• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells

    2023-10-10 03:29:32BAIYuanqingZHANGJiabinLIUChunchenHUZhichengZHANGKaiHUANGFei
    關(guān)鍵詞:酰亞胺側(cè)鏈噻吩

    BAI Yuanqing, ZHANG Jiabin, LIU Chunchen, HU Zhicheng, ZHANG Kai, HUANG Fei

    Alkyl Chain Engineering of Bithiophene Imide-based Polymer Donor for Organic Solar Cells

    BAIYuanqing#, ZHANGJiabin#, LIUChunchen*, HUZhicheng, ZHANGKai, HUANGFei*

    (,,,510640,)

    Two polymer donor materials, namely pBDT-BTI-EH and pBDT-BTI-ME, were synthesized by copolymerizing benzodithiophene(BDT) unit with bithiophene imide(BTI) unit containing 2-ethylhexyl and methyl alkyl side chains, respectively. Compared to pBDT-BTI-EH∶Y6 based organic solar cells(OSCs), the pBDT-BTI-ME∶Y6-based device exhibited higher charge mobilities, reduced charge recombination, more efficient exciton dissociation, and favorable film morphology, which leaded to increased short current density(sc), fill factor(FF) and thus a significant improvement in power conversion efficiency(PCE) from 9.31% to 15.69%.

    Organic solar cell; Polymer donor; Bithiophene imide; Alkyl chain engineering

    1 Introduction

    As a promising strategy for harnessing clean and renewable solar energy, organic solar cells(OSCs) have garnered significant attention over the past three decades due to the characteristics of lightweight, excellent mechanical flexibility, and potential for roll-to-roll processing at room temperature[1—7]. Recently, the power conversion efficiency(PCE) of OSCs has been improved to 19%[8—13]as a result of the long-term efforts in the innovation of molecular structure[14—18], optimization of processing methods[19—21], and strengthened understanding of device physics[22,23]. One of the critical factors in enhancing the PCE of OSCs lies in the design of novel structures for the donor and acceptor materials in the active layer. Since 2019, Yuan.[24]have synthesized a novel narrow bandgap non-fullerene small molecule acceptor, named Y6, to combine with a wide bandgap(WBG) polymer donor known as PM6 for preparing OSCs with a high PCE of 15.7%. In an effort to further improve the PCE, extensive research has been conducted on Y6, and its derivatives with different end groups[25—27], side chains[28—32], and central electron-withdrawing units[33—36]. However, the choice of WBG polymer donors that exhibit complementary absorption and matching energy levels with Y6 and its derivatives remains limited. In 2020, Ding.[37]developed a novel WBG polymer donor, named D18, which significantly increased the PCE of Y6 acceptor-based OSCs to 18%. These breakthroughs suggest that the development of new WBG polymer donors holds great potential for further improving the PCE of OSCs. Consequently, it is imperative to continue exploring high-performance WBG polymer donors that are well compatible with non-fullerene acceptors.

    Efficient WBG polymer donors commonly employ a backbone consisting of alternating electron-donating(D) and electron-accepting(A) building blocks. By adjusting the D and A units, the absorption, optical bandgaps, frontier molecular orbital energies, and hole mobilities of D-A-structrual WBG polymer donors can be easily tuned through the intramolecular charge transfer(ICT) effects and intermolecular D-A interactions[38—41]. Among these polymer donors, benzodithiophene(BDT) has been the most commonly used D unit to construct highly efficient WBG polymer donors such as D18[37], PBDB-T[42], PM6[24], PTzBI[43], PBQ6[44]with various A units, respectively, including 1,3-bis(thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo-[1,2-c∶ 4,5-c′]dithiophene-4,8-dione(BDD), imide functionalized benzotriazole(TzBI), quinoxaline(Qx). The bithiophene imide(BTI) unit can serve as a promising A building block for constructing organic semiconductors in organic field-effect transistors[45—47], polymer solar cells[48—50], perovskite solar cells[51, 52]and organic thermoelectric[53]due to its planar structure and strong electron-withdrawing capabilities. In addition to modifying the backbone with different D and A units, side chain engineering can also modulate the optoelectronic properties of WBG polymer donors. Adjustable side chains in D units, A units, or-spacers enable the modulation of solubility, absorption spectra, and electronic properties of WBG polymer donors. Moreover, side chain engineering could significantly influence the blend morphology and domain size of the bulk heterojunction[54], thus optimizing the photovoltaic properties of OSCs.

    In this study, we synthesized two WBG polymer donors, namely pBDT-BTI-EH and pBDT-BTI-ME, with BDT as the D unit and BTI with varying lengths of side chains as the A unit. Both pBDT-BTI-EH and pBDT-BTI-ME exhibited similar optical and electronic properties. Notably, it was observed that a significant improvement in the PCE of OSCs, from 9.3% to 15.69%, by shorting the alkyl side chains of BTI units from 2-ethylhexyl to methyl. The investigations revealed that this PCE improvement can be mainly attributed to the resulting tighter molecular packing, which enhanced the charge mobility and charge dissociation within active layer. These findings emphasize the importance of rational design and fine-tuning of alkyl side chains in the polymer donor, as they can directly affect the morphology of active layers and eventually play a crucial role in controlling the photovoltaic performance of OSCs.

    2 Experimental

    2.1 Materials and Measurements

    The commercial BDT-based monomers, specifically{4,8-bis[5-(2-ethylhexyl) thiophen-2-yl] benzo [1,2-b∶4,5-b′]dithiophene-2,6-diyl}bis(trimethylstannane)(BDT-DSn) were purchased from Derthon Inc and used as received without further purification. Other chemicals and solvents were purchased from Energy Chemical Co., SunaTech Co., Aladdin Co., J&K Co., etc. and were used without further purification.

    The1H NMR and13C NMR spectra were analyzed using a Bruker AV-500 MHz spectrometer. The analysis was conducted using deuterated chloroform(CDCl3) as the solvent at a temperature of 298 K. Tetramethylsiloxane(TMS) was used as the internal standard reference(=0).

    The number average molecular weights(n) and polydispersity index(PDI) of copolymers were measured by an Agilent Technologies PL-GPC220 high-temperature chromatograph with polystyrene as the internal standard.

    The thermogravimetric(TGA) measurement was performed using NETZSCH TG209F3 equipment under a nitrogen(N2) atmosphere, with a heating rate of 10 ℃/min.

    The UV-Vis absorption spectra and temperature-dependent absorption spectra were carried out on a PerkinElmer-Lambda 365 UV-visible spectrophotometer in dilute CB solution, with a temperature range of 20—100 ℃.

    Cyclic voltammetry(CV) measurements were performed using a CHI660E electrochemical workstation(Shanghai Chenhua Instrument Company Limited), with a saturated calomel reference electrode, a platinum wire counter electrode, a glass carbon working electrode, and 0.1 mol/L tetrabutylammonium hexafluorophosphate(-Bu4NPF6) as electrolyte.

    The surface roughness of the blend film was tested by Bruker Innova atomic force microscope(AFM).

    The transmission electron microscopy(TEM) images were obtained by using JEOL JEM?2100F field emission electron microscope.

    2.2 Synthesis Routes of Monomers and Copolymers

    2,2′-Bithiophene-3,3′-dicarboxylic anhydride(compound 1)[55],-(2-ethylhexyl)-2,2′-bithiophene-3,3′- dicarboximide(compound 2a)[56],-(2-ethylhexyl)-5,5′-dibromo-2,2′-bithiophene-3,3′-dicarboximide(compound 3a)[56], trimethyl[4-(2-butyloctyl)thiophen-2-yl]stannane[57]and copolymer pBDT-BTI-ME[58]were synthesized according to the previously reported procedures. Detailed synthesis procedures of monomers and polymers are provided as follows(Scheme 1).

    Scheme 1Synthetic routes of copolymers

    Synthesis of 2,8-bis[4-(2-butyloctyl)thiophen-2-yl]-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione(4a). In a 50 mL two-necked flask, compound 3a(300 mg, 0.6 mmol) and trimethyl[4-(2-butyloctyl)thiophen-2-yl]stannane(748 mg, 1.8 mmol) were dissolved in 20 mL toluene. The solution was degassed three times, and then Pd(PPh3)4(70 mg, 0.06 mmol) was added under the protection of nitrogen. The reaction was refluxed overnight. After removing the solvent, the crude product was purified by silica gel column chromatography(dichloromethane∶petroleum ether=1∶4) to obtain compound 4a as an orange oil (420 mg, 83%).

    1H NMR(500 MHz, CDCl3),: 7.76(s, 2H), 7.05(s, 2H), 6.88(s, 2H), 4.31—4.19(m, 2H), 2.53 (d, 4H), 1.89—1.84(m, 1H), 1.63—1.59(m, 2H), 1.37—1.27(m, 40H), 0.93—0.87(m, 18H).13C NMR(125 MHz, CDCl3),: 161.84, 143.35, 136.34, 135.14, 134.68, 133.51, 128.28, 127.15, 122.06, 49.15, 38.86, 37.86, 34.92, 33.31, 33.00, 31.92, 30.83, 29.69, 28.88, 28.74, 26.61, 24.11, 23.15, 23.04, 22.71, 14.17, 14.15, 14.13, 10.74.

    Compound 4b was prepared according to the similar procedures of compound 4a.

    1H NMR(500 MHz, CDCl3),: 7.77(s, 2H), 7.05(s, 2H), 6.89(s, 2H), 3.60(s, 3H), 2.53(d, 4H), 1.64—1.59(m, 2H), 1.23—1.27(m, 32H), 0.91—0.87(m, 12H).13C NMR(125 MHz, CDCl3),: 161.62, 143.38, 136.43, 135.42, 134.60, 133.05, 128.08, 127.23, 122.13, 38.85, 34.92, 33.30, 33.06, 32.99, 31.92, 29.69, 28.87, 26.60, 23.05, 22.71, 14.17, 14.15.

    Synthesis of 2,8-bis[5-bromo-4-(2-butyloctyl)thiophen-2-yl]-5-(2-ethylhexyl)-4H-dithieno[3,2-c∶2′,3′-e]azepine-4,6(5H)-dione(5a).

    In a 50 mL two-necked flask, compound 4a(420 mg, 0.5 mmol) was dissolved in 30 mL chloroform, then-bromosuccinimide(178 mg, 1 mmol) was added and the reaction was stirred overnight at room temperature. After removing the solvent, the crude product was purified by silica gel column chromatography(dichloromethane∶petroleum ether=1∶2) to obtain compound 5a as an orange oil(410 mg, 82%).

    1H NMR(500 MHz, CDCl3),: 7.71(s, 2H), 6.90(s, 2H), 4.31—4.18(m, 2H), 2.49(d, 4H), 1.90—1.79(m, 1H), 1.66(s, 2H), 1.36—1.22(m, 40H), 0.94—0.86(m,18H).13C NMR(125 MHz, CDCl3),: 160.25, 141.64, 134.14, 133.83, 133.32, 132.54, 127.46, 125.42, 109.86, 48.06, 37.50, 36.77, 33.15, 32.28, 32.00, 30.90, 29.80, 28.68, 27.74, 27.67, 25.48, 23.07, 22.14, 22.03, 21.70, 13.13, 13.11, 9.68.

    Compound 5b was prepared according to the similar procedures of compound4a.

    1H NMR(500 MHz, CDCl3, ppm),: 7.70(s, 2H), 6.89(s, 2H), 3.59(s, 3H), 2.48(d, 4H), 1.70—1.62(m, 2H), 1.32—1.25(m, 32H), 0.91—0.87(m, 12H).13C NMR(125 MHz, CDCl3),: 161.38, 142.77, 135.39, 135.34, 134.28, 133.21, 128.40, 126.67, 110.98, 38.54, 34.20, 33.30, 33.07, 33.02, 31.90, 29.67, 28.76, 26.50, 23.04, 22.70, 14.14.

    Synthesis of polymer pBDT-BTI-EH. Compound 5a(100.6 mg, 0.10 mmol), BDT-DSn(90.5 mg, 0.10 mmol) and 2 mL chlorobenzene were added into a 15 mL Schlenk tube. Then Pd2(dba)3(2.7 mg, 0.003 mmol) and P(-Tol)3(9.1 mg, 0.03 mmol) were added into the tube under the protection of nitrogen. The reaction was refluxed for 36 h. After cooling to room temperature, the reaction solution was added dropwise to 150 mL of methanol. The precipitate was further extracted by Soxhlet extraction using acetone,-hexane, dichloromethane, and chloroform in sequence. The chloroform solution was concentrated and precipitated into methanol to give pBDT-BTI-EH as a purple-dark solid(78 mg, 55%). Thenfor pBDT-BTI-EH is 27100, with a PDI of 1.67.

    Polymer pBDT-BTI-ME was prepared according to the similar procedures of pBDT-BTI-EH, in which the compound 5a was replaced by 5b. Thenfor pBDT-BTI-ME is 37900, with a PDI of 1.88.

    2.3 Device Preparation of OSCs

    The optimal OSCs with conventional device architecture of ITO/PEDOT∶PSS/active layer/PNDIT-F3N-Br/Ag were fabricated(Fig.1). First, PEDOT∶PSS was spin-coated(3500 r/min for 30 s) on the top of a cleaned ITO and annealed in air at 150 ℃ for 15 min to form a thin film of about 40 nm. Subsequently, optimized OSCs were prepared by using a mass ratio of polymer donor∶Y6=1∶1.2(polymer donor:6 mg/mL) with chloroform as processing solvent and 0.5%(volume fraction) 1-chloronaphthalene(CN) as solvent additive. Then the devices were thermally annealed at 100 ℃ for 10 min in a nitrogen protected glove-box. After that, a 10 nm PNDIT-F3N-Br layer was formed by spin-coating. Finally, a 100 nm Ag layer was deposited by thermal vacuum evaporation.

    Fig.1 Device structure of OSCs

    3 Results and Discussions

    The molecular structures of polymer donors pBDT-BTI-EH and pBDT-BTI-ME with different lengths of side chains are shown in Fig.2(A) and (B). The polymer donor pBDT-BTI-EH demonstrates good solubility in chloroform(CF), chlorobenzene(CB), and-dichlorobenzene(-DCB) at room temperature. On the other hand, the polymer donor pBDT-BTI-ME with the shorter alkyl chain can be soluble in CB and-DCB. Thenand PDI of pBDT-BTI-EH were determined to be 27100 and 1.67, respectively, while pBDT-BTI-ME exhibited annof 37900 and a PDI of 1.88(Fig.S1, see the Supporting Information of this paper), as measured by high-temperature gel permeation chromatography(GPC). Furthermore, the 5% thermal weight decomposition temperatures(d) of pBDT-BTI-EH and pBDT-BTI-ME were found to be 406 ℃ and 432 ℃, respectively(Fig.S2, see the Supporting Information of this paper), indicating excellent thermal stability for both copolymers.

    Fig.2 Chemical structures of pBDT?BTI?EH(A) and pBDT?BTI?ME(B)

    Fig.3 Normalized UV?Vis absorption spectra of pBDT?BTI?EH and pBDT?BTI?ME in chloroform solutions(A) and as thin films(B), temperature?dependent absorption spectra of pBDT?BTI?ME(C) and pBDT?BTI?EH(D) in chlorobenzene solution, cyclic voltammetry curves of polymer pBDT?BTI?EH and pBDT?BTI?ME(E) and energy level diagram of pBDT?BTI?EH, pBDT?BTI?ME and Y6(F)

    Table 1 Optical properties and energy levels of pBDT-BTI-EH and pBDT-BTI-ME

    To further investigate the aggregation behaviors of two polymers, temperature-dependent UV-Vis absorption spectra of pBDT-BTI-ME and pBDT-BTI-EH in CB solutions were tested within a temperature range of 20—100 ℃. As depicted in Fig.3(C) and (D), the 0-0 peak observed in both pBDT-BTI-EH and pBDT-BTI-ME gradually diminished as the temperature increased, accompanied by a blue shift of the ICT peak. It indicates that the increase of temperature can disrupt the aggregation of the polymer chains. Notably, even when heated to 100 ℃, the 0-0 peak of pBDT-BTI-ME was not completely disappeared, while no 0-0 peak could be observed for pBDT-BTI-EH at about 80 ℃. These findings suggested that the polymer pBDT-BTI-ME with shorter side chains exhibits stronger aggregation behavior than pBDT-BTI-EH with longer side chains.

    The highest occupied molecular orbital(HOMO) energy levels and the lowest unoccupied molecular orbital(LUMO) energy levels were estimated by cyclic voltammetry(CV) test. The CV curves are shown in Fig.3(E) and the corresponding HOMO/LUMO energy levels are summarized in Table 1. The HOMO/LUMO energy levels of ?5.52/?3.56 eV and ?5.51/?3.58 eV are determined for pBDT-BTI-EH and pBDT-BTI-ME, respectively. These energy levels are well matched with that of the non-fullerene acceptor Y6[Fig.4 and Fig.3(F)], affording the sufficient driving force for exciton dissociation.

    Fig.4 Chemical structure of Y6

    OSCs were constructed based on a conventional device structure of ITO/PEDOT∶PSS/polymer donor∶Y6/PNDIT-F3N-Br/Ag(Fig.1) to investigate the photovoltaic performance of polymer donors with different alkyl side chains. Several factors, including solvent additives, spin-casting rates, donor: acceptor mass ratios, and annealing temperatures, were considered to optimize the photovoltaic performance of OSCs. Photovoltaic parameters of OSCs by optimization processes were shown in Table S1—Table S3(see the Supporting Information of this paper), while the optimized photovoltaic parameters of pBDT-BTI-EH/pBDT-BTI-ME based devices are listed in Table 2. Optimized OSCs were prepared by using a mass ratio of polymer donor∶Y6=1∶1.2(polymer donor: 6 mL) with CF as processing solvent and 0.5%(volume fraction) CN as a solvent additive. The devices were then thermally annealed at 100 ℃ for 10 min. The current density-voltage(-) characteristics of the optimized devices are shown in Fig.5(A). The optimized devices based on pBDT-BTI- EH∶Y6 exhibited a PCE of 9.31% with aOCof 0.87 V, aSCof 18.66 mA/cm2, and an FF of 56.43%. In contrast, due to the better charge transport and exciton dissociation properties, a much-enhancedSCof 25.48 mA/cm2and an FF of 73.20% were achieved for pBDT-BTI-ME based OSCs, leading to a remarkably higher PCE of 15.69%. Fig.5(B) illustrates the external quantum efficiency(EQE) spectra of pBDT-BTI-ME and pBDT-BTI-EH-based devices, both of which exhibited a broad photo-response from 300 nm to 900 nm. Furthermore, the EQE responses of pBDT-BTI-ME-based devices were much higher than that of pBDT-BTI-EH-based devices from 400 nm to 800 nm. The integratedSCvalues of pBDT-BTI-ME and pBDT-BTI-EH-based devices from the EQE spectra were 24.43 and 18.33 mA/cm2, respectively, which were consistent with those obtained from-characteristics within 5% deviation.

    Table 2 Photovoltaic parameters of the optimized devices

    Fig.5 J?V curves(A), EQE spectra(B), the curves of JSCvs. light intensity(C) and Jphvs. Veff curves of pBDT?BTI?EH and pBDT?BTI?ME based devices(D)

    To gain more insights into the enhanced PCE, exciton dissociation probabilities, charge recombination behaviors, and charge transport abilities were explored. TheSCandOCvaluesthe incident light intensity(light) were investigated to analyze the charge recombination mechanisms in devices. The relationship betweenSCandlightcan be correlated toSC∝light, where the exponential factor() indicates the degree of bimolecular recombination[59]. A value ofcloser to 1 indicates reduced bimolecular recombination. As shown in Fig.5(C), the α values of pBDT-BTI-EH and pBDT-BTI-ME-based devices were 0.94 and 0.98, respectively. This suggests that the pBDT-BTI-Me-based devices exhibited less bimolecular recombination, which was consistent with their higherSCand FF. To further understand the charge recombination mechanism in devices, the relationship betweenOCandlightwas studied, which could be described asOC∝klnlight[60]. A value ofcloser to 1 indicates reduced trap-assisted recombination. As shown in Fig.S3(see the Supporting Information of this paper), thevalues of pBDT-BTI-ME and pBDT-BTI-EH-based devices were 1.53 and 1.86, respectively. This indicates that the pBDT-BTI-ME-based devices exhibited less trap-assisted recombination.

    The relationship between photocurrent density(ph) and effective voltage(eff) was investigated to further explore the exciton dissociation probabilities in devices. As shown in Fig.5(D), thephis defined asph=L?D, whereLandDrepresent the current densities of devices under AM 1.5G illumination and dark conditions, respectively. Theeffis defined aseff=0?bias, where0is the voltage whenph=0 mA/cm2andbiasis the applied bias voltage. The exciton dissociation probability(E,T) can be calculated from the equation(E,T)=ph,SC/sat, wheresatis the saturation photocurrent density at a high value ofeff>2 V andph,SCis the photocurrent density under short-circuit condition[61]. The calculated(E,T) of pBDT-BTI-EH and pBDT-BTI-ME-based devices were 71.4% and 96.3%, respectively. This indicates that the pBDT-BTI-ME based devices exhibited more efficient exciton dissociation, which is also consistent of the changing trend ofSCvalues. It is worth noting that thephof pBDT-BTI-EH-based devices does not saturate toat largeeffbut rather increases with largeeff, whereis the elementary charge,is the charge generation rates andis the thickness of the active layer. This fact was attributed to the electric field-dependent, which may be caused by the separation of geminate electron-hole pairs under a strong electric ?eld[61—63].

    To further understand the effect of different lengths of alkyl side chains on the charge transport capabilities, space-charge-limited current(SCLC) method was employed to obtain hole mobilities(h) and electron mobilities(e) of the blend films by fabricating electron-only and hole-only devices. The results were shown in Fig.S4(see the Supporting Information of this paper) and Table 2. The hole mobilities and electron mobilities of pBDT-BTI-ME-based device were 8.98×10?3cm2·V?1·s?1and 2.35×10?3cm2·V?1·s?1, respectively, which were much higher than those of pBDT-BTI-EH-based devices(h=1.33×10?3cm2·V?1·s?1ande=2.11×10?4cm2·V?1·s?1). The shorter alkyl chain in polymer donor pBDT-BTI-ME might induce stronger intermolecular interactions, resulting in a substantial increase in the charge mobilities. Furthermore, the pBDT-BTI-ME-based devices showed more balanced charge mobility(h/e=3.82) than that of pBDT-BTI-EH-based ones (h/e=6.30), which correlated with higher FF andSC.

    The morphology of the active layer was investigated by AFM and transmission electron microscopy(TEM) to further explore the effects of the alkyl side chain on the microstructure within blend films. The AFM images of the pBDT-BTI-ME and pBDT-BTI-EH-based device are shown in Fig.6(A) and (B), and the root-mean-square roughness(q) of pBDT-BTI-ME∶Y6 and pBDT-BTI-EH∶Y6 blend films were determined to be 5.29 and 11.7 nm, respectively. In comparison, the pBDT-BTI-ME∶Y6 blend film exhibited a smoother surface. Fig.6(C) and(D) represent the TEM images of pBDT-BTI-ME∶Y6 and pBDT-BTI-EH∶Y6 blend films, respectively. In comparison, the pBDT-BTI-ME∶Y6 film exhibited a continuous and interpenetrated fibrous network with appropriate phase separation, which might be beneficial for charge transport and dissociation.

    Fig.6 AFM images(A, B) and TEM images(C, D) of pBDT?BTI?ME∶Y6(A, C) and pBDT?BTI?EH∶Y6(B, D)

    4 Conclusions

    In this work, polymer donors pBDT-BTI-EH and pBDT-BTI-ME were constructed to investigate the effect of varying lengths of alkyl side chains on the photovoltaic properties. By altering the length of the alkyl side chains from 2-ethylhexyl to methyl, the intermolecular aggregation and packing could be strengthened. As fabricated into OSCs, the devices based on pBDT-BTI-ME∶Y6 exhibited higher and more balanced electron mobility, more effective exciton dissociation,lower charge recombination and more favorable film morphology, which collectively contributed to as significant increase in the PCE from 9.31% to 15.69%. This study underscores the importance of thoughtful design and precise tuning of alkyl side chains in polymer donors for high performance OSCs.

    The supporting information of this paper see http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20230271.

    [1] Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., Yu L.,,2015,(23), 12666—12731

    [2] Zhang G., Zhao J., Chow P. C. Y., Jiang K., Zhang J., Zhu Z., Zhang J., Huang F., Yan H.,,2018,(7), 3447—3507

    [3] Li Y.,,2012,(5), 723—733

    [4] Zhang G., Lin F. R., Qi F., Heumüller T., Distler A., Egelhaaf H. J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K. Y., Yip H. L.,,2022,(18), 14180—14274

    [5] Yao H., Hou J.,,2022,(37), e202209021

    [6] Huang F., Bo Z. S., Geng Y. H., Wang X. H., Wang L. X., Ma Y. G., Hu W. P., Pei J., Dong H. L., Wang S. Li Z., Shuai Z. G., Li Y. F, Cao Y.,,2019,(10), 988—1046(黃飛,薄志山,耿延候,王獻(xiàn)紅,王利祥,馬於光,侯劍輝,胡文平,裴堅(jiān),董煥麗,王樹(shù),李振,帥志剛,李永舫,曹鏞. 高分子學(xué)報(bào),2019,(10), 988—1046)

    [7] Liu C., Bai Y., Hu Z., Huang F.,,2022,(11), 1948—2000

    [8] Cui Y., Xu Y., Yao H., Bi P., Hong L., Zhang J., Zu Y., Zhang T., Qin J., Ren J., Chen Z., He C., Hao X., Wei Z., Hou J.,,2021,(41), 2102420

    [9] Chong K., Xu X., Meng H., Xue J., Yu L., Ma W., Peng Q.,,2022,(13), 2109516

    [10] Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F.,,2022,(6), 656—663

    [11] Pang B., Liao C., Xu X., Yu L., Li R., Peng Q.,,2023,(21), 2300631

    [12] Fu J., Fong P. W. K., Liu H., Huang C. S., Lu X., Lu S., Abdelsamie M., Kodalle T., Sutter?Fella C. M., Yang Y., Li G.,,2023,(1), 1760

    [13] Wang J., Wang Y., Bi P., Chen Z., Qiao J., Li J., Wang W., Zheng Z., Zhang S., Hao X., Hou J.,,2023,(25), 2301583

    [14] Li S., Li C. Z., Shi M., Chen H.,,2020,(5), 1554—1567

    [15] Yao H., Wang J., Xu Y., Zhang S., Hou J.,,2020,(4), 822—832

    [16] Mishra A.,,2020,(12), 4738—4793

    [17] Liu Y., Liu B., Ma C. Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z. G., Bo Z.,,2022,(2), 224—268

    [18] Song A., Huang Q., Zhang C., Tang H., Zhang K., Liu C., Huang F., Cao Y.,,2023,(8), 082202

    [19] Park S.,Kim T., Yoon S., Koh C. W., Woo H. Y., Son H. J.,,2020,(51), 2002217

    [20] Li Z., Ying L., Zhu P., Zhong W., Li N., Liu F., Huang F., Cao Y.,,2019,(1), 157—163

    [21] Liu Y., Liu B., Ma C. Q., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z. G., Bo Z.,,2022,(8), 1457—1497

    [22] Dong Y., Cha H.,Bristow H. L., Lee J., Kumar A., Tuladhar P. S., McCulloch I., Bakulin A. A., Durrant J. R.,,2021,(20), 7599—7603

    [23] Karuthedath S., Gorenflot J., Firdaus Y., Chaturvedi N., De Castro C. S. P., Harrison G. T., Khan J. I., Markina A., Balawi A. H., Pe?a T. A. D., Liu W., Liang R. Z., Sharma A., Paleti S. H. K., Zhang W., Lin Y., Alarousu E., Anjum D. H., Beaujuge P. M., De Wolf S., McCulloch I., Anthopoulos T. D., Baran D., Andrienko D., Laquai F.,,2021,(3), 378—384

    [24] Yuan J., Zhang Y., Zhou L., Zhang G., Yip H. L., Lau T. K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y.,,2019,(4), 1140—1151

    [25] Li S., Zhan L., Jin Y., Zhou G., Lau T. K., Qin R., Shi M., Li C. Z., Zhu H., Lu X., Zhang F., Chen H.,,2020,(24), 2001160

    [26] Luo Z., Ma R., Chen Z., Xiao Y., Zhang G., Liu T., Sun R., Zhan Q., Zou Y., Zhong C., Chen Y., Sun H., Chai G., Chen K., Guo X., Min J., Lu X., Yang C., Yan H.,,2020,(44), 2002649

    [27] Lai H., Zhao Q., Chen Z., Chen H., Chao P., Zhu Y., Lang Y., Zhen N., Mo D., Zhang Y., He F.,,2020,(3), 688—700

    [28] Chen Y., Ma R., Liu T., Xiao Y., Kim H. K., Zhang J., Ma C., Sun H., Bai F., Guo X., Wong K. S., Lu X., Yan H.,,2021,(20), 2003777

    [29] Chai G., Chang Y., Zhang J., Xu X., Yu L., Zou X., Li X., Chen Y., Luo S., Liu B., Bai F., Luo Z., Yu H., Liang J., Liu T., Wong K. S., Zhou H., Peng Q., Yan H.,,2021,(6), 3469—3479

    [30] Chen Y., Bai F., Peng Z., Zhu L., Zhang J., Zou X., Qin Y., Kim H. K., Yuan J., Ma L. K., Zhang J., Yu H., Chow P. C. Y., Huang F., Zou Y., Ade H., Liu F., Yan H.,,2021,(3), 2003141

    [31] Li C., Zhou J., Song J., Xu J., Zhang H., Zhang X., Guo J., Zhu L., Wei D., Han G., Min J., Zhang Y., Xie Z., Yi Y., Yan H., Gao F., Liu F., Sun Y.,,2021,(6), 605—613

    [32] Chen S., Hong L., Dong M., Deng W., Shao L., Bai Y., Zhang K., Liu C., Wu H., Huang F.,,2023,(1), 202213869

    [33] Zhu C., Yuan J., Cai F., Meng L., Zhang H., Chen H., Li J., Qiu B., Peng H., Chen S., Hu Y., Yang C., Gao F., Zou Y., Li Y.,,2020,(8), 2459—2466

    [34] Zhou Z., Liu W., Zhou G., Zhang M., Qian D., Zhang J., Chen S., Xu S., Yang C., Gao F., Zhu H., Liu F., Zhu X.,,2020,(4), 1906324

    [35] Liu S., Yuan J., Deng W. Y., Luo M., Xie Y., Liang Q. B., Zou Y. P., He Z. C., Wu H. B., Cao Y.,,2020,(5), 300—305

    [36] Liang H., Chen H., Wang P., Zhu Y., Zhang Y., Feng W., Ma K., Lin Y., Ma Z., Long G., Li C., Kan B., Yao Z., Zhang H., Wan X., Chen Y.,,2023, doi: 10.1002/adfm.202301573

    [37] Liu Q., Jiang Y., Jin K., Qin J., Xu J., Li W., Xiong J., Liu J., Xiao Z., Sun K., Yang S., Zhang X., Ding L.,,2020,(4), 272—275

    [38] Cui C., Li Y.,,2019,(11), 3225—3246

    [39] He K., Kumar P., Yuan Y., Li Y.,,2021,(1), 115—145

    [40] Lee C., Lee S., Kim G. U., Lee W., Kim B. J.,,2019,(13), 8028—8086

    [41] Hu Y., Li L., Wang X., Ma D., Huang F.,,2021,(3), 1017—1019

    [42] Zhao W., Qian D., Zhang S., Li S., Ingan?s, O., Gao, F., Hou, J.,,2016,(23), 4734—4739

    [43] Fan B., Zhang K., Jiang X. F., Ying L., Huang F., Cao Y.,,2017,(21), 1606396

    [44] Zhu C., Meng L., Zhang J., Qin S., Lai W., Qiu B., Yuan J., Wan Y., Huang W., Li Y.,,2021,(23), 2100474

    [45] Wang Y., Yan Z., Guo H., Uddin M. A., Ling S., Zhou X., Su H., Dai J., Woo H. Y., Guo X.,,2017,(48), 15304—15308

    [46] Shi Y., Guo H., Qin M., Zhao J., Wang Y., Wang H., Wang Y., Facchetti A., Lu X., Guo X.,,2018,(10), 1705745

    [47] Feng K., Zhang X., Wu Z., Shi Y., Su M., Yang K., Wang Y., Sun H., Min J., Zhang Y., Cheng X., Woo H. Y., Guo X.,,2019,(39), 35924—35934

    [48] Zhou N., Guo X., Ortiz R. P., Li S., Zhang S., Chang R. P. H., Facchetti A., Marks T. J.,,2012,(17), 2242—2248

    [49] Zhou N., Guo X., Ortiz R. P., Harschneck T., Manley E. F., Lou S. J., Hartnett P. E., Yu X., Horwitz N. E., Burrezo P. M., Aldrich T. J., López Navarrete J. T., Wasielewski M. R., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J.,,2015,(39), 12565—12579

    [50] Sun H., Yu H., Shi Y., Yu J., Peng Z., Zhang X., Liu B., Wang J., Singh R., Lee J., Li Y., Wei Z., Liao Q., Kan Z., Ye L., Yan H., Gao F., Guo X.,,2020,(43), 2004183

    [51] Li B., Yang K., Liao Q., Wang Y., Su M., Li Y., Shi Y., Feng X., Huang J., Sun H., Guo X.,,2021,(21), 2100332

    [52] Chen W., Shi Y., Wang Y., Feng X., Djuri?i? A. B., Woo H. Y., Guo X., He Z.,,2020,, 104363

    [53] Feng K., Guo H., Wang J., Shi Y., Wu Z., Su M., Zhang X., Son J. H., Woo H. Y., Guo X.,,2021,(3), 1539—1552

    [54] Xu J., Feng H., Liang Y., Tang H., Tang Y., Du Z., Hu Z., Huang F., Cao Y.,,2022,, 382—389

    [55] Letizia J. A., Salata M. R., Tribout C. M., Facchetti A., Ratner M. A., Marks T. J.,,2008,(30), 9679—9694

    [56] Guo X., Zhou N., Lou S. J., Hennek J. W., Ponce Ortiz R., Butler M. R., Boudreault P. L. T.,Strzalka J., Morin P. O., Leclerc M., López Navarrete J. T., Ratner M. A., Chen L. X., Chang R. P. H., Facchetti A., Marks T. J.,,2012,(44), 18427—18439

    [57] Wang G., Swick S. M., Matta M., Mukherjee S., Strzalka J. W., Logsdon J. L., Fabiano S., Huang W., Aldrich T. J., Yang T., Timalsina A., Powers?Riggs N., Alzola J. M., Young R. M., DeLongchamp D. M., Wasielewski M. R., Kohlstedt K. L., Schatz G. C., Melkonyan F. S., Facchetti A., Marks T. J.,,2019,(34), 13410—13420

    [58] Bai Y., Zhou Z., Xue Q., Liu C., Li N., Tang H., Zhang J., Xia X., Zhang J., Lu X., Brabec C. J., Huang F.,,2022,(49), 2110587

    [59] Schilinsky P., Waldauf C., Brabec C. J.,,2002,(20),3885—3887

    [60] Koster L. J. A., Mihailetchi V. D., Ramaker R., Blom P. W. M.,,2005,(12), 123509

    [61] Mihailetchi V. D., Koster L. J. A., Hummelen J. C., Blom P. W. M.,,2004,(21), 216601

    [62] Proctor C. M., Kim C., Neher D., Nguyen T. Q.,,2013,(28), 3584—3594

    [63] Jia T., Zhang J., Zhang K., Tang H., Dong S., Tan C. H., Wang X., Huang F.,,2021,(14), 8975—8983

    基于雙噻吩酰亞胺聚合物給體的側(cè)鏈調(diào)控與光伏性能研究

    白原青#,張佳濱#,劉春晨,胡志誠(chéng),張凱,黃飛

    (華南理工大學(xué)發(fā)光材料與器件國(guó)家重點(diǎn)實(shí)驗(yàn)室, 高分子光電材料與器件研究所, 廣州 510640)

    采用苯并二噻吩(BDT)作為給電子單元, 分別與具有2-乙基己基和甲基側(cè)鏈的雙噻吩酰亞胺(BTI)缺電子單元共聚構(gòu)筑了兩個(gè)聚合物給體材料(pBDT-BTI-EH和pBDT-BTI-ME). 與pBDT-BTI-EH∶Y6相比, 基于 pBDT-BTI-ME∶Y6的器件具有更高的電荷遷移率、更低的載流子復(fù)合、更高的激子解離以及更優(yōu)的薄膜形貌, 從而獲得了更高的短路電流密度(SC)和填充因子(FF), 電池的能量轉(zhuǎn)換效率由9.31%提高到15.69%.

    有機(jī)太陽(yáng)電池;聚合物給體;雙噻吩酰亞胺;側(cè)鏈調(diào)控

    O631

    A

    10.7503/cjcu20230271

    2023-06-06

    網(wǎng)絡(luò)首發(fā)日期: 2023-07-79.

    聯(lián)系人簡(jiǎn)介:黃飛, 男, 博士, 教授, 主要從事有機(jī)光電材料及器件研究. E-mail: msfhuang@scut.edu.cn

    劉春晨, 男, 博士, 副研究員, 主要從事有機(jī)光電材料及器件研究. E-mail: mscliu@scut.edu.cn

    國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(批準(zhǔn)號(hào): 2019YFA0705900)、廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究重點(diǎn)項(xiàng)目(批準(zhǔn)號(hào): 2019B030302007)、國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): U21A6002)和粵港澳光電磁功能材料聯(lián)合實(shí)驗(yàn)室(批準(zhǔn)號(hào): 2019B121205002)資助.

    Supported by the National Key Research and Development Program of China(No.2019YFA0705900), the Basic and Applied Basic Research Major Program of Guangdong Province, China(No.2019B030302007), the National Natural Science Foundation of China(No.U21A6002) and the Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, China(No.2019B121205002).

    # 共同第一作者.

    (Ed.: V, K, S)

    猜你喜歡
    酰亞胺側(cè)鏈噻吩
    基于側(cè)鏈技術(shù)及優(yōu)化DPoS機(jī)制的電能交易模型
    酞菁鋅的側(cè)鏈修飾及光動(dòng)力活性研究
    改性雙馬來(lái)酰亞胺樹(shù)脂預(yù)浸料性能研究
    含聚醚側(cè)鏈?zhǔn)嵝途埕人猁}分散劑的合成及其應(yīng)用
    雙馬來(lái)酰亞胺對(duì)丙烯酸酯結(jié)構(gòu)膠的改性研究
    探討醫(yī)藥中間體合成中噻吩的應(yīng)用
    4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
    紫杉醇C13側(cè)鏈的硒代合成及其結(jié)構(gòu)性質(zhì)
    EG/DMMP阻燃聚氨酯-酰亞胺泡沫塑料的研究
    直接合成法制備載銀稻殼活性炭及其對(duì)苯并噻吩的吸附
    国产av国产精品国产| 熟女电影av网| 国产高清三级在线| 国产91av在线免费观看| 亚洲av不卡在线观看| 一级黄片播放器| 久久久久精品性色| 嫩草影院入口| 黑人猛操日本美女一级片| 日韩欧美 国产精品| 精品一区二区三卡| 麻豆乱淫一区二区| 日本av手机在线免费观看| 日日撸夜夜添| 亚洲av电影在线观看一区二区三区| 色网站视频免费| 男人添女人高潮全过程视频| 在线 av 中文字幕| 一级毛片我不卡| 18禁在线播放成人免费| 国产国拍精品亚洲av在线观看| 国产亚洲5aaaaa淫片| 99久久精品一区二区三区| 男人狂女人下面高潮的视频| 一级毛片我不卡| 久久6这里有精品| 18禁在线播放成人免费| 噜噜噜噜噜久久久久久91| 大码成人一级视频| 日日撸夜夜添| 边亲边吃奶的免费视频| 国产伦理片在线播放av一区| 九九爱精品视频在线观看| 国产精品熟女久久久久浪| 国产视频首页在线观看| 五月伊人婷婷丁香| 交换朋友夫妻互换小说| 久久久久久久久久久丰满| 热99国产精品久久久久久7| 插阴视频在线观看视频| 国精品久久久久久国模美| 九色成人免费人妻av| 又大又黄又爽视频免费| 国内少妇人妻偷人精品xxx网站| 中文资源天堂在线| 中文字幕制服av| 国产精品99久久99久久久不卡 | 水蜜桃什么品种好| 精品国产国语对白av| 人人澡人人妻人| 多毛熟女@视频| 亚洲怡红院男人天堂| 国产熟女午夜一区二区三区 | 日日摸夜夜添夜夜添av毛片| 在线观看免费视频网站a站| 十八禁高潮呻吟视频 | 欧美激情极品国产一区二区三区 | 日本av免费视频播放| 美女脱内裤让男人舔精品视频| 国产成人一区二区在线| 欧美+日韩+精品| 色94色欧美一区二区| 国产精品一区二区三区四区免费观看| 人人妻人人看人人澡| 亚洲精品一二三| 免费看不卡的av| 久久久欧美国产精品| 欧美老熟妇乱子伦牲交| 熟女av电影| 熟女av电影| 久久久久久久久久成人| 中国美白少妇内射xxxbb| 久久亚洲国产成人精品v| 一级爰片在线观看| 亚洲图色成人| 亚洲av不卡在线观看| 成人二区视频| 爱豆传媒免费全集在线观看| 午夜福利在线观看免费完整高清在| 国产精品久久久久久久电影| 午夜福利,免费看| 特大巨黑吊av在线直播| 国产精品三级大全| 91久久精品国产一区二区三区| 亚洲精品久久午夜乱码| 欧美少妇被猛烈插入视频| 一区二区av电影网| 22中文网久久字幕| 国产女主播在线喷水免费视频网站| 久久国产精品大桥未久av | 国产黄片视频在线免费观看| 国国产精品蜜臀av免费| 久久久久视频综合| 日韩伦理黄色片| 亚洲熟女精品中文字幕| 免费人妻精品一区二区三区视频| 女人精品久久久久毛片| 99热国产这里只有精品6| 中国美白少妇内射xxxbb| 午夜视频国产福利| 熟女av电影| 国产午夜精品一二区理论片| 色视频www国产| 久久久久精品性色| 夜夜骑夜夜射夜夜干| 亚洲,一卡二卡三卡| 久久午夜综合久久蜜桃| 午夜久久久在线观看| 久久久久视频综合| 99久久精品热视频| 欧美日韩视频精品一区| 亚洲精品aⅴ在线观看| .国产精品久久| 日韩,欧美,国产一区二区三区| 国产精品人妻久久久久久| 久久婷婷青草| 老女人水多毛片| 在线亚洲精品国产二区图片欧美 | 国产精品女同一区二区软件| 噜噜噜噜噜久久久久久91| 男女国产视频网站| 我的女老师完整版在线观看| 亚洲国产精品专区欧美| 婷婷色综合大香蕉| 婷婷色综合大香蕉| 亚洲精品日韩av片在线观看| 91aial.com中文字幕在线观看| 中文欧美无线码| 亚洲精品亚洲一区二区| 一级毛片黄色毛片免费观看视频| 欧美xxⅹ黑人| 三级国产精品欧美在线观看| 亚洲精品视频女| 亚洲av日韩在线播放| 99视频精品全部免费 在线| 午夜福利网站1000一区二区三区| 纵有疾风起免费观看全集完整版| 中文天堂在线官网| 久久久亚洲精品成人影院| 黄片无遮挡物在线观看| 亚洲欧美精品专区久久| 欧美日韩在线观看h| 午夜av观看不卡| 男的添女的下面高潮视频| 久久人妻熟女aⅴ| 亚洲精品自拍成人| 亚洲精品日韩在线中文字幕| 最新的欧美精品一区二区| 国产精品国产三级专区第一集| 边亲边吃奶的免费视频| 91久久精品电影网| 制服丝袜香蕉在线| 日本-黄色视频高清免费观看| 国产男女超爽视频在线观看| 久久久久久久久久久免费av| 黄色配什么色好看| 精品人妻熟女毛片av久久网站| 精品少妇黑人巨大在线播放| 尾随美女入室| 日韩成人伦理影院| 亚洲精华国产精华液的使用体验| 国产av一区二区精品久久| 国产欧美日韩精品一区二区| 国产色婷婷99| 91精品一卡2卡3卡4卡| 赤兔流量卡办理| 亚洲经典国产精华液单| 国产精品一区二区性色av| 成人毛片a级毛片在线播放| 亚洲国产精品一区二区三区在线| 高清午夜精品一区二区三区| 精品亚洲乱码少妇综合久久| 亚洲高清免费不卡视频| 最近2019中文字幕mv第一页| 中文乱码字字幕精品一区二区三区| 国产精品伦人一区二区| 新久久久久国产一级毛片| 成年女人在线观看亚洲视频| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 亚洲av中文av极速乱| 午夜日本视频在线| 搡女人真爽免费视频火全软件| 十分钟在线观看高清视频www | 777米奇影视久久| 一级a做视频免费观看| 9色porny在线观看| 91精品国产国语对白视频| 中文字幕精品免费在线观看视频 | 老司机影院毛片| 99九九线精品视频在线观看视频| 久久人人爽av亚洲精品天堂| 青青草视频在线视频观看| 日日爽夜夜爽网站| 国产免费一区二区三区四区乱码| 一本大道久久a久久精品| 狂野欧美白嫩少妇大欣赏| 欧美丝袜亚洲另类| 内地一区二区视频在线| 国产色婷婷99| 国产伦在线观看视频一区| 精品酒店卫生间| 99视频精品全部免费 在线| 日韩欧美 国产精品| 蜜臀久久99精品久久宅男| 久久精品国产自在天天线| 精品一区二区免费观看| 午夜久久久在线观看| 国产av国产精品国产| 中文字幕精品免费在线观看视频 | 亚洲成色77777| 美女大奶头黄色视频| 亚洲熟女精品中文字幕| 九九久久精品国产亚洲av麻豆| 国产男女内射视频| 搡老乐熟女国产| 久久午夜福利片| 在现免费观看毛片| 妹子高潮喷水视频| 又爽又黄a免费视频| 久热这里只有精品99| 国产又色又爽无遮挡免| 日韩,欧美,国产一区二区三区| 最近中文字幕2019免费版| 日韩av在线免费看完整版不卡| 亚洲精品日韩av片在线观看| 亚洲av.av天堂| 国产亚洲最大av| 久久韩国三级中文字幕| 中文乱码字字幕精品一区二区三区| 韩国av在线不卡| 亚洲美女搞黄在线观看| 秋霞伦理黄片| 岛国毛片在线播放| 伊人亚洲综合成人网| 欧美日韩视频精品一区| 我的女老师完整版在线观看| 亚洲精品国产色婷婷电影| 一区二区三区免费毛片| 国产精品久久久久久精品电影小说| 在线观看www视频免费| av在线app专区| 人人妻人人爽人人添夜夜欢视频 | 国产极品天堂在线| 久久久久精品久久久久真实原创| 黑人猛操日本美女一级片| 精品久久久精品久久久| 我要看黄色一级片免费的| 国产爽快片一区二区三区| 一个人看视频在线观看www免费| 人妻夜夜爽99麻豆av| 国产一区二区在线观看av| 久久久久人妻精品一区果冻| 卡戴珊不雅视频在线播放| 建设人人有责人人尽责人人享有的| 美女中出高潮动态图| h日本视频在线播放| 国产黄频视频在线观看| 一级a做视频免费观看| 99久久精品国产国产毛片| 久久久久久久国产电影| 免费看光身美女| 午夜日本视频在线| 久久久久视频综合| 六月丁香七月| 亚洲av不卡在线观看| 国产伦理片在线播放av一区| 在线看a的网站| 菩萨蛮人人尽说江南好唐韦庄| 成人特级av手机在线观看| 一区二区三区乱码不卡18| 久久人人爽人人片av| av在线老鸭窝| 精品酒店卫生间| 91aial.com中文字幕在线观看| 日韩强制内射视频| 久久国内精品自在自线图片| 自线自在国产av| 尾随美女入室| 91久久精品电影网| 精品午夜福利在线看| 亚洲精品国产av成人精品| 国产深夜福利视频在线观看| 99国产精品免费福利视频| 91久久精品电影网| xxx大片免费视频| 免费观看无遮挡的男女| 欧美成人精品欧美一级黄| 国产毛片在线视频| 这个男人来自地球电影免费观看 | 欧美成人午夜免费资源| 亚洲性久久影院| 免费av不卡在线播放| 成年美女黄网站色视频大全免费 | 看免费成人av毛片| 国产黄频视频在线观看| 国产黄色免费在线视频| 搡女人真爽免费视频火全软件| 国产欧美日韩综合在线一区二区 | 亚洲国产精品成人久久小说| 91成人精品电影| 日韩熟女老妇一区二区性免费视频| 国产精品成人在线| 免费久久久久久久精品成人欧美视频 | 男人舔奶头视频| 一级毛片 在线播放| 美女内射精品一级片tv| 亚洲av不卡在线观看| 夫妻性生交免费视频一级片| 99久久中文字幕三级久久日本| 少妇裸体淫交视频免费看高清| 精品一区二区三区视频在线| 日韩视频在线欧美| 夫妻性生交免费视频一级片| 国内揄拍国产精品人妻在线| 精品一区在线观看国产| 大香蕉97超碰在线| 免费黄网站久久成人精品| 国产成人午夜福利电影在线观看| 高清午夜精品一区二区三区| 国产一区二区在线观看日韩| 日韩强制内射视频| 老司机影院成人| 极品少妇高潮喷水抽搐| 欧美人与善性xxx| 男女边摸边吃奶| 久久久久视频综合| 亚洲高清免费不卡视频| 亚洲成人一二三区av| 一级毛片aaaaaa免费看小| 欧美区成人在线视频| 最黄视频免费看| av天堂久久9| 国产69精品久久久久777片| 免费看光身美女| freevideosex欧美| 在线观看国产h片| 久久久久国产精品人妻一区二区| av视频免费观看在线观看| 久久热精品热| 欧美另类一区| 人妻系列 视频| www.av在线官网国产| 极品人妻少妇av视频| 卡戴珊不雅视频在线播放| 亚洲精品456在线播放app| 欧美激情极品国产一区二区三区 | 王馨瑶露胸无遮挡在线观看| 国产亚洲一区二区精品| 日日摸夜夜添夜夜添av毛片| 亚洲av欧美aⅴ国产| 亚洲精品色激情综合| 成年人午夜在线观看视频| 精品少妇黑人巨大在线播放| 国产熟女午夜一区二区三区 | 国产国拍精品亚洲av在线观看| 女性被躁到高潮视频| 久久精品熟女亚洲av麻豆精品| 日韩欧美 国产精品| 欧美国产精品一级二级三级 | 国产白丝娇喘喷水9色精品| 这个男人来自地球电影免费观看 | 亚洲第一av免费看| 日本-黄色视频高清免费观看| 亚州av有码| 日韩亚洲欧美综合| 国产高清三级在线| 三级国产精品欧美在线观看| 欧美精品国产亚洲| 51国产日韩欧美| 久久av网站| 最新的欧美精品一区二区| av一本久久久久| 国产精品久久久久久精品电影小说| 国产在线男女| 91午夜精品亚洲一区二区三区| 97在线视频观看| 日韩 亚洲 欧美在线| 秋霞伦理黄片| 男女啪啪激烈高潮av片| 亚洲国产精品一区三区| 建设人人有责人人尽责人人享有的| 麻豆成人av视频| av播播在线观看一区| 少妇裸体淫交视频免费看高清| 欧美日韩亚洲高清精品| 久久久久久久久久久免费av| 亚洲怡红院男人天堂| 性色avwww在线观看| 日日啪夜夜爽| 免费观看av网站的网址| 精品午夜福利在线看| 国产淫片久久久久久久久| 久久精品熟女亚洲av麻豆精品| 精品人妻偷拍中文字幕| 国产亚洲最大av| 天堂俺去俺来也www色官网| 高清视频免费观看一区二区| 亚洲精品日韩av片在线观看| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 在线看a的网站| 欧美少妇被猛烈插入视频| 日韩一区二区三区影片| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| videossex国产| 国产免费又黄又爽又色| 日韩人妻高清精品专区| 国产亚洲最大av| 寂寞人妻少妇视频99o| 亚洲欧洲精品一区二区精品久久久 | 久久狼人影院| 国产精品一区二区性色av| 一级a做视频免费观看| 在线观看www视频免费| 精品酒店卫生间| 一级毛片 在线播放| 日韩亚洲欧美综合| 国产av一区二区精品久久| 人人妻人人澡人人看| 99久久精品国产国产毛片| 久热这里只有精品99| 少妇丰满av| 99久国产av精品国产电影| 国产在线男女| 免费观看a级毛片全部| 一本大道久久a久久精品| 两个人免费观看高清视频 | 午夜91福利影院| 国产日韩欧美在线精品| 日本色播在线视频| 丰满少妇做爰视频| 成年女人在线观看亚洲视频| 一区二区三区精品91| 美女福利国产在线| 又黄又爽又刺激的免费视频.| 欧美精品一区二区大全| 久久久久久久精品精品| 亚洲精品乱码久久久v下载方式| 久久人妻熟女aⅴ| 99九九线精品视频在线观看视频| 99热这里只有精品一区| 国产黄色视频一区二区在线观看| 嘟嘟电影网在线观看| 全区人妻精品视频| 久久久精品94久久精品| 在线观看www视频免费| 黄色日韩在线| 国产亚洲91精品色在线| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 中文字幕精品免费在线观看视频 | 日韩不卡一区二区三区视频在线| 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 欧美精品一区二区免费开放| 大香蕉97超碰在线| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久| 一本大道久久a久久精品| 少妇的逼水好多| 少妇丰满av| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 美女国产视频在线观看| 女性被躁到高潮视频| 国产精品99久久久久久久久| 国产一区二区在线观看av| 欧美日韩av久久| 久久鲁丝午夜福利片| 日韩中文字幕视频在线看片| 久久人人爽人人片av| h日本视频在线播放| 九色成人免费人妻av| 欧美成人精品欧美一级黄| av.在线天堂| 在线观看美女被高潮喷水网站| 中文在线观看免费www的网站| 亚洲精品视频女| 18禁在线无遮挡免费观看视频| 日韩精品免费视频一区二区三区 | 777米奇影视久久| 啦啦啦啦在线视频资源| 色网站视频免费| 国产视频首页在线观看| 91成人精品电影| 精品国产乱码久久久久久小说| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| av卡一久久| 国产在线男女| 七月丁香在线播放| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 国产免费视频播放在线视频| 少妇的逼水好多| 亚洲av.av天堂| 婷婷色av中文字幕| 制服丝袜香蕉在线| 久久6这里有精品| 在线观看免费视频网站a站| 亚洲欧美成人综合另类久久久| 最近2019中文字幕mv第一页| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 免费黄频网站在线观看国产| 国产精品国产三级专区第一集| 亚洲精品国产av成人精品| 国产伦在线观看视频一区| 一本色道久久久久久精品综合| 久久99热6这里只有精品| 天堂中文最新版在线下载| 9色porny在线观看| 亚洲三级黄色毛片| 99热国产这里只有精品6| 国产精品一区www在线观看| 国产在线视频一区二区| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 久久免费观看电影| 一本久久精品| 国产成人一区二区在线| 又粗又硬又长又爽又黄的视频| 人妻系列 视频| 亚洲成人av在线免费| 观看美女的网站| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 91精品国产九色| 亚洲三级黄色毛片| 街头女战士在线观看网站| 五月天丁香电影| 最近中文字幕2019免费版| 免费观看无遮挡的男女| 成人综合一区亚洲| 免费播放大片免费观看视频在线观看| 午夜激情福利司机影院| 99re6热这里在线精品视频| 日韩精品有码人妻一区| 久久99热6这里只有精品| 男女免费视频国产| 日日爽夜夜爽网站| 色5月婷婷丁香| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 欧美日韩在线观看h| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 五月天丁香电影| 你懂的网址亚洲精品在线观看| 丰满迷人的少妇在线观看| 成年女人在线观看亚洲视频| 99久久中文字幕三级久久日本| 晚上一个人看的免费电影| 国产精品福利在线免费观看| 国产亚洲一区二区精品| 日本色播在线视频| 国产精品蜜桃在线观看| 日韩av在线免费看完整版不卡| 免费在线观看成人毛片| 亚洲精品日韩在线中文字幕| 下体分泌物呈黄色| 天堂中文最新版在线下载| 毛片一级片免费看久久久久| 欧美日本中文国产一区发布| 青春草亚洲视频在线观看| 久久久精品免费免费高清| 国产亚洲91精品色在线| 亚洲国产毛片av蜜桃av| 国产成人免费观看mmmm| 丝瓜视频免费看黄片| 美女主播在线视频| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| 人妻系列 视频| 免费高清在线观看视频在线观看| 日韩一区二区三区影片| 91午夜精品亚洲一区二区三区| 国产 精品1| 婷婷色麻豆天堂久久| 欧美3d第一页| 亚洲欧美精品专区久久| 久久久久国产精品人妻一区二区| 伊人亚洲综合成人网| 99久久精品国产国产毛片| 肉色欧美久久久久久久蜜桃| 午夜福利影视在线免费观看| 色网站视频免费| 午夜91福利影院| 黑丝袜美女国产一区| 99九九在线精品视频 | 亚洲自偷自拍三级| 午夜影院在线不卡| 国产男人的电影天堂91| 国产av一区二区精品久久| 成人漫画全彩无遮挡| 国产毛片在线视频| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区www在线观看| 在线看a的网站| 国产 精品1| 日日啪夜夜撸| 色视频www国产| 亚洲熟女精品中文字幕| 如何舔出高潮| 国产极品粉嫩免费观看在线 | 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 亚洲情色 制服丝袜| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 亚洲欧美日韩东京热| 高清不卡的av网站|