• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures

    2023-11-02 08:12:08ZhenLiWang王振禮ChaoYangKang康朝陽CaiHongJia賈彩虹HaiZhongGuo郭海中andWeiFengZhang張偉風(fēng)
    Chinese Physics B 2023年10期
    關(guān)鍵詞:朝陽彩虹

    Zhen-Li Wang(王振禮), Chao-Yang Kang(康朝陽), Cai-Hong Jia(賈彩虹),Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(張偉風(fēng)),?

    1Center for Topological Functional Materials,Henan University,Kaifeng 475004,China

    2Key Laboratory of Material Physics(Ministry of Education),School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    Keywords: Berry curvature, electric field, anomalous Hall effect, anisotropic magnetoresistance,magnetization rotation

    1.Introduction

    Berry curvature in the conduction band of materials is an important physical concept in modern condensed matter physics, which is closely related to many novel physical properties of ferromagnetic materials.[1-4]When studying the Hall effect, the Berry curvature for magnetic material can be considered as a magnetic field in momentum space, leading to many interesting magnetotransport phenomena.[5-7]For example, it is well known that for the anomalous Hall effect (AHE) and the topological Hall effect(THE) in ferromagnet,[2,8-10]the anomalous Hall conductivity()is directly proportional to the Berry curvature integral of all occupied electron bands in Brillouin zone.[11]The amplitude and sign ofare especially sensitive to the electronic band structure, particularly in a ferromagnetic material with significant spin-orbit coupling.[12,13]In transition metal oxides,the coupling effects between lattice,charge,orbit,and spin degree of freedom greatly affect electronic structures,thus affecting the physical properties of materials.[14-16]Therefore,the strain and electric field can be considered as an effective method to modulate the Berry curvature and AHE.

    Perovskite oxides have been widely studied because of their intriguing and rich physical properties, such as superconductivity,magnetism,ferroelectricity,Berry curvature,and so on.[17-20]SrRuO3(SRO) is the only 4d transition metal oxide with ferromagnetism and metallicity among the many perovskite-structured oxides known to date.In SRO, the THE induced by skyrmions and the AHE related to Berry curvature have been reported.[19,21-26]Renet al.observed nonmonotonic behavior formed by the superposition of positive and negative polarity AHE signals in BiFeO3/SrRuO3heterostructures.[27]Mizunoet al.reported the realization of gating-induced changes in Berry curvature integral over the filled electronic states in BaTiO3/SrRuO3heterostructures.[28]Recently, Tianet al.demonstrated that the change of Berry curvature is closely related to the magnitude of the in-plane tensile strain or compressive strain of the SRO film.[29]In SRO films or related heterostructures,non-monotonic AHE behavior, which is directly related to the evolution of spin-rotating Berry curvature, has been observed only in SRO films grown on DyScO3substrates so far.The magnetization also changes with the external magnetic field.If the simultaneous modulation can be realized by strain and gating,it is not only helpful in building novel low-power spintronic devices but also an effective research strategy to achieve the modulation of Berry curvature and to explore the physical phenomena related to the magnetization rotation.Therefore,it is more than essential to further investigate the effects of epitaxial strain and electric field associated with ferroelectric Pb(Zr,Ti)O3on nonmonotonic AHE and magnetization rotation in SRO films.

    In the present study, we observed the strain-induced nonmonotonic anomalous Hall effect and the four-fold symmetry anisotropic magnetoresistance simultaneously in SrRuO3/PbZr0.52Ti0.48O3/La0.7Sr0.3MnO3heterostructures.We further revealed that the electric field can modulate the Berry curvature by inducing the rotation of the magnetization.Both the magnitude and sign of the anomalous Hall resistivity()can be effectively modulated by an electric field,which arises from the electric field-induced magnetization rotation in SRO, which further induces Berry curvature evolution.This work suggests that the strain and electric field manipulation ofcan be an effective pathway to explore the relationship between Berry curvature and magnetization rotation in SRO heterostructures.

    2.Methods

    The SRO, PbZr0.52Ti0.48O3(PZT), and La0.7Sr0.3MnO3(LSMO) films were deposited by the pulsed laser deposition(PLD, Adnano-Tek).The SrTiO3(STO) substrate was pretreated according to the procedure described in our previous work[30]to obtain TiO2-terminated surfaces.The SRO(~20 nm),PZT(~90 nm),and LSMO(~10 nm)films were grown at 650°C under an oxygen partial pressure of 10 Pa(the laser wavelength of 248 nm,the pulse repetition rate of 2 Hz,and the laser energy density of 1.8 J/cm2).Figure 1(a)shows the schematic diagram of the SRO/PZT/LSMO heterostructure grown on a TiO2-terminated SrTiO3(001) substrate.X-ray diffraction(XRD,Bruker D8 advance)with CuKαradiation was performed to determine the crystalline state of film.Surface morphology and ferroelectric property were investigated by a scanning probe microscope(SPM,Asylum Research 3D Infinity)with a conductive tip.The Hall effect and magnetoresistance were measured in a physical property measurement system(PPMS-9)with a rotator module.To obtain the angular dependence of the resistivity, the sample orientation was varied with magnetic field under a certain temperature and magnetic field.

    3.Results and discussion

    Figure 1(b)shows the XRDθ-2θscanning pattern of the SRO/PZT/LSMO heterostructure, where the (00l) diffraction peaks from the PZT film and the STO substrate are clearly observed.The diffraction peaks of SRO and LSMO films can be clearly seen in the enlarged region between the angles 42°and 49°in the inset of Fig.1(b).According to the Bragg diffraction equation,the lattice constant of thecaxis of the SRO film can be calculated to be about 3.924 °A.Since the lattice constant of the bulk SRO is 3.930 °A,the out-of-plane compressive strain in the SRO film of-0.15%is obtained.Furthermore, the inplane tensile strain of 0.16%is achieved from the Poisson ratio of 0.32.[31]As shown by the atomic force microscope measurement shown in Fig.1(c),the surface of SRO/PZT/LSMO is quite flat,with a roughness of about 0.4 nm,implying that a high-quality SRO/PZT/LSMO heterostructure is obtained.

    Fig.1.(a) The schematic diagram, (b) the XRD pattern, (c) the AFM height topographic images of the SRO/PZT/LSMO heterostructure (image size:3 μm×3 μm), (d) the temperature-dependent longitudinal resistivity (ρxx-T) and I-V curves of the SRO/PZT/LSMO heterostructure, (e) the magnetic field-dependent MR of SRO/PZT/LSMO heterostructure at different temperatures, and (f) the magnetic field-dependent MR of the SRO film at different temperatures.

    As shown in Fig.1(a), the LSMO conductive layer is completely covered by the ferroelectric insulating layer PZT.Moreover, the insulating behavior is demonstrated in the SRO/PZT/LSMO heterostructure in the inset of Fig.1(c).Therefore, we can rule out the influence of the LSMO layer on the SRO/PZT/LSMO heterostructure in the transport measurement.Figure 1(d) shows the temperature dependence of the longitudinal resistivity of the SRO/STO sample and the SRO/PZT/LSMO/STO sample.A clear kink at 148 K can be observed for SRO/STO, which is consistent with the previously reported result in SRO film.[16,32,33]For SRO/PZT/LSMO/STO,a weak kink at 157 K is observed.The kink corresponds to the Curie temperature (TC), at which the phase transition from the paramagnetic to the ferromagnetic state occurs.TheTCvalue of the in-plane tensile-strained SRO film is higher than that of the in-plane compressivestrained SRO film on the STO substrate, which is consistent with previous result about the enhancement ofTCby tensile strain.[34]Figure 1(e) shows the magnetic-field dependence of magnetoresistance (MR) [MR = (RH-R)/R)], which is measured at temperatures ranging from 10 K to 100 K.For the SRO/PZT/LSMO heterostructure,the out-of-plane MR exhibits a nonmonotonic variation, with positive MR observed in the low magnetic field region.This result is in agreement with the previous result of SRO film with in-plane tensile strain.[14,19]As shown in Fig.1(f), for the SRO film grown on STO substrates under compressive strain, we can observe standard negative MR with butterfly-shaped hysteresis.These clearly indicate that there are two competing MR mechanisms in the SRO/PZT/LSMO heterostructure at different temperatures.The positive MR effect in low magnetic field and the negative MR effect in high magnetic field cause magnetic easy axis to deviate from out-of-plane with the increase of magnetic field.This point will be further clarified by the anisotropic magnetoresistance(AMR)measurements.

    The schematic diagram for the AMR measurement is shown in Fig.2(a).To demonstrate that the magnetic easy axis of the SRO/PZT/LSMO heterostructure lies in the plane,we performθ-dependent AMR measurements.The angleθis defined as the angle between the magnetic field and the film’s normal direction in the(010)plane,andθ=0°defined as the external magnetic fieldHperpendicular to the film surface.The reversal of magnetization leads to peaks inρxxaround the easy axis when the angle between the easy axis and the field exceeds 90°.[29,35,36]The AMR of the SRO/PZT/LSMO heterostructure shows hysteretic peaks nearθ= 180°[see Fig.2(b)], indicating that the magnetic easy axis is close to the in-plane direction, which accords with an in-plane tensile strain derived from the XRD measurement.On the contrary,the AMR of the SRO film shows two hysteresis peaks nearθ=90°and 270°, respectively [see Fig.2(c)], implying that the magnetic easy axis is close to the out-of-plane direction,which is consistent with the previous result.[35]Then,we performφ-dependent AMR measurements.The angleφis defined as the angle between the magnetic field and the film’s normal direction in the(100)plane, andφ=0°is defined as the external magnetic fieldHperpendicular to the film surface.Figures 2(d)-2(f) show the angle (φ)-dependent AMR of the SRO/PZT/LSMO heterostructure at 40 K under the magnetic fields of 1 T,4 T,and 8 T,respectively.Under a low magnetic field of 1 T,the AMR curve shows a two-fold symmetry,and it presents a four-fold symmetry feature under a high magnetic field of 4 T.The four-fold symmetry feature of the AMR curve is more pronounced at higher magnetic fields.The AMR curve can be well fitted by the following equation:

    whereC2φandC4φrepresent the amplitude of two-fold and four-fold symmetric AMR,respectively,C0,φ1,andφ2are the coefficients.[36-39]It turns out that the above AMR curves can be fitted very well by Eq.(1).According to the spin dependent scattering theory,[40,41]the resistivity of a magnetic system is closely related to the alignments of spin moments and the free energy as well.The free energy of a system includes magnetocrystalline anisotropy energy (EK), Zeeman energy(EH),and exchange energy(Eex),i.e.,E=EK+EH+Eex.[42]For a fully magnetized ferromagnetic system, the magnetic moments point to the same direction at the same time, and the exchange energy is negligible.The magnetocrystalline anisotropy energy varies along crystal axis direction in high magnetic field.The easy axis has the lowest magnetocrystalline anisotropy energy, while the hard axis has the highest one.The Zeeman energy in ferromagnetic system is related to the applied magnetic field.When the magnetic moment points to the same direction as the external field direction,the Zeeman energy reaches its lowest value.Therefore, for the SRO/PZT/LSMO heterostructure, the main attribution to AMR isEKandEH.We speculate that the four-fold symmetric behavior in the AMR curve results from the rotation of the magnetization due to the competition between the magnetocrystalline anisotropy energy and the Zeeman energy.[39]The two-fold symmetric AMR is mainly attributed to the uniaxial anisotropy with the easy axis lying in the plane.With the increase of the magnetic field,SRO forms a spin canting state and the magnetization tends to align along the external field magnetic direction, albeit with some deviation.[43]When the magnetic field is perpendicular to the heterostructure plane,the equivalent spin-canting state will appear both at the angle above or below 90°, which means that the two AMR peaks will be revealed in the vicinity of 90°and a minimum AMR will be at 90°.When the angle(φ)is rotated to 90°,the magnetic field is parallel to the SRO/PZT/LSMO heterostructure plane.The spins tend to be arranged regularly in the plane,so the AMR is in a low state.Thus, a clear four-fold dominant symmetric AMR is observed under a high magnetic field of 8 T at the low temperature of 40 K.

    Fig.2.(a)Schematic diagram of out-of-plane anisotropic magnetoresistance measurement.Angular θ-dependent AMR for(b)SRO/PZT/LSMO heterostructures and(c)SRO flims measured at 40 K withμ0H=1 T,with angular φ-dependent AMR of SRO/PZT/LSMO heterostructures measured at(d)1 T,(e)4 T,and(f)8 T at 40 K,and blue solid lines representing ftiting results.

    We further investigate the effect of the polarization electric field on thein SRO/PZT/LSMO heterostructure.We choose the Ag electrode on the back of the STO as a bottom electrode and the SRO as a top electrode as shown in Fig.1(a).A vertical electric field of +2.6 kV/cm can be generated by applying a negative bias to the top electrode of the sample.As shown in Fig.4(a), as the positive electric field gradually increases, the intersecting hump-like features are obviously suppressed and theare enhanced.On the contrary, the intersecting hump-like features can be clearly observed in the downward polarization under a negative electric field, which is consistent with the pristine state.It is worth noting that the magnitude ofis larger than that of the pristine state whether this electric field is-2 kV/cm or-2.6 kV/cm.This can be understood from the fact the pristine state is not in fully downward polarization.Using a piezoelectric force microscope, the spontaneous polarization of PZT can be well-oriented and switched.The out-of-plane phase images are acquired after applying a written bias of±8 V to a PFM tip over an area of 3 μm×3 μm.In Fig.4(g), we show that the pristine ferroelectric polarization is downward.Figure 4(h)shows the phase images of the PZT film after being polarized with an electric field of+2.6 kV/cm generated by a negative bias.We observed that the phase images of the central region with-8 V applied are almost completely the same as those of the unbiased region,and the phase flip contrast of the PZT film is close to 180°,indicating that the PZT film can be completely polarized under an electric field of +2.6 kV/cm,and the polarization direction is vertically upward.Then, we apply the negative bias to the bottom electrode.As shown in Fig.4(i), the phase images of the PZT film after being polarized with an electric field of-2.6 kV/cm.We observed that the phase images of the central region with-8 V applied are almost completely the same as those of the unbiased region, indicating that the polarization direction of the PZT film is reversed downward under an electric field of-2.6 kV/cm.

    As shown in Fig.4(a),the intersecting hump-like features are obviously suppressed or strengthened by applying a positive electric field or a negative electric field,respectively.More importantly,at a high magnetic field of-9 T,the sign ofis reversed from negative to positive at the positive electric field.Furthermore,when the electric field is switched back to the negative electric field, the sign ofis reversed from positive to negative.As shown in Fig.4(b), the MR curves of SRO/PZT/LSMO heterostructures also have corresponding features in the magnetic field region where the intersecting hump-like features appear in thecurves.At the same time,the intersecting features can be clearly seen to disappear or appear by applying positive electric field or negative electric field,respectively.Figure 4(c)shows the electric-field dependence of(~-) for the SRO/PZT/LSMO heterostructures at 40 K.Similarly, the sign of(taken at-9 T) remains positive at the negative electric fields and turns negative at the positive electric fields.Compared with the value oat a zero electric field, it reduces by about 19.4% at the electric field of-2.6 kV/cm but 483.3% at the electric field of+2.6 kV/cm,respectively.

    In view of the fact that strain controls magnetic easy axis,[29]it is speculated that the sign reversal and the intersecting hump-like features of theare related to the magnetization rotation.To further clarify the contribution of magnetization rotation to the,the AHE is measured under inclined magnetic fields at an angle ofφwith respect to the normal of films.In Fig.4(d),the intersecting hump-like features are obviously suppressed at a small tilting angle (φ=30°),while a large tilting angle (φ= 50°) leads the intersecting hump-like features to reappear.Similarly,in Fig.4(e),the intersecting features of the MR curves are obviously suppressed at a small tilting angle (φ=30°), while a large tilting angle(φ=50°)leads the intersecting features to reappear.It should be noted that the change characteristics of angle-dependent AHE and MR are consistent with the those of AHE and MR modulated by external electric fields.Based on the angledependent AHE measurement,the intersecting hump-like features are indeed related to the magnetization rotation.Theis very sensitive to the angle (α) between the magnetization and the out-of-plane sample normal, exhibiting nonmonotonical dependence, which should be attributed to the fact that Fermi level and electronic band structure are modified with the Zeeman energy.[29]With the increase of the magnetic field, SRO forms a spin canting state and the magnetization tends to align with the external magnetic field direction,albeit with some deviations.[43]

    whereΩz(k) is thez-component of the Berry curvature.[1]The Berry curvature can also be modulated by rotating magnetization.[29]Therefore, the sign change ofin SRO/PZT/LSMO heterostructure may be closely related to the electronic band structure with the Zeeman energy.The rotation of magnetization in real space leads to Berry curvature evolution.These results demonstrate that the electric-fieldinduced sign reversal of the(taken at-9 T) and the intersecting hump-like features are indeed related to the magnetization rotation.Therefore,the electric field can effectively modulate the Berry curvature through the magnetization rotation, which provides a material basis for the application of spintronic devices.

    4.Conclusions

    In summary, SRO films with in-plane tensile strain can be obtained by epitaxial growth of LSMO and PZT layers on STO substrates.The anisotropic magnetoresistance of the SRO/PZT/LSMO heterostructure exhibits a four-fold symmetric in a high magnetic field of 8 T.Furthermore, the anomalous Hall resistivity of the SRO/PZT/LSMO heterostructure exhibits a nonmonotonic behavior with the magnetic field.In a high magnetic field of-9 T, the sign of anomalous Hall conductivity is reversed owing to the change of electric field.The experimental results suggest that these interesting physical phenomena induced by electric field are attributed to the rotation of magnetization, which results the evolution of the Berry curvature.This work provides a controllable approach for modulating the magnetization and AHE in SrRuO3based heterostructures.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11974099), the Intelligence Introduction Plan of Henan Province, China in 2021 (Grant No.CXJD2021008), the Plan for Leading Talent of Fundamental Research of the Central China in 2020, and the Key Scientific Research Project of Colleges and Universities in Henan Province,China(Grant No.21A140005).

    猜你喜歡
    朝陽彩虹
    美是童年朝陽
    迎朝陽
    科教新報(2021年22期)2021-07-21 15:09:05
    阮春黎 迎著朝陽,一直跑
    海峽姐妹(2020年11期)2021-01-18 06:16:04
    Seesaw Cofee朝陽大悅城
    不許耍賴
    彩虹
    勇于認(rèn)錯(三)
    樂于助人的彩虹花
    為什么雨后會有彩虹?
    來,一起收割彩虹
    白带黄色成豆腐渣| 他把我摸到了高潮在线观看| 黄色视频不卡| 好男人在线观看高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 无限看片的www在线观看| 成人av一区二区三区在线看| 一二三四社区在线视频社区8| 免费人成视频x8x8入口观看| www.精华液| 一本大道久久a久久精品| 91字幕亚洲| www.999成人在线观看| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 亚洲 欧美一区二区三区| 亚洲午夜精品一区,二区,三区| 老熟妇仑乱视频hdxx| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 国内精品久久久久精免费| 日本成人三级电影网站| 美女黄网站色视频| 制服诱惑二区| 丁香六月欧美| 婷婷精品国产亚洲av在线| 亚洲精品国产精品久久久不卡| 91国产中文字幕| 久久久久精品国产欧美久久久| 老熟妇乱子伦视频在线观看| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| e午夜精品久久久久久久| 一区二区三区国产精品乱码| 人人妻,人人澡人人爽秒播| 久久精品综合一区二区三区| 国产日本99.免费观看| 国产激情偷乱视频一区二区| 午夜福利在线在线| 丝袜美腿诱惑在线| 91麻豆av在线| 手机成人av网站| 成人三级黄色视频| 成人午夜高清在线视频| 欧美另类亚洲清纯唯美| 三级男女做爰猛烈吃奶摸视频| 中文资源天堂在线| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 白带黄色成豆腐渣| 岛国视频午夜一区免费看| 嫁个100分男人电影在线观看| 黄色丝袜av网址大全| 曰老女人黄片| 国产免费av片在线观看野外av| 大型av网站在线播放| 精品欧美一区二区三区在线| 白带黄色成豆腐渣| 亚洲精品久久成人aⅴ小说| av视频在线观看入口| 老司机福利观看| 亚洲午夜精品一区,二区,三区| 在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 精品乱码久久久久久99久播| 久久久久九九精品影院| 国产激情欧美一区二区| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 国产成人一区二区三区免费视频网站| 国产精品亚洲美女久久久| 日韩欧美精品v在线| 精品国产乱码久久久久久男人| av片东京热男人的天堂| 色老头精品视频在线观看| 久久精品aⅴ一区二区三区四区| 99久久无色码亚洲精品果冻| 精品久久久久久久久久久久久| 女同久久另类99精品国产91| 五月玫瑰六月丁香| 可以在线观看的亚洲视频| 免费一级毛片在线播放高清视频| 色在线成人网| 最近最新中文字幕大全免费视频| 制服人妻中文乱码| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 99久久精品热视频| 1024手机看黄色片| 亚洲国产日韩欧美精品在线观看 | 国产一区二区三区视频了| www.999成人在线观看| 久99久视频精品免费| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av在线| 我要搜黄色片| 亚洲精品国产一区二区精华液| av免费在线观看网站| 国产精品一及| bbb黄色大片| 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆| 国产成人精品久久二区二区91| 国产激情久久老熟女| 在线观看66精品国产| 亚洲成人国产一区在线观看| 国产精品美女特级片免费视频播放器 | 欧美绝顶高潮抽搐喷水| 色综合亚洲欧美另类图片| 久久久久九九精品影院| 国产亚洲精品av在线| 天天躁狠狠躁夜夜躁狠狠躁| 免费看十八禁软件| 国产激情偷乱视频一区二区| 搡老岳熟女国产| 俄罗斯特黄特色一大片| 欧美黄色淫秽网站| 又紧又爽又黄一区二区| 床上黄色一级片| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 黄色毛片三级朝国网站| 熟女电影av网| 精品久久久久久,| 久久久国产欧美日韩av| av天堂在线播放| 中文字幕人成人乱码亚洲影| 一二三四社区在线视频社区8| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频| 性欧美人与动物交配| 国内精品久久久久精免费| 天天一区二区日本电影三级| 亚洲国产高清在线一区二区三| 精品人妻1区二区| 美女黄网站色视频| 制服丝袜大香蕉在线| 午夜福利视频1000在线观看| 又爽又黄无遮挡网站| 日韩欧美国产在线观看| 午夜精品一区二区三区免费看| 9191精品国产免费久久| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久,| 国产蜜桃级精品一区二区三区| 免费高清视频大片| 亚洲无线在线观看| 51午夜福利影视在线观看| 搡老妇女老女人老熟妇| 久久精品国产亚洲av高清一级| 18美女黄网站色大片免费观看| 桃色一区二区三区在线观看| 丰满人妻熟妇乱又伦精品不卡| 一本综合久久免费| 夜夜看夜夜爽夜夜摸| 18禁黄网站禁片免费观看直播| 嫩草影院精品99| 久久久久九九精品影院| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久人妻蜜臀av| 在线观看免费视频日本深夜| 在线视频色国产色| 免费看美女性在线毛片视频| 97超级碰碰碰精品色视频在线观看| 国产探花在线观看一区二区| 亚洲色图av天堂| 亚洲成a人片在线一区二区| 级片在线观看| 特级一级黄色大片| 国产男靠女视频免费网站| 亚洲精品美女久久久久99蜜臀| 亚洲精品久久国产高清桃花| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线黄色| 黄频高清免费视频| www国产在线视频色| 亚洲av片天天在线观看| 亚洲欧洲精品一区二区精品久久久| 日韩精品中文字幕看吧| 成人三级黄色视频| av在线天堂中文字幕| 亚洲成a人片在线一区二区| 欧美高清成人免费视频www| 亚洲精品在线美女| 久久天堂一区二区三区四区| 午夜免费激情av| 国产激情久久老熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲美女黄片视频| 精品国产美女av久久久久小说| 亚洲国产精品成人综合色| 人妻久久中文字幕网| 欧美性长视频在线观看| 18禁观看日本| 亚洲激情在线av| 俄罗斯特黄特色一大片| 久久这里只有精品19| 亚洲av中文字字幕乱码综合| 久久久久久人人人人人| 欧美午夜高清在线| 夜夜爽天天搞| 99热这里只有精品一区 | 午夜精品久久久久久毛片777| 国产av一区在线观看免费| 欧美 亚洲 国产 日韩一| 午夜福利在线在线| 久久久水蜜桃国产精品网| 成人手机av| 最近最新中文字幕大全电影3| 国产精品免费视频内射| 天天躁狠狠躁夜夜躁狠狠躁| 听说在线观看完整版免费高清| 一进一出抽搐动态| 黑人欧美特级aaaaaa片| 日日摸夜夜添夜夜添小说| 熟妇人妻久久中文字幕3abv| 国产爱豆传媒在线观看 | 日韩欧美在线二视频| 日韩精品中文字幕看吧| 久久精品夜夜夜夜夜久久蜜豆 | 午夜久久久久精精品| 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影| 久久精品91无色码中文字幕| 国产av一区在线观看免费| 中文亚洲av片在线观看爽| 一二三四社区在线视频社区8| av福利片在线| 国产成人精品久久二区二区免费| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 国产亚洲欧美在线一区二区| 毛片女人毛片| 麻豆一二三区av精品| 欧美又色又爽又黄视频| 欧美zozozo另类| 在线播放国产精品三级| 精品国产超薄肉色丝袜足j| 女生性感内裤真人,穿戴方法视频| 久99久视频精品免费| 亚洲av成人一区二区三| 国产爱豆传媒在线观看 | 精品熟女少妇八av免费久了| 男女那种视频在线观看| 老汉色∧v一级毛片| 亚洲av成人不卡在线观看播放网| av在线播放免费不卡| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 成人国产综合亚洲| 免费av毛片视频| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 人妻夜夜爽99麻豆av| 久久久国产精品麻豆| e午夜精品久久久久久久| 国产精品乱码一区二三区的特点| 亚洲国产看品久久| 老鸭窝网址在线观看| 级片在线观看| 动漫黄色视频在线观看| 欧美日韩亚洲综合一区二区三区_| 50天的宝宝边吃奶边哭怎么回事| 国产91精品成人一区二区三区| 国产69精品久久久久777片 | 中文字幕熟女人妻在线| 亚洲在线自拍视频| 国产精品,欧美在线| 狂野欧美激情性xxxx| 一区二区三区高清视频在线| 18禁裸乳无遮挡免费网站照片| 搞女人的毛片| 我要搜黄色片| 国产1区2区3区精品| 在线免费观看的www视频| 精品日产1卡2卡| 亚洲精品在线观看二区| 无人区码免费观看不卡| 午夜福利高清视频| 亚洲欧美日韩高清专用| 亚洲 欧美 日韩 在线 免费| 俺也久久电影网| 亚洲一区中文字幕在线| 国产高清有码在线观看视频 | 午夜免费观看网址| 狂野欧美白嫩少妇大欣赏| 亚洲国产日韩欧美精品在线观看 | av片东京热男人的天堂| 午夜日韩欧美国产| 精华霜和精华液先用哪个| 免费看十八禁软件| 日韩有码中文字幕| 亚洲中文日韩欧美视频| 美女免费视频网站| 国产精品久久视频播放| 免费在线观看日本一区| 亚洲精品一区av在线观看| 日本a在线网址| 中文字幕最新亚洲高清| 一进一出抽搐gif免费好疼| 精品国产乱码久久久久久男人| svipshipincom国产片| 黄色 视频免费看| 一个人免费在线观看电影 | 成熟少妇高潮喷水视频| 色综合婷婷激情| 欧美又色又爽又黄视频| 香蕉丝袜av| 成人国语在线视频| 亚洲午夜精品一区,二区,三区| 国产成年人精品一区二区| 欧美色欧美亚洲另类二区| 手机成人av网站| 久久精品影院6| www国产在线视频色| 亚洲中文字幕日韩| 90打野战视频偷拍视频| 99热这里只有精品一区 | 91九色精品人成在线观看| 两个人免费观看高清视频| 久久午夜亚洲精品久久| 欧美乱色亚洲激情| 欧美在线黄色| 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 少妇人妻一区二区三区视频| 中出人妻视频一区二区| 亚洲欧美日韩无卡精品| 成人国语在线视频| 美女大奶头视频| 成人国语在线视频| 精华霜和精华液先用哪个| 性欧美人与动物交配| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 久久婷婷成人综合色麻豆| 两性夫妻黄色片| 久久精品91蜜桃| 久久精品成人免费网站| 成人特级黄色片久久久久久久| 麻豆av在线久日| 欧美精品亚洲一区二区| cao死你这个sao货| 国语自产精品视频在线第100页| 欧美zozozo另类| 久久久久国产精品人妻aⅴ院| 亚洲av第一区精品v没综合| 欧美日韩国产亚洲二区| 国产伦人伦偷精品视频| 不卡av一区二区三区| 久久中文字幕一级| 少妇熟女aⅴ在线视频| 国产精品av久久久久免费| 午夜日韩欧美国产| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 日本 欧美在线| 国产精品99久久99久久久不卡| 国产精品久久久久久人妻精品电影| 岛国在线观看网站| 中亚洲国语对白在线视频| 国产精品1区2区在线观看.| 一级片免费观看大全| 国产黄片美女视频| 这个男人来自地球电影免费观看| 在线观看www视频免费| 成人手机av| 国产一级毛片七仙女欲春2| 禁无遮挡网站| 老熟妇仑乱视频hdxx| 久99久视频精品免费| 亚洲专区中文字幕在线| aaaaa片日本免费| 欧美日本亚洲视频在线播放| 亚洲欧美精品综合久久99| 国产精品久久久av美女十八| 精品久久久久久成人av| 国产私拍福利视频在线观看| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 在线国产一区二区在线| 午夜亚洲福利在线播放| 手机成人av网站| 色精品久久人妻99蜜桃| 亚洲电影在线观看av| 两性夫妻黄色片| 两个人的视频大全免费| 免费在线观看成人毛片| 欧美av亚洲av综合av国产av| 蜜桃久久精品国产亚洲av| 国产精品av视频在线免费观看| 国产av一区在线观看免费| 美女黄网站色视频| 亚洲精品av麻豆狂野| 九九热线精品视视频播放| 在线观看舔阴道视频| 久久中文字幕人妻熟女| 天天一区二区日本电影三级| 18美女黄网站色大片免费观看| 亚洲中文字幕日韩| 日韩有码中文字幕| 久久人人精品亚洲av| 成人国语在线视频| 国产精品av视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 久久中文看片网| 免费观看精品视频网站| or卡值多少钱| 岛国在线观看网站| a在线观看视频网站| 999精品在线视频| 亚洲人与动物交配视频| 国产成人系列免费观看| 国产av一区在线观看免费| 亚洲男人天堂网一区| 99精品在免费线老司机午夜| 舔av片在线| 国产免费男女视频| 欧美成人一区二区免费高清观看 | 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 国产三级黄色录像| 韩国av一区二区三区四区| 一本精品99久久精品77| 一级a爱片免费观看的视频| 成人三级做爰电影| 美女黄网站色视频| 看片在线看免费视频| 99国产综合亚洲精品| 亚洲欧美日韩东京热| 欧美zozozo另类| 亚洲欧美精品综合一区二区三区| 亚洲欧美日韩高清专用| 人人妻人人澡欧美一区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久黄片| 天堂av国产一区二区熟女人妻 | 怎么达到女性高潮| 亚洲性夜色夜夜综合| 欧美日韩瑟瑟在线播放| 黄片大片在线免费观看| 色哟哟哟哟哟哟| 午夜激情福利司机影院| 美女大奶头视频| 欧美中文综合在线视频| 亚洲精品美女久久久久99蜜臀| 久久久久久久久中文| 在线观看美女被高潮喷水网站 | 搡老妇女老女人老熟妇| 国产成人精品久久二区二区免费| 十八禁网站免费在线| 日韩欧美在线二视频| 91字幕亚洲| 真人一进一出gif抽搐免费| av福利片在线观看| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| 一夜夜www| 国产激情偷乱视频一区二区| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 国产精品免费视频内射| 黄色视频,在线免费观看| 国产高清videossex| 国产真人三级小视频在线观看| 欧美日韩福利视频一区二区| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 91字幕亚洲| 国产单亲对白刺激| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 国产成人精品无人区| 亚洲 欧美 日韩 在线 免费| 99久久精品国产亚洲精品| av在线播放免费不卡| 国产成人av激情在线播放| 国产私拍福利视频在线观看| 伦理电影免费视频| 免费在线观看影片大全网站| 久久精品成人免费网站| 日本熟妇午夜| 国产精品九九99| 国产在线精品亚洲第一网站| 在线观看一区二区三区| 成人国语在线视频| 国产精品久久久久久亚洲av鲁大| 毛片女人毛片| 夜夜看夜夜爽夜夜摸| 十八禁人妻一区二区| 精品少妇一区二区三区视频日本电影| cao死你这个sao货| 成熟少妇高潮喷水视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美在线黄色| 人妻久久中文字幕网| 丁香欧美五月| 亚洲男人的天堂狠狠| 1024香蕉在线观看| 男女那种视频在线观看| 波多野结衣高清作品| 国产伦一二天堂av在线观看| www.www免费av| 国产三级中文精品| 亚洲国产中文字幕在线视频| 免费高清视频大片| 亚洲国产精品合色在线| 一级作爱视频免费观看| 一a级毛片在线观看| 国产精品一区二区免费欧美| 国产亚洲精品久久久久5区| 亚洲中文字幕日韩| 97超级碰碰碰精品色视频在线观看| 国产免费av片在线观看野外av| 一级毛片高清免费大全| 亚洲av熟女| 12—13女人毛片做爰片一| 色综合欧美亚洲国产小说| 美女高潮喷水抽搐中文字幕| 搞女人的毛片| 国产欧美日韩一区二区精品| 一级a爱片免费观看的视频| 亚洲欧美日韩高清在线视频| 欧美日韩乱码在线| 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 国产三级中文精品| 国产成人一区二区三区免费视频网站| 久久久久久九九精品二区国产 | 色哟哟哟哟哟哟| 久久久国产成人免费| 成人av一区二区三区在线看| 久99久视频精品免费| 日本免费一区二区三区高清不卡| 三级毛片av免费| 婷婷精品国产亚洲av在线| 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆| 久久久久国产一级毛片高清牌| 男女下面进入的视频免费午夜| www.精华液| 精品乱码久久久久久99久播| 九色国产91popny在线| 国产欧美日韩精品亚洲av| 中文字幕高清在线视频| videosex国产| 欧美绝顶高潮抽搐喷水| 麻豆国产av国片精品| 97人妻精品一区二区三区麻豆| 精品国内亚洲2022精品成人| 男女视频在线观看网站免费 | 国产v大片淫在线免费观看| 亚洲熟妇熟女久久| 老熟妇乱子伦视频在线观看| 久久久精品国产亚洲av高清涩受| 18禁国产床啪视频网站| 国产伦一二天堂av在线观看| 麻豆国产av国片精品| 亚洲精品久久成人aⅴ小说| 国产av麻豆久久久久久久| 国产精品久久视频播放| 国产三级在线视频| 日本一本二区三区精品| 一个人免费在线观看的高清视频| 亚洲专区字幕在线| 亚洲av熟女| 国产精品亚洲一级av第二区| 18禁裸乳无遮挡免费网站照片| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 一级毛片高清免费大全| 国产一区二区激情短视频| 可以在线观看毛片的网站| 天堂动漫精品| 伦理电影免费视频| 国产又色又爽无遮挡免费看| 国产精品 欧美亚洲| 免费电影在线观看免费观看| 夜夜躁狠狠躁天天躁| 女生性感内裤真人,穿戴方法视频| 成人一区二区视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩国产亚洲二区| 一个人免费在线观看电影 | 老司机深夜福利视频在线观看| 岛国在线免费视频观看| 小说图片视频综合网站| 青草久久国产| 此物有八面人人有两片| 老司机福利观看| 丰满的人妻完整版| 日韩大尺度精品在线看网址| 色综合站精品国产| 超碰成人久久| 午夜免费激情av| 日韩免费av在线播放| 首页视频小说图片口味搜索| 一区福利在线观看| 啦啦啦观看免费观看视频高清| 91成年电影在线观看| 国产精品国产高清国产av| 欧美成狂野欧美在线观看|