• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of thermoelectric properties in elemental tellurium via high pressure

    2023-11-02 08:12:08DongyaoZhao趙東堯ManmanYang楊曼曼HairuiSun孫海瑞XinChen陳欣YongshengZhang張永勝andXiaobingLiu劉曉兵
    Chinese Physics B 2023年10期
    關(guān)鍵詞:陳欣永勝海瑞

    Dongyao Zhao(趙東堯), Manman Yang(楊曼曼), Hairui Sun(孫海瑞),Xin Chen(陳欣), Yongsheng Zhang(張永勝), and Xiaobing Liu(劉曉兵),§

    1Laboratory of High-Pressure Physics and Materials Science(HPPMS),School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    2Advanced Research Institute of Multidisciplinary Sciences,Qufu Normal University,Qufu 273165,China

    Keywords: high pressure,thermoelectric,thermal conductivity,power factor

    With the advent of the electronic information age, it has become the strategic focus of sustainable development to build a new energy system,develop green and recyclable renewable resources and improve energy conversion efficiency.[1,2]Thermoelectric materials with the most potential candidate for environmental energy are mainly determined by the dimensionless coefficientzT=S2T/ρ(κe+κph+κbip),whereSis Seebeck coefficient,ρis resistivity,Tis Kelvin temperature,κe,κph, andκbipare electron, phonon, and bipolar thermal conductivities, respectively.[3-5]However, due to the strong coupling between carriers and phonons, it is a great challenge to optimize the related parameters together.Over the past few decades, classical, high-performance, multicomponent compounds such as Bi2Te3and SnSe have produced encouraging results.[6-10]However, the diversity of elements leading to the segregation and complex structure increases the difficulty to get clear about the mechanism of the improvement.Hence, many research have been focused on single-element semiconductors.[11,12]

    Elemental semiconductor thermoelectric materials, such as black phosphorus (BP) and tellurium (Te), provide a better basis for interpreting the relationship between the internal physical parameters of the material due to the unicity of the elements.Theoretical predictions demonstrate that BP and its derivatives show great potential for novel ecofriendly thermoelectric applications because of the unique inplane anisotropic electronic structure.[10,13-19]Element Te, a narrow band gap semiconductor, has been considered as a potential candidate for thermoelectric materials because of its high degeneracy, large effective mass and high Seebeck coefficient.[20]Many attempts have been made to further improve the efficiency of thermoelectric conversion.[21,22]Linet al.realized doping by hot pressing, and finally optimize the carrier concentration to 2.65×1019cm-3, thus improving the electrical properties of Te.[23]Anet al.used the spark plasma sintering(SPS)method combined with the intrinsic quasi-onedimensional(1D)structure of the sample,which contributed to form the chain texture along the crystallographicc-axial direction,to optimize the carrier and phonon scattering to a certain extent.[24]Suet al.effectively replaced the alloying of samples by using the high pressure and high temperature(HPHT)method, and the phonon thermal conductivity of the material decreased from 0.65 W·m-1·K-1to 0.45 W·m-1·K-1,which optimized the phonon transport and ultimately improved the thermoelectric performance.[25]Therefore,it is not hard to see that an effective synthesis method is vital to obtain high quality thermoelectrics.Among them, HPHT technology is playing an important role in synthesizing specimens because of the advantages,such as time-saving,high efficiency,manufacturing defects and controllable reaction conditions.[25-29]In our previous work, we constructed a BP-Te heterogeneous structure to optimize the thermoelectric performance of Te through HPHT method.[16]Hence, it is essential to investigate the effect of pressure on Te.

    In this work,we successfully synthesized Te samples with doping BP under different pressures to explore the impact of pressure on electrical and thermal properties.Our results demonstrate thatzTvlues of Te-based materials are greatly improved under high pressure.The maximumzTvalue(zTmax)and the averagezTvalue(zTave)of Te+0.25 wt%GeP5samples synthesized at 5.5 GPa are significantly enhanced by 55%(68%) compared to 3.0 GPa.Moreover, with the content of GeP5increasing,the performance is further optimized.Thus,high pressure is proved to be an effective means for seeking high performance thermoelectrics.

    Using high purity germanium (Ge, 99.999%) and phosphorus(P,99.999%)ingot as raw material,single crystal GeP5was prepared by HPHT method.The high purity Te ingot(99.999%) and GeP5were weighed by mass ratio.The raw materials were then packaged in a mortar and ground for an hour.Then the target polycrystalline samples were prepared at 1000 K and 3.0 GPa-5.5 GPa for 30 minutes through HPHT method.

    The crystal structures of powder samples had been characterized by Cu-Kαradiation x-ray diffraction(XRD)(PANalytical X’pert3, Holland).Raman spectroscopy (HR Evolution, JY Horiba) was carried on a spectrometer with excitation wavelength of 633 nm.The surface morphology and element distribution of the samples were tested by scanning electron microscope (SEM, Carl Zeiss Sigma 500 VP).TEM images were obtained on a Thermo Fisher Talos F200S G2(United States).The carrier-dependent parameters were measured at room temperature on the Hall device (Lake Shore 8404, USA) using van der Pauw geometry.Resistivity (ρ)and Seebeck coefficient(S)were measured simultaneously in CTA-3s (Cryoall China).Thermal conductivity (κ) is calculated byκ=D×Cp×dwhereDis the thermal diffusion coefficient measured on a laser heat-conducting instrument (Netzsch LFA457,Germany).The heat capacity(Cp)values were estimated by Dulong-Petit law.The density (d) was determined by Archimedean principle.

    Figure 1(a)shows powder x-ray diffraction(XRD)data of Te and GeP5-composited Te samples synthesized under different pressures.The collected XRD patterns can be well characterized as hexagonal structure ofP3121 group.[30]As shown in the figure,no other second phase was observed.Figure 1(b)shows the typical Raman spectra of all sample prepared under various pressures.It can be observed that the peaks located at 91 cm-1,119 cm-1,138 cm-1are correspond to the three characteristic peaks of elemental Te phase, representing the three vibration modes E1,A1,and E2,respectively.[31]Meanwhile, three obvious characteristic peaks at 358 cm-1,434 cm-1,and 462 cm-1,can be attributed to BP phase,representing A1g, B2g, and A2gvibration modes, respectively.[32]The results show that GeP5decomposed into BP and Ge via HPHT conditions.

    Fig.1.Phase characterization of produced GeP5-composited Te samples under different synthetic pressures:(a)XRD patterns and(b)Raman spectrum.

    Hall effect test of the prepared samples was carried out at room temperature,listed in Table 1.The positive Hall coefficient reveal that all samples are p-type semiconductor.It can be seen that the introduction of GeP5significantly increased the carrier concentration(nH)of Te.The decomposed Ge has two less electron than Te,and when it replaces Te as an acceptor impurity,it can introduce holes,meaning that the electrons in the valence band are transferred to the acceptor level,which leads to a significant increase in hole concentration.More importantly, with the synthetic pressure increasing, we find that thenHare improved up to 2.5×1019cm-3, which is two orders of magnitude higher than the pure Te sample, while the fluctuation of mobility (μH) is in a small range.The result leads to substantial optimization of electrical properties.

    Table 1.The Hall effect test for the samples synthesized under different pressures.

    Fig.2.Temperature-dependent electronic transport properties of Te, GeP5-composited Te samples synthesized under different pressures.(a)Resistivity.(b)Seebeck coefficient.(c)Relationship between the carrier concentration and Seebeck coefficient.(d)Power factor(PF).

    The electrical transport performance depending on temperature was measured in the range of 300 K-610 K.Figure 2(a) shows the lower resistivity of the GeP5-composited Te samples.In addition, as plotted in Fig.2(b),GeP5-introduced samples exhibit higher Seebeck coefficient comparing with pristine Te when the test temperature is above 450 K.Both the parameters are optimized in higher temperature range, and the values increase continuously with the temperature increasing.When the temperature exceeds 550 K, theSgradually decreases due to the appearance of intrinsic excitation, resulting in an increase in minority carriers,[33]which restrains theSof the sample.Comparing with pure Te, the introduction of GeP5makes the bipolar effect move to high temperature region.Figure 2(c) shows the relationship betweenSandnHbased on the single parabolic band model.We can find that the carrier effective mass (m?,black line) of pure Te is smaller than the GeP5-composited Te samples, which can partly eliminate the reduction ofSby the increasing ofnH.Combined with the changes in theρandS,we noted that the PF values of the sample were significantly enhanced with the synthetic pressure rising,reaching a maximum value of 10.18 μW·cm-1·K-2at 490 K of Te+0.50 wt% GeP5sample synthesized at 5.5 GPa, as shown in Fig.2(d).Higher fabricating pressure improves the decomposition efficiency of GeP5, thus leading to the increase ofnH, ultimately optimizing the electrical transport property.

    Figures 3(a)-3(c) is the scanning electron microscope(SEM)images of the GeP5-composited Te sample synthesized at 3.0 GPa, 4.5 GPa, and 5.5 GPa, respectively.The images show that with the increase of synthetic pressure, the grain boundaries become more abundant (as shown in Figs.3(d)-3(e)), indicating that high pressure has an inhibitory effect on grain growth.The affluent boundaries in the sample can enhance the phonons scattering, and then reduce the phonon conductivity.[34]

    Figures 4(a)-4(e) show the SEM images and the corresponding energy dispersive spectrometer (EDS) mapping of the sample synthesized at 5.5 GPa.It can be clearly observed that the BP embedded in the matrix,indicating that GeP5have decomposed into Ge and P,and the elemental P has been converted into BP phase basing on the Raman results in Fig.1(b),randomly distributing around the grain boundaries.In addition, the element Ge uniformly disperses in the basis materials,which has positive influence on the diminution of thermal conductivity.

    Fig.3.(a)-(c)SEM images for the produced GeP5-composited Te samples synthesized under different pressures,(d)-(f)grain size distribution corresponding to panels(a)-(c).

    Fig.4.(a)SEM image of Te+0.5 wt%GeP5,(b)-(e)the corresponding EDS elemental mappings.

    The detailed microstructure of Te+0.50 wt% GeP5synthesized at 5.5 GPa was characterized by high-resolution transmission electron microscopy (HRTEM) and inverse fast Fourier transform (IFFT) as shown in Fig.5.We can observe the clear lattice fringes of the sample, and then select the yellow and red regions for IFFT in Fig.5(a).As shown in Figs.5(b)and 5(c),the Te can be observed in the sample,evidenced by the gauged interplanar distances of 0.323 nm,corresponding to the(101)planes.Meanwhile,(041)planes of BP is also observed,proved by the measured interplanar distances is 0.223 nm.It indicates that BP acts as the second phase in Te matrix, which is benefit for enhancing the scattering of intermediate frequency phonon.Moreover,the lattice deformation and dislocation can also be found in the domains within our samples, which can effectively disperse the transportation of phonons, reducing the lattice thermal conductivity, thus optimizing the thermoelectric properties.

    Fig.5.Microstructure of produced GeP5-composited Te sample:(a)HRTEM image,and(b),(c)the IFFT images.

    Figure 6(a)shows the temperature dependence of the total thermal conductivity(κ)in the range of 300 K-610 K.Theκof all samples prepared under high pressure markedly decreases comparing with the pristine Te.With the increase of temperature,theκgradually decreases in the range of 300 K-550 K, and then shows an upward trend due to the emergence of intrinsic excitation.The minimum thermal conductivity is achieved 0.61 W·m-1·K-1at 550 K for the sample of Te+0.25 wt%GeP5synthesized at 4.5 GPa.We further calculated the phonon and bipolar thermal conductivity according to Wiedemann-Franz law:κph+bip=κ-κe,(κe=LσT,Lis the Lorenz number, which is estimated by the equationL=1.5+exp(-|S|/116),[35,36]as shown in Fig.6(b), about 36%decrease for the sample synthesized at high pressure.The reduction ofκph+bipcan be attributed to the combining effect of the existence of BP,lattice defects,and more grain boundary density introduced by high pressure.

    Benefitting from the superiority of high pressure and the introduction of BP, the figure of merit,zT, of GeP5-composited Te sample is significantly improved, as shown in Fig.7(a) and Fig.S1(f).ThezTmaxof Te+0.50 wt% GeP5sample synthesized at 5.5 GPa is obtained of 0.76 at 524 K,which is~11 times that of the pure Te.In Fig.7(b),thezTavepresents a progressive increase with the synthetic pressures rising.The peak and averagezTvalues of Te+0.25 wt%GeP5at the temperatures range of 300 K-610 K are increased by 55%and 68%compared with the sample synthesized at 3.0 GPa.

    In short, we demonstrated that, under HPHT conditions,the dynamic regulation of carrier behavior and grain boundary density can achieve the double optimization of the electrical property and thermal transport for element Te.The results show that the peakzTof Te+0.25 wt%GeP5synthesized at 5.5 GPa reaches 0.65 at 524 K, which is 55% improvement compared with the lower preparation pressure.Importantly,this work clearly confirms the advantages of pressure that can dramatically modulating the thermoelectric transport properties, being an effective way for searching high performance thermoelectric materials.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11804185, 11974208,52172212, 52102335, and 52002217) and the Natural Science Foundation of Shandong Province, China(Grant Nos.ZR2020YQ05, ZR2019MA054, 2019KJJ020,ZR2021YQ03,and 2022KJA043).

    猜你喜歡
    陳欣永勝海瑞
    韓永勝
    大江南北(2022年11期)2022-11-08 12:04:18
    唱一首祖國的贊歌
    陳欣運用補腎益精法治療育齡期月經(jīng)過少腎虛證經(jīng)驗
    一種兩級雙吸管道輸油泵
    “海瑞定理Ⅰ”的歷史性反思
    法律史評論(2020年1期)2020-09-11 06:25:02
    謝永勝
    寶藏(2018年6期)2018-07-10 02:26:38
    蛋白質(zhì)計算問題歸納
    愛心義賣
    生死連環(huán)計
    長江叢刊(2015年8期)2015-12-02 02:31:04
    論海瑞的“廉名”傳播及歷史啟示
    国产成人免费无遮挡视频| 久久欧美精品欧美久久欧美| 亚洲激情在线av| 午夜福利在线免费观看网站| 狠狠狠狠99中文字幕| 国产一区二区三区在线臀色熟女 | 99在线视频只有这里精品首页| 久99久视频精品免费| 日日爽夜夜爽网站| 久久青草综合色| 久久久久久久久中文| 99久久99久久久精品蜜桃| 亚洲一区二区三区不卡视频| 国产精品98久久久久久宅男小说| 12—13女人毛片做爰片一| 国产高清视频在线播放一区| 不卡一级毛片| 欧美大码av| 国产高清国产精品国产三级| 夜夜躁狠狠躁天天躁| 淫妇啪啪啪对白视频| 好看av亚洲va欧美ⅴa在| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 国产成人精品无人区| 高清黄色对白视频在线免费看| 99热只有精品国产| 久久精品国产综合久久久| 久久伊人香网站| 美女扒开内裤让男人捅视频| 国产精品电影一区二区三区| 欧美日韩视频精品一区| 久久性视频一级片| 色综合站精品国产| 久久久国产精品麻豆| 欧美激情 高清一区二区三区| 一个人观看的视频www高清免费观看 | 日韩 欧美 亚洲 中文字幕| 极品教师在线免费播放| 首页视频小说图片口味搜索| 久久久久国产精品人妻aⅴ院| 国产亚洲精品第一综合不卡| 日日干狠狠操夜夜爽| 国产单亲对白刺激| 一二三四在线观看免费中文在| 男女下面进入的视频免费午夜 | 成人三级黄色视频| 电影成人av| 一级片'在线观看视频| 超碰成人久久| 亚洲国产精品sss在线观看 | av电影中文网址| 人人妻,人人澡人人爽秒播| 精品久久久久久久毛片微露脸| 国产麻豆69| 丝袜美足系列| 搡老岳熟女国产| 免费女性裸体啪啪无遮挡网站| 97超级碰碰碰精品色视频在线观看| 在线国产一区二区在线| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 多毛熟女@视频| 国产乱人伦免费视频| 婷婷六月久久综合丁香| 大香蕉久久成人网| 国产1区2区3区精品| 日本免费一区二区三区高清不卡 | 在线观看免费午夜福利视频| 一本综合久久免费| 国产主播在线观看一区二区| 91国产中文字幕| 丰满迷人的少妇在线观看| 久久香蕉精品热| 久久中文看片网| 桃红色精品国产亚洲av| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三区在线| 99精国产麻豆久久婷婷| 精品日产1卡2卡| 欧美不卡视频在线免费观看 | 我的亚洲天堂| 大型黄色视频在线免费观看| 久久人妻福利社区极品人妻图片| svipshipincom国产片| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看| 日韩高清综合在线| 久久 成人 亚洲| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 欧美不卡视频在线免费观看 | 99国产精品99久久久久| 亚洲国产精品999在线| 欧美成人性av电影在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲中文字幕日韩| 久久久久久大精品| 成人国语在线视频| 一级a爱视频在线免费观看| 国产精品免费一区二区三区在线| 国产极品粉嫩免费观看在线| 欧美精品啪啪一区二区三区| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 国产精品乱码一区二三区的特点 | 老鸭窝网址在线观看| 在线播放国产精品三级| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 最新美女视频免费是黄的| 身体一侧抽搐| 色综合站精品国产| 国产乱人伦免费视频| 男女下面进入的视频免费午夜 | a级片在线免费高清观看视频| 国产精华一区二区三区| 精品卡一卡二卡四卡免费| 久久国产乱子伦精品免费另类| 国产精品爽爽va在线观看网站 | 51午夜福利影视在线观看| 成人亚洲精品av一区二区 | 欧美人与性动交α欧美精品济南到| 人人澡人人妻人| xxxhd国产人妻xxx| 又大又爽又粗| 成年人黄色毛片网站| 熟女少妇亚洲综合色aaa.| 日日摸夜夜添夜夜添小说| 少妇 在线观看| 波多野结衣高清无吗| 国产91精品成人一区二区三区| 午夜福利在线免费观看网站| 一级,二级,三级黄色视频| 欧美黄色淫秽网站| 一级毛片女人18水好多| 国产精品一区二区精品视频观看| 精品人妻1区二区| 午夜福利一区二区在线看| 亚洲熟妇熟女久久| 久久久国产精品麻豆| 大型av网站在线播放| 欧美日韩视频精品一区| 精品国产乱子伦一区二区三区| 91字幕亚洲| 午夜亚洲福利在线播放| 国产精品秋霞免费鲁丝片| 99热国产这里只有精品6| 欧美黑人欧美精品刺激| 91成年电影在线观看| 又大又爽又粗| aaaaa片日本免费| 久久热在线av| 真人做人爱边吃奶动态| 国产精品久久久久成人av| 妹子高潮喷水视频| 国产不卡一卡二| 午夜福利在线观看吧| 亚洲欧美日韩高清在线视频| 国产又爽黄色视频| 欧美精品一区二区免费开放| 久久青草综合色| 亚洲一区二区三区不卡视频| 亚洲人成伊人成综合网2020| 久久久国产一区二区| 精品高清国产在线一区| 动漫黄色视频在线观看| 日韩精品免费视频一区二区三区| 亚洲性夜色夜夜综合| 亚洲一卡2卡3卡4卡5卡精品中文| 久久午夜综合久久蜜桃| 免费日韩欧美在线观看| 激情视频va一区二区三区| 日本欧美视频一区| av在线天堂中文字幕 | 欧美日韩亚洲国产一区二区在线观看| 在线观看舔阴道视频| 激情视频va一区二区三区| 亚洲欧美日韩无卡精品| 亚洲精品美女久久av网站| 亚洲人成电影观看| 精品久久久久久成人av| 日韩精品中文字幕看吧| 中文字幕人妻丝袜一区二区| 精品日产1卡2卡| 国产99白浆流出| 嫩草影院精品99| 日本vs欧美在线观看视频| 久久影院123| av国产精品久久久久影院| 999久久久精品免费观看国产| 久热这里只有精品99| 久久久久久久精品吃奶| 亚洲第一欧美日韩一区二区三区| 欧美日韩国产mv在线观看视频| 亚洲 欧美 日韩 在线 免费| 国产精品久久久av美女十八| 国产精品爽爽va在线观看网站 | 国产人伦9x9x在线观看| 日日爽夜夜爽网站| 欧美激情久久久久久爽电影 | 涩涩av久久男人的天堂| 天堂√8在线中文| 一级片免费观看大全| 真人一进一出gif抽搐免费| 夫妻午夜视频| 丁香六月欧美| 久久国产精品影院| 亚洲中文av在线| 久久精品人人爽人人爽视色| 丝袜人妻中文字幕| 美女扒开内裤让男人捅视频| 日本五十路高清| 一边摸一边抽搐一进一小说| 亚洲va日本ⅴa欧美va伊人久久| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 一进一出抽搐gif免费好疼 | 亚洲三区欧美一区| 久久中文字幕一级| 久久热在线av| 久久精品国产亚洲av香蕉五月| 午夜老司机福利片| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| 亚洲专区字幕在线| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 亚洲人成网站在线播放欧美日韩| 黄频高清免费视频| 亚洲av成人一区二区三| 日本黄色日本黄色录像| 在线播放国产精品三级| 午夜福利欧美成人| 国产精品秋霞免费鲁丝片| 午夜激情av网站| 成年人免费黄色播放视频| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 青草久久国产| 久热爱精品视频在线9| 午夜福利在线免费观看网站| 亚洲色图综合在线观看| 欧美黄色片欧美黄色片| 夫妻午夜视频| 国产三级在线视频| 操出白浆在线播放| 精品少妇一区二区三区视频日本电影| 国产一卡二卡三卡精品| 亚洲人成电影观看| 少妇的丰满在线观看| 国产免费男女视频| 亚洲av成人av| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 免费不卡黄色视频| 欧美+亚洲+日韩+国产| a在线观看视频网站| 高清欧美精品videossex| 国产精品二区激情视频| 最新美女视频免费是黄的| 免费少妇av软件| 国产国语露脸激情在线看| 麻豆成人av在线观看| 国产亚洲精品久久久久5区| 亚洲 欧美一区二区三区| 国产蜜桃级精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲专区中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频一区二区在线看| 免费观看人在逋| 啦啦啦在线免费观看视频4| 在线永久观看黄色视频| 日韩欧美在线二视频| 新久久久久国产一级毛片| 69精品国产乱码久久久| 97人妻天天添夜夜摸| 精品国产乱码久久久久久男人| 久久青草综合色| 欧美午夜高清在线| √禁漫天堂资源中文www| 日本五十路高清| 久久香蕉激情| 不卡一级毛片| 欧美精品一区二区免费开放| 日韩中文字幕欧美一区二区| 视频在线观看一区二区三区| av免费在线观看网站| 日韩欧美免费精品| 亚洲欧美一区二区三区久久| 一个人免费在线观看的高清视频| 黄色毛片三级朝国网站| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 日本撒尿小便嘘嘘汇集6| 欧美日韩亚洲高清精品| 欧美色视频一区免费| 少妇 在线观看| 久久精品国产亚洲av高清一级| 久久久久久久久中文| 天堂√8在线中文| 成人18禁高潮啪啪吃奶动态图| av欧美777| 亚洲一区高清亚洲精品| av中文乱码字幕在线| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| av福利片在线| 悠悠久久av| 丝袜人妻中文字幕| 国产亚洲精品久久久久久毛片| 交换朋友夫妻互换小说| 亚洲色图av天堂| 男女之事视频高清在线观看| 国产伦一二天堂av在线观看| 久久中文字幕一级| 91九色精品人成在线观看| 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 亚洲美女黄片视频| 91av网站免费观看| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | 精品电影一区二区在线| 亚洲第一青青草原| 日韩人妻精品一区2区三区| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 亚洲熟妇中文字幕五十中出 | 9热在线视频观看99| 免费高清视频大片| bbb黄色大片| 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 久久久久国产精品人妻aⅴ院| 欧美日韩亚洲综合一区二区三区_| 男男h啪啪无遮挡| 日韩三级视频一区二区三区| 看片在线看免费视频| 天堂动漫精品| 国产精品电影一区二区三区| 成人免费观看视频高清| 丁香六月欧美| 午夜福利免费观看在线| 国产熟女xx| 嫩草影院精品99| 亚洲中文日韩欧美视频| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| 丝袜美腿诱惑在线| 国产伦一二天堂av在线观看| 18禁美女被吸乳视频| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av高清一级| 高清欧美精品videossex| 中文字幕另类日韩欧美亚洲嫩草| 国产精品乱码一区二三区的特点 | 操美女的视频在线观看| 亚洲成人精品中文字幕电影 | 少妇粗大呻吟视频| 日本一区二区免费在线视频| 亚洲伊人色综图| 极品人妻少妇av视频| 日韩精品青青久久久久久| 亚洲人成电影免费在线| 999久久久国产精品视频| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| 亚洲人成电影观看| 精品国产超薄肉色丝袜足j| 国产精品九九99| 啦啦啦在线免费观看视频4| 国产一区二区在线av高清观看| 国产99久久九九免费精品| 亚洲精品美女久久久久99蜜臀| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 日日爽夜夜爽网站| 日韩视频一区二区在线观看| 超碰成人久久| 日韩人妻精品一区2区三区| 国产精品1区2区在线观看.| 国产精品 国内视频| 国产精品1区2区在线观看.| 午夜福利在线观看吧| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 老汉色∧v一级毛片| 一区在线观看完整版| 12—13女人毛片做爰片一| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 一级a爱视频在线免费观看| 久久久久国内视频| 999久久久精品免费观看国产| 成人黄色视频免费在线看| 每晚都被弄得嗷嗷叫到高潮| 两性夫妻黄色片| 999精品在线视频| 中文字幕人妻熟女乱码| 婷婷精品国产亚洲av在线| 首页视频小说图片口味搜索| 在线观看免费视频网站a站| 夫妻午夜视频| 中文字幕人妻丝袜一区二区| 中文字幕高清在线视频| 黄频高清免费视频| 国产精品1区2区在线观看.| 18禁裸乳无遮挡免费网站照片 | svipshipincom国产片| 男女下面进入的视频免费午夜 | 色婷婷久久久亚洲欧美| 18禁国产床啪视频网站| 欧美丝袜亚洲另类 | 国产三级在线视频| 久久香蕉国产精品| 国产aⅴ精品一区二区三区波| 欧美日本亚洲视频在线播放| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 新久久久久国产一级毛片| 91av网站免费观看| 欧美久久黑人一区二区| 啦啦啦免费观看视频1| 欧美日韩亚洲综合一区二区三区_| 欧美久久黑人一区二区| 成人特级黄色片久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 久久午夜亚洲精品久久| 精品人妻1区二区| 大码成人一级视频| 亚洲激情在线av| xxxhd国产人妻xxx| av在线天堂中文字幕 | 久久精品国产亚洲av香蕉五月| 国产日韩一区二区三区精品不卡| 国产一区二区激情短视频| 精品久久久精品久久久| 啪啪无遮挡十八禁网站| 在线观看www视频免费| 一级作爱视频免费观看| 男女午夜视频在线观看| 欧美另类亚洲清纯唯美| 中文字幕人妻丝袜一区二区| 亚洲中文日韩欧美视频| 满18在线观看网站| 精品少妇一区二区三区视频日本电影| av福利片在线| 国产成人系列免费观看| av天堂久久9| 久久久水蜜桃国产精品网| 在线观看舔阴道视频| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产一区二区入口| 亚洲精品国产一区二区精华液| 黄片小视频在线播放| 麻豆一二三区av精品| 国产有黄有色有爽视频| 国产精品1区2区在线观看.| tocl精华| 国产深夜福利视频在线观看| 欧美另类亚洲清纯唯美| 国产精品二区激情视频| 香蕉久久夜色| 在线观看午夜福利视频| 欧美+亚洲+日韩+国产| 91麻豆av在线| 男女床上黄色一级片免费看| 国产熟女xx| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 操美女的视频在线观看| 在线永久观看黄色视频| 久久国产亚洲av麻豆专区| 日本a在线网址| 女同久久另类99精品国产91| 无人区码免费观看不卡| 嫩草影视91久久| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区欧美精品| 免费在线观看视频国产中文字幕亚洲| 大陆偷拍与自拍| 窝窝影院91人妻| 成年人免费黄色播放视频| 夜夜躁狠狠躁天天躁| 亚洲久久久国产精品| 国产精品永久免费网站| 一进一出好大好爽视频| 伦理电影免费视频| 在线视频色国产色| 男人操女人黄网站| 欧美日韩精品网址| 午夜福利免费观看在线| 欧美大码av| 国产又爽黄色视频| 99久久综合精品五月天人人| 久久人人精品亚洲av| 国产成人欧美在线观看| 亚洲精品一区av在线观看| 国产麻豆69| 最好的美女福利视频网| 久久久久久亚洲精品国产蜜桃av| 少妇粗大呻吟视频| 视频在线观看一区二区三区| 国产免费男女视频| 成人免费观看视频高清| 91大片在线观看| 99re在线观看精品视频| 久久这里只有精品19| 亚洲精品国产区一区二| 如日韩欧美国产精品一区二区三区| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 黄色毛片三级朝国网站| 巨乳人妻的诱惑在线观看| 99riav亚洲国产免费| 99国产精品99久久久久| 啦啦啦免费观看视频1| 91国产中文字幕| 亚洲欧美一区二区三区久久| 日韩精品免费视频一区二区三区| 国产色视频综合| 搡老熟女国产l中国老女人| 国产主播在线观看一区二区| 一区在线观看完整版| 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看| 精品无人区乱码1区二区| 日韩精品中文字幕看吧| www.999成人在线观看| 久久精品国产99精品国产亚洲性色 | 91字幕亚洲| 人成视频在线观看免费观看| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| 国产精品一区二区在线不卡| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 一区二区三区国产精品乱码| 美女午夜性视频免费| 制服诱惑二区| 欧美性长视频在线观看| 91精品三级在线观看| 欧美丝袜亚洲另类 | 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 久久久国产一区二区| 少妇粗大呻吟视频| 99国产精品一区二区蜜桃av| 亚洲 欧美一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产熟女午夜一区二区三区| 757午夜福利合集在线观看| 一二三四社区在线视频社区8| 少妇的丰满在线观看| 悠悠久久av| 亚洲五月天丁香| 香蕉久久夜色| 免费高清视频大片| 久久伊人香网站| 欧美日本亚洲视频在线播放| 欧美乱妇无乱码| 岛国在线观看网站| 久久久国产精品麻豆| 欧美大码av| 99re在线观看精品视频| 99久久国产精品久久久| 午夜两性在线视频| 亚洲国产精品一区二区三区在线| 丁香六月欧美| 18禁国产床啪视频网站| 亚洲第一欧美日韩一区二区三区| 欧美日韩亚洲高清精品| 最近最新免费中文字幕在线| 亚洲一区二区三区不卡视频| 亚洲精品美女久久av网站| 成人18禁在线播放| 丁香欧美五月| bbb黄色大片| 妹子高潮喷水视频| 国产精品 国内视频| 欧美人与性动交α欧美软件| 美女高潮到喷水免费观看| av天堂久久9| 久久狼人影院| 最新在线观看一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 久久精品成人免费网站| 又黄又爽又免费观看的视频| 成在线人永久免费视频| 可以在线观看毛片的网站| 亚洲,欧美精品.| 午夜久久久在线观看| 亚洲自拍偷在线| av超薄肉色丝袜交足视频| 50天的宝宝边吃奶边哭怎么回事| 80岁老熟妇乱子伦牲交| 真人一进一出gif抽搐免费| 韩国av一区二区三区四区| 亚洲精品国产精品久久久不卡| 国产日韩一区二区三区精品不卡| 亚洲片人在线观看| 大码成人一级视频| 久久国产乱子伦精品免费另类|