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 在线观看舔阴道视频| 欧美av亚洲av综合av国产av| 制服丝袜大香蕉在线| 成年女人毛片免费观看观看9| 不卡av一区二区三区| avwww免费| 午夜福利在线观看吧| av天堂久久9| 在线观看免费视频日本深夜| 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 一本大道久久a久久精品| 他把我摸到了高潮在线观看| 高清毛片免费观看视频网站| 久久久久国产一级毛片高清牌| 中文字幕av电影在线播放| 不卡一级毛片| 男人舔女人下体高潮全视频| videosex国产| 极品人妻少妇av视频| 亚洲色图综合在线观看| 一级黄色大片毛片| 男女下面进入的视频免费午夜 | 国产精品,欧美在线| 性色av乱码一区二区三区2| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品综合一区在线观看 | 精品欧美一区二区三区在线| 国产激情欧美一区二区| 国产精品99久久99久久久不卡| 最好的美女福利视频网| 日本 欧美在线| 国产日韩一区二区三区精品不卡| 人人妻人人澡欧美一区二区 | 999久久久精品免费观看国产| 久久久久久久午夜电影| 十分钟在线观看高清视频www| 欧美激情久久久久久爽电影 | 精品国产国语对白av| 成人三级黄色视频| 香蕉国产在线看| 成人精品一区二区免费| av视频免费观看在线观看| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 在线视频色国产色| 禁无遮挡网站| 亚洲 欧美一区二区三区| av天堂在线播放| 91av网站免费观看| 性少妇av在线| 91麻豆av在线| 在线天堂中文资源库| 男人的好看免费观看在线视频 | 日本黄色视频三级网站网址| 男人舔女人下体高潮全视频| 免费女性裸体啪啪无遮挡网站| 国产国语露脸激情在线看| 久久精品国产99精品国产亚洲性色 | 亚洲专区中文字幕在线| 在线永久观看黄色视频| 久久亚洲真实| 久久久久国产一级毛片高清牌| 麻豆一二三区av精品| 久久香蕉精品热| 男人舔女人的私密视频| 99国产综合亚洲精品| 久久伊人香网站| 不卡一级毛片| 一个人观看的视频www高清免费观看 | 12—13女人毛片做爰片一| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| a级毛片在线看网站| 看免费av毛片| 国产蜜桃级精品一区二区三区| 后天国语完整版免费观看| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 欧美色欧美亚洲另类二区 | 一级作爱视频免费观看| 超碰成人久久| 啦啦啦 在线观看视频| 久久久国产成人精品二区| 欧美成人午夜精品| 制服丝袜大香蕉在线| 亚洲天堂国产精品一区在线| 成人三级黄色视频| 一进一出抽搐动态| 欧美成人午夜精品| 亚洲精品中文字幕一二三四区| 欧美久久黑人一区二区| av中文乱码字幕在线| cao死你这个sao货| 丝袜美足系列| 国产精品一区二区三区四区久久 | 最近最新中文字幕大全电影3 | 久久精品aⅴ一区二区三区四区| 真人一进一出gif抽搐免费| 一本大道久久a久久精品| 日韩欧美三级三区| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 大型av网站在线播放| 日韩大尺度精品在线看网址 | 淫妇啪啪啪对白视频| 91成人精品电影| 这个男人来自地球电影免费观看| 一本大道久久a久久精品| 99热只有精品国产| 色av中文字幕| 好男人电影高清在线观看| 大型av网站在线播放| 国产精品电影一区二区三区| 在线观看一区二区三区| aaaaa片日本免费| 亚洲专区国产一区二区| 男女之事视频高清在线观看| 色综合婷婷激情| 婷婷六月久久综合丁香| 极品人妻少妇av视频| 国产精品亚洲一级av第二区| 国产成人精品无人区| 成人欧美大片| 在线免费观看的www视频| 首页视频小说图片口味搜索| ponron亚洲| a级毛片在线看网站| 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区| 精品一区二区三区四区五区乱码| 老汉色∧v一级毛片| 高清黄色对白视频在线免费看| 啦啦啦韩国在线观看视频| 国产不卡一卡二| av福利片在线| 精品久久久精品久久久| 亚洲国产欧美日韩在线播放| xxx96com| 777久久人妻少妇嫩草av网站| 亚洲成国产人片在线观看| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 女同久久另类99精品国产91| 他把我摸到了高潮在线观看| 免费观看人在逋| 一进一出抽搐动态| 啦啦啦韩国在线观看视频| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 黑人巨大精品欧美一区二区mp4| 叶爱在线成人免费视频播放| 热re99久久国产66热| 18禁国产床啪视频网站| 三级毛片av免费| 黑人巨大精品欧美一区二区mp4| 黄色视频不卡| 久久久久久久精品吃奶| 伊人久久大香线蕉亚洲五| 宅男免费午夜| 久久香蕉激情| 中文字幕久久专区| 侵犯人妻中文字幕一二三四区| 国产真人三级小视频在线观看| 99国产精品一区二区蜜桃av| 亚洲第一欧美日韩一区二区三区| 亚洲一区二区三区不卡视频| 99久久久亚洲精品蜜臀av| 国产一区二区激情短视频| 操美女的视频在线观看| 国产亚洲精品一区二区www| 美女免费视频网站| 黄频高清免费视频| 久久精品国产99精品国产亚洲性色 | bbb黄色大片| 黑人操中国人逼视频| 亚洲伊人色综图| 日本 欧美在线| 精品久久久久久久久久免费视频| 亚洲伊人色综图| 久久久久九九精品影院| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 欧美乱妇无乱码| 精品久久久精品久久久| 久久天堂一区二区三区四区| 91国产中文字幕| 在线观看舔阴道视频| 精品国产一区二区三区四区第35| 国产成人影院久久av| 中文字幕久久专区| 精品久久久久久,| 两性夫妻黄色片| 欧美最黄视频在线播放免费| 人人妻,人人澡人人爽秒播| 久久久久久大精品| 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 99久久精品国产亚洲精品| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 黄色成人免费大全| 久久久久久久久久久久大奶| www日本在线高清视频| 国产精品精品国产色婷婷| 国产成人免费无遮挡视频| 国产私拍福利视频在线观看| svipshipincom国产片| 日本欧美视频一区| 欧美中文日本在线观看视频| 一边摸一边做爽爽视频免费| 亚洲国产毛片av蜜桃av| 又紧又爽又黄一区二区| 亚洲成人精品中文字幕电影| 美女高潮喷水抽搐中文字幕| 亚洲成av人片免费观看| 亚洲国产精品久久男人天堂| 99国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 久久天躁狠狠躁夜夜2o2o| 两个人看的免费小视频| av欧美777| 久久久国产成人精品二区| 神马国产精品三级电影在线观看 | 黄色视频不卡| 91老司机精品| 91精品三级在线观看| 在线播放国产精品三级| 精品人妻在线不人妻| 老司机福利观看| 自线自在国产av| 大陆偷拍与自拍| 禁无遮挡网站| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩另类电影网站| 久久精品成人免费网站| 人妻丰满熟妇av一区二区三区| 亚洲一区二区三区色噜噜| 国产精品久久久久久精品电影 | 日日夜夜操网爽| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 中文字幕人妻丝袜一区二区| 久久人人爽av亚洲精品天堂| 免费高清视频大片| 日韩大尺度精品在线看网址 | 无限看片的www在线观看| 大陆偷拍与自拍| 精品国产国语对白av| 视频区欧美日本亚洲| 国产成人免费无遮挡视频| 亚洲熟妇熟女久久| 一区二区三区国产精品乱码| 久久久精品欧美日韩精品| 热re99久久国产66热| 琪琪午夜伦伦电影理论片6080| 啦啦啦韩国在线观看视频| 十八禁网站免费在线| 日韩欧美国产在线观看| 国产男靠女视频免费网站| 妹子高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看 | 婷婷六月久久综合丁香| 免费久久久久久久精品成人欧美视频| 日韩欧美一区视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品人妻在线不人妻| 日本三级黄在线观看| 亚洲国产看品久久| 国产激情久久老熟女| 午夜a级毛片| 亚洲国产中文字幕在线视频| 国产av一区二区精品久久| 丰满人妻熟妇乱又伦精品不卡| 黄色女人牲交| 两个人看的免费小视频| 变态另类丝袜制服| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清 | 校园春色视频在线观看| av视频免费观看在线观看| 国产av一区在线观看免费| 国产欧美日韩一区二区三| 国产精品av久久久久免费| 精品高清国产在线一区| 国产精品精品国产色婷婷| 亚洲一区二区三区不卡视频| 国产成人精品无人区| 老司机在亚洲福利影院| 亚洲精品久久国产高清桃花| 亚洲一区二区三区色噜噜| 久久香蕉激情| 欧美+亚洲+日韩+国产| 免费在线观看亚洲国产| 亚洲国产毛片av蜜桃av| 首页视频小说图片口味搜索| avwww免费| 国产精品永久免费网站| 亚洲,欧美精品.| 夜夜躁狠狠躁天天躁| 国产精品一区二区三区四区久久 | 日韩国内少妇激情av| 高清黄色对白视频在线免费看| 免费无遮挡裸体视频| 久久精品91无色码中文字幕| 午夜福利影视在线免费观看| 在线天堂中文资源库| 美女高潮到喷水免费观看| 免费看美女性在线毛片视频| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 夜夜爽天天搞| 我的亚洲天堂| 国产av在哪里看| 十八禁人妻一区二区| 亚洲专区字幕在线| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 长腿黑丝高跟| netflix在线观看网站| 欧美日韩乱码在线| 一二三四在线观看免费中文在| 久久久久九九精品影院| 老熟妇仑乱视频hdxx| 国产精品秋霞免费鲁丝片| 国产av在哪里看| 大码成人一级视频| 国产一卡二卡三卡精品| 脱女人内裤的视频| 大陆偷拍与自拍| 天天一区二区日本电影三级 | 久久精品亚洲熟妇少妇任你| 一边摸一边抽搐一进一小说| 欧美亚洲日本最大视频资源| 免费不卡黄色视频| avwww免费| 精品第一国产精品| 露出奶头的视频| 亚洲中文日韩欧美视频| 日韩视频一区二区在线观看| 亚洲av五月六月丁香网| 欧美成狂野欧美在线观看| 好男人电影高清在线观看| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 亚洲 欧美一区二区三区| or卡值多少钱| 成人国产综合亚洲| 制服诱惑二区| 欧美日本亚洲视频在线播放| 成人18禁在线播放| 国产午夜精品久久久久久| 亚洲av成人一区二区三| 亚洲黑人精品在线| 亚洲精品在线美女| 免费不卡黄色视频| 黄色女人牲交| 一级毛片精品| 亚洲精品中文字幕一二三四区| 在线观看66精品国产| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 男女床上黄色一级片免费看| 国产一区二区在线av高清观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇一区二区三区视频日本电影| 国产高清有码在线观看视频 | 国产xxxxx性猛交| 首页视频小说图片口味搜索| 久久精品aⅴ一区二区三区四区| 91老司机精品| 丝袜美腿诱惑在线| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 99久久99久久久精品蜜桃| 国产精品亚洲一级av第二区| 久久久久久久精品吃奶| 女性被躁到高潮视频| 亚洲精品中文字幕一二三四区| 日韩大尺度精品在线看网址 | 波多野结衣一区麻豆| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 久久精品国产综合久久久| 亚洲av日韩精品久久久久久密| 中文字幕av电影在线播放| 国产欧美日韩一区二区三| √禁漫天堂资源中文www| av在线播放免费不卡| 久久草成人影院| 涩涩av久久男人的天堂| 99久久精品国产亚洲精品| av中文乱码字幕在线| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| 丝袜在线中文字幕| 一边摸一边抽搐一进一小说| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频 | 亚洲人成电影免费在线| 国产99白浆流出| 男人操女人黄网站| 老司机靠b影院| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 日韩一卡2卡3卡4卡2021年| 男人舔女人的私密视频| 国产成人av教育| av中文乱码字幕在线| 亚洲成国产人片在线观看| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 午夜影院日韩av| 女人精品久久久久毛片| 免费看a级黄色片| 黄色片一级片一级黄色片| 女人被躁到高潮嗷嗷叫费观| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 黄片大片在线免费观看| 亚洲国产高清在线一区二区三 | 999久久久国产精品视频| 大香蕉久久成人网| 成人特级黄色片久久久久久久| 大香蕉久久成人网| 亚洲一区二区三区色噜噜| 精品欧美国产一区二区三| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 亚洲欧美精品综合一区二区三区| 最近最新免费中文字幕在线| 成年版毛片免费区| 国产精品久久视频播放| 侵犯人妻中文字幕一二三四区| av视频在线观看入口| 美女国产高潮福利片在线看| 国产精品av久久久久免费| 变态另类成人亚洲欧美熟女 | 美女免费视频网站| 脱女人内裤的视频| 一个人观看的视频www高清免费观看 | 巨乳人妻的诱惑在线观看| 国产精品 欧美亚洲| 色综合亚洲欧美另类图片| 精品国产一区二区久久| 亚洲国产中文字幕在线视频| 国产在线观看jvid| 91老司机精品| 视频区欧美日本亚洲| 午夜福利影视在线免费观看| 人成视频在线观看免费观看| 女同久久另类99精品国产91| 波多野结衣一区麻豆| 最好的美女福利视频网| 亚洲国产中文字幕在线视频| 99精品欧美一区二区三区四区| 热re99久久国产66热| 久久中文字幕人妻熟女| 中文字幕精品免费在线观看视频| 精品久久久久久久毛片微露脸| 精品卡一卡二卡四卡免费| 久久人妻福利社区极品人妻图片| 香蕉久久夜色| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 午夜福利免费观看在线| 日韩国内少妇激情av| 久久天躁狠狠躁夜夜2o2o| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| 免费看a级黄色片| www.精华液| 亚洲精品美女久久久久99蜜臀| 亚洲精品av麻豆狂野| 制服丝袜大香蕉在线| 97人妻天天添夜夜摸| 国产精品久久视频播放| 欧美亚洲日本最大视频资源| 99久久精品国产亚洲精品| 在线观看一区二区三区| 久久人妻av系列| 国产一区二区三区在线臀色熟女| 欧美激情久久久久久爽电影 | 好看av亚洲va欧美ⅴa在| 一级片免费观看大全| 老汉色∧v一级毛片| 国产成人av教育| 中文字幕人成人乱码亚洲影| 国产日韩一区二区三区精品不卡| 成人免费观看视频高清| 欧美精品啪啪一区二区三区| 亚洲五月婷婷丁香| 亚洲少妇的诱惑av| 国产单亲对白刺激| 色综合亚洲欧美另类图片| 伦理电影免费视频| 女生性感内裤真人,穿戴方法视频| 美国免费a级毛片| 免费看十八禁软件| 少妇粗大呻吟视频| 精品久久蜜臀av无| 88av欧美| 午夜福利影视在线免费观看| 免费女性裸体啪啪无遮挡网站| 亚洲av五月六月丁香网| 91国产中文字幕| 日本黄色视频三级网站网址| 中文字幕人妻熟女乱码| 亚洲av成人不卡在线观看播放网| 首页视频小说图片口味搜索| 国产私拍福利视频在线观看| 成人精品一区二区免费|