• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    2023-10-10 05:20:22ZAFARSauduzZHANGWeichaoYANGShuoLIShilinZHANGYingyuZHANGYuanZHANGHongZHOUHuiqiong
    關(guān)鍵詞:張弘丙氨酸中國科學(xué)院

    ZAFAR Saud uz, ZHANG Weichao, YANG Shuo, LI Shilin, ZHANG Yingyu, ZHANG Yuan, ZHANG Hong*, ZHOU Huiqiong*

    Beta-alanine as a Dual Modification Additive in Organic Solar Cells

    ZAFARSaud uz1, ZHANGWeichao2, YANGShuo3, LIShilin2, ZHANGYingyu1, ZHANGYuan2, ZHANGHong1*, ZHOUHuiqiong1*

    (,,,,100190,;,,100191,;,,101100,)

    Beta-alanine; Additive; Dual-modification; Transporting layer; Organic solar cell

    1 Introduction

    In recent years, the efficiency of organic solar cells(OSCs)[1]has surpassed 19%[2], owing to the emergence of non-fullerene acceptors(NFAs)[3]. While efforts to design new active[4,5]layer materials, optimize morphology[6], and develop advanced device structures[7], researchers are also exploring novel interfacial materials[8], including 0D—3D materials[9], self-assembled monolayers(SAMs), organic compounds, and eco-friendly compounds[10—13], to enhance the performance parameters of OSCs. These interfacial materials form new functional bond links[14]with the interface layer compounds and can significantly improve cell efficiency if optimized appropriately. To achieve better performance and properties in OSCs, it is crucial to optimize both the hole transport layer(HTL)[15,16]and electron transport layer(ETL) interface layers[17,18]. This can be accomplished by introducing ionic materials, polar compounds, zwitterions, and high-boiling materials into the interface layers[19—22]. However, classic interfacial materials such as poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate)(PEDOT∶PSS)[23]and poly[9,9-bis(3′-(,-dimethyl)--ethylammoinium-propyl-2,7-fluorene)-alt-2,7-9,9-dioctylfluorene)] dibromide(PFN-Br)[24]exhibit limitations. PEDOT∶PSS undergoes shortcomings including acidity(pH=1.5—2.5)[25], hygroscopicity(absorbs moisture from the surrounding while preparing thin films), anisotropic charge injection[26], moderate conductivity, inhomogeneities in electronic and structural morphologies with batch-to-batch variation[27,28], and for PFN-Br detrimental contact resistance arising from their interfacial properties[29], scarcity of delocalized electrons, molecular aggregation of conjugated structure along with insulating properties[30—32]. The PFN-Br based devices also suffered from instability[33], and mismatched energy levels between the cathode and acceptors. To overcome these drawbacks, the adoption of new materials or the use of additives is essential to attain higher efficiency OSCs.

    In this study, beta-alanine(-alanine)[34]was employed as a small molecule additive with hydroxyl (—OH)/carboxyl group(—COOH) on one side and amine(—NH2)[35]on the other side, with a chemical formula of C3H7NO2. Despite its antioxidant properties[36],-alanine has received limited attention in the context of organic solar cells. In this work, we utilized-alanine as a dual modifier to modify both transporting layers on PEDOT∶PSS(HTL) and PFN-Br(ETL) in the same device through a simple solution-processed technique, resulting in the synthesis of new interface layers. The modified PEDOT∶PSS(A-PEDOT∶PSS) exhibited superior properties compared to pristine PEDOT∶PSS, as evidenced by improvements in morphology, efficiency, and characteristic properties[37]. Positive influences were also observed for modified PFN-Br (A-PFN-Br). Our findings indicate that the addition of-alanine resulted in an enhanced power conversion efficiency(PCE) of PM6∶Y6 solar cells, increasing from 14.99% to 15.78%. Furthermore, the addition of-alanine did not have a detrimental effect on light absorption, as shown by UV absorption and transmission data. FTIR analysis was conducted to confirm the modification, while surface morphology was analyzed using AFM. The current density-voltage(-) curve and dark current measurements also demonstrated an improvement. This study presents a unique modification that utilizes the same molecule in different materials to enhance device performance and stability, representing a novel approach that has not been previously explored in organic solar cells.

    2 Experimental

    2.1 Materials and Measurements

    Poly[[4,8-bis[5-2-ethylhexyl]-4-fluoro-2-thienyl]benzo[1,2-b∶4,5-b∶4,5-b′]dithiophene-2,6-diyl)- 2,5 th-iophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c∶4,5-c′]dithiophene-1,3-diyl]- 2,5-thiophene-diyl]), PBDB-T-2F∶PM6, along with an acceptor material which was analyzed and used during the following work is Y6,(BTP-4F∶2,2′-((2Z.2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl- 12,13-dihydro-[1,2,5]thiadiazol[3,4-e]thieno[2″,3″∶4′,5′]thieno[2′,3′∶4,5]pyrrolo[3,2-g]thieno[2′,3′∶4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1-indene-2,1-diylidene))dimalononitri-le))both were acquired from Solarmer Materials Inc. Chloroform(CF) and 1-chloronaphthalene(CN) were purchased from Sigma Aldrich and TCL, respectively. PEDOT∶PSS and PFN-Br were bought for buffer layer utilization, along with-alanine additive, which was purchased from Sigma Aldrich. Then, Isopropanol and acetone were obtained from Alfa Aesar Inc.

    -characteristics of solar cells was measured on a Keithley 2400 source meter under AM 1.5G illumination(100 mW/cm2) provided by an Oriel solar simulator. The incident light intensity was adjusted with a silicon calibration photodiode(Peccell Technologies). Single carrier devices were characterized by using a Keithley 2400 source in a dark environment. The Fourier transform infrared spectroscopy(FTIR) analysis was done by Spotlight 200i FT-IR microscopy system. The samples were prepared on CaF2substrates while spin-coating the solutions. The transmittance and absorbance spectra were attained by using a UV-Vis spectrometer(PerkinElmer Lamba 650/850/950 UV-Vis spectrometer). The thin film samples were prepared on ITO substrates while spin-coating the solution of transporting layers(ETL/HTL) on it under the same conditions as for device fabrication. The contact angle analysis was done by DSA-100 static drop analyzer(KRüSS Co., Ltd.). A water drop was dropped on the sample for the measurement. Atomic force microscope(AFM) height and phase images were taken by Bruker Multimode-8 microscope systemusing tapping mode. The samples were of thin films for the required conditions. The external quantum efficiency(EQE) spectra for solar cells were measured by using an Oriel Newport EQE measurement system(Model 66902) calibrated with a standard Si reference cell and equipped with a Newport Xenon lamp. Carrier mobility was measured using the space-charge-limit current(SCLC) method. The devices were fabricated under optimized conditions. The mobility was determined by fitting the dark current to the model of a single carrier SCLC, according to the equation:

    = 90r2/83

    where(A/cm2) is the current density,(V) is the applied voltage,(m) is the film thickness of the active layer,(cm2·V?1·s?1) is the charge carrier mobility,ris the relative dielectric constant of the transport medium, and0(C2·N?1·m?2) is the permittivity of free space. The carrier mobility was calculated from the slope of the0.5-curves.

    2.2 Experimental Process

    2.2.1Interface MaterialFor the interface modification, we used-alanine as an additive in both the electron and hole transporting layer(ETL and HTL) of organic solar cells, respectively. The pH of this additive is in the 6—7 dimension range.

    2.2.2Interface Solution PreparationFor the preparation of the-alanine solution, its crystal powder was mixed with different fractions to form a new modified and optimized HTL and ETL to fabricate organic solar cell devices.

    For HTL: We took an old classic HTL, PEDOT∶PSS, and dissolved 1 mg of-alanine in it.-alanine is a water-soluble compound so it swiftly gets dissolved into PEDOT∶PSS. The stirring time to form a new modified PEDOT∶PSS(in this work named A-PEDOT∶PSS) was 3 h at room temperature before use.

    For ETL: We used PFN-Br as an ETL(at a concentration of 0.5 mg/mL in methanol) and for a modified ETL, we used 0.1 mg of-alanine into 0.4 mg of PFN-Br to one milliliter of methanol to form a modified PFN-Br solution(as A-PFN-Br). The stirring time was overnight at room temperature in a nitrogen glovebox atmosphere.

    2.2.3Bulk Heterojunction PreparationIn this study, we mainly used a non-fullerene acceptor(Y6), and a polymer donor(PM6) to form a Bulk Heterojunction(BHJ) solution. The ratio of both donor and acceptor was 1∶1.2 at a total concentration of 16 mg/mL in chloroform(CF) solvent with an additive 1-chloronaphthalene(CN) of 0.5%(mass fraction). The additive was dropped into the BHJ solution half an hour before coating on the interface HTL. The BHJ solution was stirred for 2 h at 40 ℃.

    2.2.4Cleaning of SubstratesThe ITO substrates were scrubbed with detergent and then rinsed with distilled water, acetone, and IPA(isopropanol alcohol) followed by ultra-sonication for 15 min each. Then the substrates were sent for the UV-ozone treatment for 15 min.

    2.2.5Device FabricationFor the device fabrication, the ITO substrates were taken out from the UVO3machine, and then the HTL solutions, PEDOT∶PSS and A-PEDOT∶PSS were spin-coated on ITO substrates at 4000 r/min to form a homogenous film and then baked at 150 ℃. Subsequently, the HTL-coated substrates were transferred to the N2-filled glovebox for the BHJ coating. The BHJ solution was spin-coated on HTL at 3000 r/min followed by annealing of 10 min at 110 ℃. Afterward, the ETL(PFN-Br and/or A-PFN-Br) was also spin-coated on BHJ at 3000 r/min. Finally, the metal deposition of Aluminium(Al) of 100 nm was done(shadow mask with an active area of 0.04 cm2) thermally at a vacuum pressure of 1×10?4Pa.

    3 Results and Discussion

    The chemical structure of-alanine is depicted in Fig.1(A), while Fig.1(B) illustrates PEDOT∶PSS, and Fig.1(C) depicts PFN-Br. Fig.1(D) demonstrates the dissolving technique employed in the fabrication process, and the resulting device architecture structure(conventional) is shown in Fig.1(E). The compound-alanine is three carbons(C3) amino acid with amine as well as a carboxyl functional group on each side, respectively, both of these functional compounds are nucleophilic due to it has a strong polarity[38]. Although then the next question was which group will interact with which respective group of both PEDOT∶PSS and PFN-Br. To find out the answer to this, firstly we checked the solubility of-alanine in various solvents to have a simple clear thought about the miscibility of the compound. However, due to the general rule of “l(fā)ike dissolves like”[39]. We elected water(totally miscible just by shaking a small container), alcohol(methanol and ethanol: soluble after stirring), and DMF(required temperature and stirring). Given that PEDOT∶PSS and PFN-Br are both soluble in polar solvents, with PEDOT∶PSS being soluble in aqueous solvents and PFN-Br being soluble in methanol, it is hypothesized that-alanine, being soluble in both solvents, would be suitable for modifying the interfacial layer materials of both PEDOT∶PSS and PFN-Br.

    Fig.1 Chemical structures of β?alanine(A), PEDOT∶PSS(B) and PFN?Br(C), schematic illustration of mixing both transporting layers with β?alanine(D), schematic device structure representation of OSCs(E)

    3.1 Device Performance

    We explored the device performance of A-PEDOT∶PSS as HTL and A-PFN-Br as ETL in OSCs with the architecture of ITO/HTL/active layer/ETL/Al, where PM6 and Y6 are used as a donor and an acceptor in the active layer, respectively. Fig.1(E) represented the device structure. The devices which were used in this work are listed in Table 1. The-curves of the devices are summarized in Fig.2(A). The control device(with normal PEDOT∶PSS and normal PFN-Br) obtained a PCE of 14.99% with an open-circuit voltage(OC) of 0.821 V, current density(SC) of 24.52 mA/cm2and fill factor(FF) of 74.43%. After analyzing the various concentrations for-alanine in PEDOT∶PSS and in PFN-Br, the optimized concentration was 1 mg/mL for A-PEDOT∶PSS, and volume ratio of-alanine/PFN-Br is 1∶4 for A-PFN-Br. The detailed preparation method is mentioned in the experimental section. The device with the A-PEDOT∶PSS showed a PCE of 15.56%, with aOC,SCand FF of 0.829 V, 25.35 mA/cm2and 73.96%, respectively. Next, the device with A-PFN-Br, disclosed a PCE of 15.65%, with aOCof 0.827 V,SCand FF of 25.91 mA/cm2and 73.39%, respectively. Lastly when we tried to use both transporting layers A-PEDOT∶PSS and A-PFN-Br at the same time in the same device, this dual-modified device revealed a PCE of 15.78% with aOCandSCof 0.828 V and 26 mA/cm2, respectively, along with a FF of 73.67%. Here, we noticed a decrease in the FF in the modified devices parameter, as we know FF decreases due to the presence of high series resistance. Reduction in depletion region causes further enhancement in the resistance that causes a reduction in FF. The FF of a solar cell is often the most difficult parameter to optimize because it is sensitive to a range of parasitic loss mechanisms, such as resistance losses. Shunt and series resistance can further reduce the FF of a practical device. In a simple cell model, these resistances are Ohmic elements. However, in practice both shunt and series resistance are not Ohmic in nature, therefore these non-Ohmic resistance greatly complicates the process of deconvoluting the various mechanisms responsible for a low FF. In the modified devices(single or dual) the FF is lower than that of the control devices due to the presence of higher resistances in the modified devices that resulted in the lower FF. The corresponding performance parameters are tabulated in Table 1.

    Table 1 Photovoltaic parameters of the conventional architecture of OSCs based on PM6∶Y6 system with pristine PEDOT∶PSS, PFN∶Br and modified versions with β?alanine(A?PEDOT∶PSS and A?PFN?Br)a

    .Substrate(ITO) and metal(Al) deposition were all the same for every device;. the average values/standard deviation for PCE are (14.88± 0.10) for control, (15.3±0.25) for A-PEDOT∶PSS, (15.50±0.12) for A-PFN-Br, and (15.51±0.18) for both. These calculations were based on 16 devices.

    Fig.2 Current density versus voltage(J?V) curves of PM6∶Y6 active layer using different ETL and HTL modified layers(control, A?PEDOT∶PSS, A?PFN?Br and both)(A), dark J?V characteristics of various devices(B) and EQE spectra for PEDOT∶PSS and A?PEDOT∶PSS(C) and for PFN?Br and A?PFN?Br(D)

    (A) The inset picture is a zoom-in on the curves.

    The dark-graph is in Fig.2(B). A dark current-voltage investigation is divided into three dominant regions. In region I(at low voltages) the-characteristics is primarily leakage currents determined bysh(shunt resistance). Region II(intermediate voltages) accounts for recombination currents, and region III(at high voltages) accounts for series resistance[40,41]. When there was a dual modification(Both) device, dark-characteristics also spectated that the use of-alanine passivate the defects[30]of polymers of both the transpor-ting layers(ETL and HTL), which is why the curve showed the lowest dark reverse[42,43]current among all. The dual-modified devices were better at blocking the activities[44]of electrons as well as holes in their respective interfaces and improving charge carrier selectivity. From the dark-graph, we also observed an increase in built-in voltage(bi)[45]for the condition of ‘Both’ to 1.05 V from the control device of 0.95 V. Thus, the increase inOCin the modified devices might be due to the increment of thebivalues. Then in the case of A-PEDOT∶PSS and A-PFN-Br, there are minor differences observed which might be due to the unmodified interface layer side, respectively. After that, EQE was tested for both the transporting layers(ETL and HTL) along with their modified versions. Fig.2(C) represents the PEDOT∶PSS and A-PEDOT∶PSS EQE, which showed a small increment in the 330—860 nm wavelength range for the modified layer. Fig.2(D) represents the EQE for the ETL devices of PFN-Br and A-PFN-Br. The increase in the EQE is due to the addition of-alanine that enhanced theSCof the modified devices for better charge transportation[46].

    3.2 Charge Carrier Mobility

    Furthermore, we performed the SCLC characterization to count the charge carrier mobilities in the hole and electron-only devices. Fig.3(A)—(D) depicted the SCLC measurements for the interface layers. Fig.3(A) showed the PEDOT∶PSS SCLC charge mobility graph, the charge mobility was found to beh=2.18×10?4cm2·V?1·s?1. The A-PEDOT∶PSS SCLC graph in Fig.3(C) showed that the charge mobilities increased to 2.48×10?4cm2·V?1·s?1, this counts for an increase of 13.76% from the PEDOT∶PSS mobility. Next for PFN-Br, SCLC charge mobility ise=2.66×10?4cm2·V?1·s?1[Fig.3(B)], which also later in the A-PFN-Br elevated toe=2.98×10?4cm2·V?1·s?1depicted in Fig.3(D). For the electron mobilities, 12% increase has been shown for A-PFN-Br devices. Hence, it was concluded that-alanine addition aids in improved carrier mobilities. The respective device architecture structures are also illustrated in the SCLC graph of each layer(insets in Fig.3).

    Fig.3 SCLC carrier mobility graphs for hole transporting layers PEDOT∶PSS(A), electron transporting layer PFN?Br(B), modified HTL(A?PEDOT∶PSS)(C) and modified ETL(A?PFN?Br)(D)

    Insets are device architecture structures.

    3.3 Electrochemical Properties and Stability

    Fig.4 FTIR analysis of PEDOT∶PSS with different percentages of β?alanine(A), FTIR of pristine PEDOT∶PSS(a) and PEDOT∶PSS with 2.0 mg of β?alanine(b)(B), UV?Vis absorption of PEDOT∶PSS and A?PEDOT∶PSS(C), UV?Vis absorption of PFN?Br and A?PFN?Br(D), transmittance of PEDOT∶PSS and A?PEDOT∶PSS(E) and transmittance of PFN?Br and A?PFN?Br(F), the normalized stability graph of different devices(G)

    3.4 Morphology Characterization and Contact Angle Measurements

    Fig.5 AFM images of PEDOT∶PSS height(A), phase(B) and A?PEDOT∶PSS height(C) and phase(D), PFN?Br height(E), phase(F), A?PFN?Br height(G), phase(H), the contact angle(water) of PEDOT∶PSS, A?PEDOT∶PSS(I) and PFN?Br and A?PFN?Br(J)

    4 Conclusions

    [1] Zhou Z., Xu S., Song J., Jin Y., Yue Q., Qian Y., Liu F., Zhang F., Zhu X.,.,2018,(11), 952—959

    [2] Gao W., Qi F., Peng Z., Lin F. R., Jiang K., Zhong C., Kaminsky W., Guan Z., Lee C. S., Marks T. J., Ade H., Jen A. K. Y.,..,2022,(32), 2202089

    [3] Armin A., Li W., Sandberg O. J., Xiao Z., Ding L., Nelson J., Neher D., Vandewal K., Shoaee S., Wang T., Ade H., Heumüller T., Brabec C., Meredith P.,..,2021,, 2003570

    [4] Duan C., Huang F., Cao Y.,..,2015,(47), 8081—8098

    [5] Wang J., Zheng Z., Zhang D., Zhang J., Zhou J., Liu J., Xie S., Zhao Y., Zhang Y., Wei Z., Hou J., Tang Z., Zhou H.,..,2019,(17), 1806921

    [6] Du X., Heumueller T., Gruber W., Almora O., Classen A., Qu J., He F., Unruh T., Li N., Brabec C. J.,..,2020,(16), e1908305

    [7] Che X., Li Y., Qu Y., Forrest S. R.,.,2018,(5), 422—427

    [8] Yin Z., Wei J., Zheng Q.,.., 2016,(8), 1500362

    [9] Li Y., Ding J., Liang C., Zhang X., Zhang J., Jakob D. S., Wang B., Li X., Zhang H., Li L., Yang Y., Zhang G., Zhang X., Du W., Liu X., Zhang Y., Zhang Y., Xu X., Qiu X., Zhou H.,, 2021,(12), 3154—3168

    [10] Chen M., Wang J., Yin F., Du Z., Belfiore L. A., Tang J.,...,2021,(8), 4505—4527

    [11] Kalkan S. B., Najafidehaghani E., Gan Z., Apfelbeck F. A. C., Hübner U., George A., Turchanin A., Nickel B.,..,2021,(1), 92

    [12] Kang H., Hong S., Lee J., Lee K.,..,2012,(22), 3005—3009

    [13] Liu M., Xu Y., Gao Z., Zhang C., Yu J., Wang J., Ma X., Hu H., Yin H., Zhang F., Man B., Sun Q.,,2021,(25), 11128—11137

    [14] Wu J., Gao M., Chai Y., Liu P., Zhang B., Liu J., Ye L.,.,2021,(4), 100062

    [15] Kim H. I., Bui T. T. T., Kim G. W., Kang G., Shin W. S., Park T.,..,2014,(18), 15875—15880

    [16] Zhang X., Zhang H., Li Y., Zafar S. U., Yang S., Chen J., Zhou H., Zhang Y.,...,2022,(44), 2205398

    [17] Pei S., Xiong X., Zhong W., Xue X., Zhang M., Hao T., Zhang Y., Liu F., Zhu L.,..,2022,(30), 34814—34821

    [18] Zheng Z., Hu Q., Zhang S., Zhang D., Wang J., Xie S., Wang R., Qin Y., Li W., Hong L., Liang N., Liu F., Zhang Y., Wei Z., Tang Z., Russell T. P., Hou J., Zhou H.,..,2018,(34), 1801801

    [19] Mengistie D. A., Chen C. H., Boopathi K. M., Pranoto F. W., Li L. J., Chu C. W.,..,2015,, 94—100

    [20] Zhang L., Yang K., Chen R., Zhou Y., Chen S., Zheng Y., Li M., Xu C., Tang X., Zang Z., Sun K.,..., 2020,(1), 1900648

    [21] Tang H., Liu Z., Hu Z., Liang Y., Huang F., Cao Y.,..,2020,(6), 802—809

    [22] Cassinelli M., Park W. T., Kim Y., Kim J. H., Noh Y. Y., Caironi M.,.., 2021,3), 033301

    [23] Hu L., Song J., Yin X., Su Z., Li Z.,,2020,(1), 145

    [24] Li B., Xiang Y., Jayawardena K. D. G. I., Luo D., Wang Z., Yang X., Watts J. F., Hinder S., Sajjad M. T., Webb T., Luo H., Marko I., Li H., Thomson S. A. J., Zhu R., Shao G., Sweeney S. J., Silva S. R. P., Zhang W.,,2020,, 105249

    [25] Chen S., Song L., Tao Z., Shao X., Huang Y., Cui Q., Guo X.,..,2014,(12), 3654—3659

    [26] Liu D., Xu H., Liu X., Xie Z., Yang B., Ma Y.,..,2011,(1), 174—180

    [27] Cameron J., Skabara P. J.,.,2020,(7), 1759—1772

    [28] Ionescu?Zanetti C., Mechler A., Carter S. A., Lal R.,..,2004,(7), 579

    [29] Liao Q., Kang Q., Yang Y., An C., Xu B., Hou J.,..,2020,(7), 1906557

    [30] Liu Y., Cole M. D., Jiang Y., Kim P. Y., Nordlund D., Emrick T., Russell T. P.,..,2018,(15), 1705976

    [31] Li Y.,..,2016,(11), 1430—1431

    [32] Jia J., Fan B., Xiao M., Jia T., Jin Y., Li Y., Huang F., Cao Y.,,2018,(6), 2195—2202

    [33] Hu Z., Chen Z., Zhang K., Zheng N.,Xie R., Liu X., Yang X., Huang F., Cao Y.,,2017,(6), 1700055

    [34] Guan L., Yu L., Wu L., Zhang S., Lin Y., Jiao Y., Zhang S., Zhao F., Ren Y., Zhou X., Liu Z.,,2021,, 138770

    [35] Ming Y., Zhu Y., Chen Y., Jin B., Duan C., Liang Z., Zhao L., Wang S., Dong B., Li H., Wu C.,..,2021,(48), 57163—57170

    [36] Yuan H., Zhang Z., Guo T., Yu L., Deng Z., Zhao R., Zhang J., Zhu Y.,..,2021,, 160140

    [37] Zheng Z., Zhang S., Zhang J., Qin Y., Li W., Yu R., Wei Z., Hou J.,..,2016,(25), 5133—5138

    [38] Sun P., Liu Y., Du S., Yu B., Wang Y., Sun M., Shi P., Liu Y., Gong J.,..,2017,, 522—531

    [39] Zou F., Zhuang W., Wu J., Zhou J., Liu Q., Chen Y., Xie J., Zhu C., Guo T., Ying H.,...,2014,, 14—22

    [40] Servaites J. D., Ratner M. A., Marks T. J.,...,2011,(11), 4410—4422

    [41] Servaites J. D., Yeganeh S., Marks T. J., Ratner M. A.,...,2010,(1), 97—104

    [42] Wu N., Luo Q., Bao Z., Lin J., Li Y. Q., Ma C. Q.,...,2015,, 248—259

    [43] Wolf U., Arkhipov V. I., B?ssler H.,.,1999,(11), 7507—7513

    [44] Waldauf C., Scharber M. C., Schilinsky P., Hauch J. D., Brabec C. J.,...,2006,, 104503

    [45] Zhou H., Zhang Y., Seifter J., Collins S. D., Luo C., Bazan G. C., Nguyen T. Q., Heeger A. J.,..,2013,(11), 1646—1652

    [46] Lee B. R., Lee S., Park J. H., Jung E. D., Yu J. C., Nam Y. S., Heo J., Kim J. Y., Kim B. S., Song M. H.,..,2015,(23), 3553—3559

    [47] Konwar L. J., M?ki?Arvela P., Mikkola J. P.,.,2019,(22), 11576—11630

    [48] Hara M., Yoshida T., Takagaki A., Takata T., Kondo J. N., Hayashi S., Domen K.,...,2004,(22), 2955—2958

    [49] Li H., Zhang C., Ma Y., Mai Y., Xu Y.,..,2018,, 468—473

    [50] Aleshin A. N., Williams S. R., Heeger A. J.,..,1998,(2), 173—177

    [51] Greczynski G., Kugler T., Salaneck W. R.,,1999,(1), 129—135

    [52] Kemerink M., Timpanaro S., de Kok M. M., Meulenkamp E. A., Touwslager F. J.,...,2004,(49), 18820—18825

    [53] Galatopoulos F., Papadas I. T., Ioakeimidis A., Eleftheriou P., Choulis S. A.,,2020,(10), 1961

    [54] Müller C., Hamedi M., Karlsson R., Jansson R., Marcilla R., Hedhammar M., Ingan?s O.,..,2011,(7), 898—901

    [55] Liao C., Zhang M., Yao M. Y., Hua T., Li L., Yan F.,..,2015,(46), 7493—7527

    [56] Crispin X., Jakobsson F. L. E., Crispin A., Grim P. C. M., Andersson P., Volodin A., van Haesendonck C., Van der Auweraer M., Salaneck W. R., Berggren M.,..,2006,(18), 4354—4360

    [57] Xu H., Yuan F., Zhou D., Liao X., Chen L., Chen Y.,...,2020,(23), 11478—11492

    [58] Li W., Zhang W., Van Reenen S., Sutton R. J., Fan J., Haghighirad A. A., Johnston M. B., Wang L., Snaith H. J.,...,2016,(2), 490—498

    [59] Dag I., Lifshitz E.,...,1996,(21), 8962—8972

    [60] Chang S. H., Chiang C. H., Kao F. S., Tien C. L., Wu C. G.,..,2014,(4), 1—7

    [61] Hwang J., Schwendeman I., Ihas B. C., Clark R. J., Cornick M., Nikolou M., Argun A., Reynolds J. R., Tanner D. B.,.,2011,(19), 195121

    [62] Akkerman H. B., Naber R. C. G., Jongbloed B., van Hal P. A., Blom P. W. M., de Leeuw D. M., de Boer B.,....,2007,(27), 11161—11166

    [63] Yun D. J., Jung J., Sung Y. M., Ra H., Kim J. M., Chung J., Kim S. Y., Kim Y. S., Heo S., Kim K. H., Jeong Y. J., Jang J.,...,2020,(11), 2000620

    [64] Wang Q., Chueh C. C., Eslamian M., Jen A. K. Y.,..,2016,(46), 32068—32076

    [65] Hosseini E., Ozhukil Kollath V., Karan K.,...,2020,(12), 3982—3990

    [66] Vorobyev A. Y., Guo C.,.,2011,(Suppl 5), A1031

    [67] Chao Y. C., Chen C. Y., Lin C. A., Dai Y. A., He J. H.,...,2010,(37), 8134—8138

    [68] Li J., Wang N., Wang Y., Liang Z., Peng Y., Yang C., Bao X., Xia Y.,.,2020,, 168—176

    [69] Shi Z., Liu H., Li J., Wang F., Bai Y., Bian X., Zhang B., Alsaedi A., Hayat T., Tan Z. A.,...,2018,, 1—9

    [70] Bi S., Leng X., Li Y., Zheng Z., Zhang X., Zhang Y., Zhou H.,.., 2019,(45), 1805708

    [71] Li Y., Zhang Z., Han X., Li T., Lin Y.,.,2022,(3), 1087—1097

    [72] Cha H., Wu J., Wadsworth A., Nagitta J., Limbu S., Pont S., Li Z., Searle J., Wyatt M. F., Baran D., Kim J. S., McCulloch I., Durrant J. R.,..,2017,(33), 1701156

    [73] Lee S. J., Pil Kim H., Mohd Yusoff A. R. B., Jang J.,...,2014,, 238—243

    [74] Hermenau M., Riede M., Leo K., Gevorgyan S. A., Krebs F. C., Norrman K.,...,2011,(5), 1268—1277

    [75] Wang J., Yu H., Hou C., Zhang J.,..,2020,(23), 26543—26554

    [76] Mateker W. R., McGehee M. D.,..,2017,(10), 1603940

    [77] Lin X., Wang Y., Wu J., Tang Z., Lin W., Nian L.,Yi G.,..,2021,(6), 5905—5912

    [78] Cho A., Kim S., Kim S., Cho W., Park C., Kim F. S., Kim J. H.,....,2016,(15), 1530—1536

    [79] Lee T. W., Chung Y.,...,2008,(15), 2246—2252

    [80] Zhou Y., Fuentes?Hernandez C., Shim J., Meyer J., Giordano A. J., Li H., Winget P., Papadopoulos T., Cheun H., Kim J., Fenoll M., Dindar A., Haske W., Najafabadi E., Khan T. M., Sojoudi H., Barlow S., Graham S., Brédas J. L., Marder S. R., Kahn A., Kippelen B.,,2012,(6079), 327—332

    [81] Mihailetchi V. D., Blom P. W. M., Hummelen J. C., Rispens M. T.,...,2003,(10), 6849—6854

    [82] López Valdivieso A., Sánchez López A. A., Song S.,...,2005,(3), 154—164

    [83] Paredes á., Acu?a S. M., Toledo P. G.,,2019,(11), 1177

    [84] Ouellette R. J., Rawn J. D.,:,, Elsevier, Boston,2015, 169—182

    [85] Penczek S., Kubisa P., Allen G., Bevington J. C.,?, Pergamon, Amsterdam,1989, 751—786

    [86] Savin K. A.,, Academic Press, Boston,2014, 1—53

    [87] Li J., Huang X., Yuan J., Lu K., Yue W., Ma W.,..,2013,(9), 2164—2171

    [88] Hau S. K., Yip H. L., Acton O., Baek N. S., Ma H., Jen A. K. Y.,...,2008,(42), 5113—5119

    [89] Chao L., Niu T., Gu H., Yang Y., Wei Q., Xia Y., Hui W., Zuo S., Zhu Z., Pei C., Zhang J., Fang J., Xing G., Li H., Huang X., Gao X., Ran C., Song L., Fu L., Chen Y., Huang W.,,2020,, 2616345

    [90] Yip H. L., Hau S. K., Baek N. S., Ma H., Jen A. K. Y.,..,2008,(12), 2376—2382

    -丙氨酸作為有機(jī)太陽能電池雙重修飾添加劑的研究

    Zafar Saud uz1,張偉超2,楊朔3,李世麟2,張瑩玉1,張淵2,張弘1,周惠瓊1

    (1. 中國科學(xué)院大學(xué), 中國科學(xué)院納米系統(tǒng)與多級次制造重點(diǎn)實(shí)驗(yàn)室, 中國科學(xué)院納米科學(xué)卓越中心, 國家納米科學(xué)與技術(shù)中心, 北京 100190;2. 北京航空航天大學(xué)化學(xué)學(xué)院, 北京 100191; 3. 北京廷潤膜技術(shù)開發(fā)股份有限公司, 北京 101100)

    -丙氨酸;添加劑;界面改性;傳輸層;有機(jī)太陽能電池

    O647.2

    A

    10.7503/cjcu20230185

    2023-04-12

    網(wǎng)絡(luò)首發(fā)日期: 2023-05-31.

    聯(lián)系人簡介:張弘, 男, 博士, 副研究員, 主要從事半透明柔性太陽能電池方面的研究. E-mail: zhanghong@nanoctr.cn

    周惠瓊, 女, 博士, 研究員, 主要從事有機(jī)太陽能電池和鈣鈦礦太陽能電池方面的研究. E-mail: zhouhq@nanoctr.cn

    國家自然科學(xué)基金(批準(zhǔn)號: 52273245)、中國科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(批準(zhǔn)號: XDB36000000)和中國科學(xué)院-世界科學(xué)院校長博士獎(jiǎng)學(xué)金計(jì)劃項(xiàng)目資助.

    Supported by the National Natural Science Foundation of China(No. 52273245), the Strategic Priority Research Program of Chinese Academy of Sciences(No. XDB36000000) and the Chinese Academy of Sciences-the World Academy of Sciences(CAS-TWAS) President’s Ph.D. Fellowship Program.

    (Ed.: Y, K, S)

    猜你喜歡
    張弘丙氨酸中國科學(xué)院
    溪流
    臨江仙·踏春
    虞美人·蝶為媒
    《中國科學(xué)院院刊》新媒體
    中國科學(xué)院院士
    ——李振聲
    無償獻(xiàn)血采血點(diǎn)初篩丙氨酸轉(zhuǎn)氨酶升高的預(yù)防及糾正措施研究
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    論張弘的新編昆劇
    丙氨酸氨基轉(zhuǎn)移酶快速檢測在血站血液采集前應(yīng)用的意義研究
    可以免费在线观看a视频的电影网站| 大片电影免费在线观看免费| 涩涩av久久男人的天堂| 国产99久久九九免费精品| 久热这里只有精品99| 777米奇影视久久| 国产成人精品无人区| 97精品久久久久久久久久精品| 午夜福利在线观看吧| 午夜精品国产一区二区电影| 中文精品一卡2卡3卡4更新| 黄色视频,在线免费观看| 午夜精品国产一区二区电影| 天堂8中文在线网| 黄片播放在线免费| 亚洲熟女精品中文字幕| 人人妻人人澡人人爽人人夜夜| 极品少妇高潮喷水抽搐| 国产男女内射视频| 午夜福利在线免费观看网站| 久久久国产欧美日韩av| 国产免费一区二区三区四区乱码| 97在线人人人人妻| 久久青草综合色| 国产男人的电影天堂91| 久久久久久久久久久久大奶| 少妇精品久久久久久久| 亚洲av男天堂| 美女中出高潮动态图| 国产亚洲精品一区二区www | 激情视频va一区二区三区| 欧美日韩一级在线毛片| www.自偷自拍.com| 最近最新免费中文字幕在线| 欧美在线黄色| 在线亚洲精品国产二区图片欧美| 黑人欧美特级aaaaaa片| 欧美激情 高清一区二区三区| 亚洲av成人一区二区三| 99热国产这里只有精品6| 欧美黑人欧美精品刺激| 啦啦啦啦在线视频资源| 久久久久久久精品精品| 90打野战视频偷拍视频| 国产欧美日韩一区二区三 | 欧美精品一区二区大全| 老熟妇乱子伦视频在线观看 | 美女大奶头黄色视频| 男女午夜视频在线观看| 成人18禁高潮啪啪吃奶动态图| 日本精品一区二区三区蜜桃| av免费在线观看网站| 精品欧美一区二区三区在线| 一区二区日韩欧美中文字幕| 国产精品熟女久久久久浪| 成人国产av品久久久| 欧美在线一区亚洲| av天堂在线播放| 亚洲成人手机| 久久久久久久久久久久大奶| 精品高清国产在线一区| 国产欧美日韩精品亚洲av| 免费黄频网站在线观看国产| 丝袜在线中文字幕| 欧美久久黑人一区二区| 亚洲av国产av综合av卡| 国产日韩欧美亚洲二区| 国产av国产精品国产| 久久免费观看电影| 亚洲国产看品久久| 午夜日韩欧美国产| 99热国产这里只有精品6| 高清视频免费观看一区二区| 大片电影免费在线观看免费| 久久久久久人人人人人| 老汉色av国产亚洲站长工具| www.精华液| 18禁国产床啪视频网站| 9191精品国产免费久久| 桃红色精品国产亚洲av| 久久精品aⅴ一区二区三区四区| 亚洲国产av影院在线观看| 国产一区二区 视频在线| av天堂在线播放| 久久 成人 亚洲| 免费在线观看黄色视频的| 国内毛片毛片毛片毛片毛片| 狠狠精品人妻久久久久久综合| 亚洲伊人久久精品综合| 欧美黄色淫秽网站| 日本91视频免费播放| 人妻人人澡人人爽人人| 成人影院久久| 国产精品偷伦视频观看了| 丝袜喷水一区| 国产亚洲午夜精品一区二区久久| 亚洲av日韩精品久久久久久密| 国产成人影院久久av| 欧美av亚洲av综合av国产av| 悠悠久久av| 一本久久精品| av天堂久久9| 建设人人有责人人尽责人人享有的| 亚洲国产av新网站| 操美女的视频在线观看| 五月开心婷婷网| 飞空精品影院首页| 丝袜人妻中文字幕| 别揉我奶头~嗯~啊~动态视频 | 最新的欧美精品一区二区| 黑人巨大精品欧美一区二区蜜桃| 人妻久久中文字幕网| 国产深夜福利视频在线观看| 精品一区二区三区av网在线观看 | 亚洲精品av麻豆狂野| 国产精品成人在线| 午夜影院在线不卡| 汤姆久久久久久久影院中文字幕| 久久久久久人人人人人| 少妇人妻久久综合中文| 免费在线观看完整版高清| 99久久99久久久精品蜜桃| 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| 午夜精品国产一区二区电影| 亚洲成人手机| 国产极品粉嫩免费观看在线| 少妇 在线观看| 久久久久国产一级毛片高清牌| 国产一区二区三区综合在线观看| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区免费| 各种免费的搞黄视频| 大型av网站在线播放| 亚洲精品一二三| 天堂俺去俺来也www色官网| 久久国产精品人妻蜜桃| 亚洲国产av影院在线观看| 国产在线免费精品| 老熟妇仑乱视频hdxx| 精品福利观看| 免费在线观看视频国产中文字幕亚洲 | 99久久综合免费| 99香蕉大伊视频| 男女免费视频国产| 免费在线观看完整版高清| 久久久久久久大尺度免费视频| 亚洲av电影在线进入| 精品一区二区三卡| 日韩精品免费视频一区二区三区| 少妇粗大呻吟视频| 9191精品国产免费久久| 久9热在线精品视频| 制服诱惑二区| 麻豆国产av国片精品| 午夜福利免费观看在线| 欧美午夜高清在线| 欧美黑人精品巨大| 国产一区有黄有色的免费视频| videos熟女内射| 咕卡用的链子| 麻豆国产av国片精品| 黑丝袜美女国产一区| 嫩草影视91久久| av电影中文网址| 法律面前人人平等表现在哪些方面 | 首页视频小说图片口味搜索| 新久久久久国产一级毛片| 丝袜脚勾引网站| 日日爽夜夜爽网站| 国产激情久久老熟女| 久久精品久久久久久噜噜老黄| 亚洲精品美女久久av网站| 岛国在线观看网站| 亚洲va日本ⅴa欧美va伊人久久 | 桃花免费在线播放| 免费观看人在逋| 亚洲七黄色美女视频| 亚洲美女黄色视频免费看| 日本一区二区免费在线视频| 欧美日韩成人在线一区二区| 最新的欧美精品一区二区| 欧美成狂野欧美在线观看| 一区二区三区精品91| 波多野结衣一区麻豆| 日本wwww免费看| 大陆偷拍与自拍| 人人妻人人澡人人爽人人夜夜| 人妻 亚洲 视频| 99re6热这里在线精品视频| 90打野战视频偷拍视频| a级片在线免费高清观看视频| 动漫黄色视频在线观看| 91麻豆av在线| 亚洲av日韩在线播放| 国产福利在线免费观看视频| 最近最新中文字幕大全免费视频| 亚洲欧美精品自产自拍| 久久精品亚洲av国产电影网| 欧美亚洲 丝袜 人妻 在线| 久久九九热精品免费| 免费在线观看黄色视频的| 亚洲精品自拍成人| 久久九九热精品免费| 免费观看a级毛片全部| 免费在线观看黄色视频的| 少妇人妻久久综合中文| 少妇的丰满在线观看| 爱豆传媒免费全集在线观看| 午夜久久久在线观看| 如日韩欧美国产精品一区二区三区| 肉色欧美久久久久久久蜜桃| 免费女性裸体啪啪无遮挡网站| bbb黄色大片| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 国产伦理片在线播放av一区| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 女人爽到高潮嗷嗷叫在线视频| av片东京热男人的天堂| 精品国产乱码久久久久久小说| 欧美日韩中文字幕国产精品一区二区三区 | 我要看黄色一级片免费的| 欧美精品亚洲一区二区| 建设人人有责人人尽责人人享有的| 精品国产超薄肉色丝袜足j| 黄色a级毛片大全视频| 亚洲成国产人片在线观看| 中文字幕人妻丝袜一区二区| 国产在线免费精品| 蜜桃在线观看..| 久久午夜综合久久蜜桃| 老司机午夜福利在线观看视频 | 深夜精品福利| 国产精品久久久av美女十八| 女人爽到高潮嗷嗷叫在线视频| 亚洲免费av在线视频| 久久精品亚洲av国产电影网| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲avbb在线观看| 色婷婷av一区二区三区视频| 老司机影院毛片| 不卡一级毛片| 久久久久国产精品人妻一区二区| 99久久99久久久精品蜜桃| 啦啦啦中文免费视频观看日本| 黄片播放在线免费| 久久 成人 亚洲| 女人爽到高潮嗷嗷叫在线视频| 成人18禁高潮啪啪吃奶动态图| 亚洲成国产人片在线观看| av片东京热男人的天堂| 国产精品欧美亚洲77777| 一级毛片女人18水好多| 久久ye,这里只有精品| 亚洲欧美一区二区三区久久| 成年av动漫网址| 国产精品一二三区在线看| 波多野结衣av一区二区av| 久久久欧美国产精品| 亚洲av日韩在线播放| 超色免费av| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 波多野结衣一区麻豆| 国产亚洲精品一区二区www | 悠悠久久av| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| 一区二区三区激情视频| 亚洲性夜色夜夜综合| 大码成人一级视频| 侵犯人妻中文字幕一二三四区| 超碰97精品在线观看| 99精品欧美一区二区三区四区| 精品一区二区三卡| 日韩视频一区二区在线观看| 日韩视频在线欧美| 蜜桃在线观看..| 精品国产一区二区三区久久久樱花| 国产免费现黄频在线看| 久久免费观看电影| 久久精品成人免费网站| 色94色欧美一区二区| 亚洲精品一区蜜桃| 欧美亚洲日本最大视频资源| 欧美亚洲日本最大视频资源| 97精品久久久久久久久久精品| 国产精品99久久99久久久不卡| 一本大道久久a久久精品| 脱女人内裤的视频| 丁香六月欧美| 美女扒开内裤让男人捅视频| 久久精品亚洲av国产电影网| 永久免费av网站大全| 久久久久国内视频| 中文字幕人妻丝袜制服| 久久精品成人免费网站| 国产成人精品久久二区二区91| 日韩精品免费视频一区二区三区| 美女中出高潮动态图| 少妇被粗大的猛进出69影院| 岛国毛片在线播放| 久久精品国产a三级三级三级| 国产精品久久久久久精品古装| 黄色视频在线播放观看不卡| bbb黄色大片| 少妇人妻久久综合中文| 国产成人av教育| 老司机影院毛片| 午夜福利一区二区在线看| 精品少妇久久久久久888优播| 日日爽夜夜爽网站| 久久国产精品影院| 欧美日韩国产mv在线观看视频| 青青草视频在线视频观看| 成人18禁高潮啪啪吃奶动态图| 窝窝影院91人妻| 欧美少妇被猛烈插入视频| 国产97色在线日韩免费| 免费不卡黄色视频| 91麻豆av在线| 高清在线国产一区| bbb黄色大片| 老司机午夜福利在线观看视频 | 亚洲久久久国产精品| 中文字幕人妻丝袜一区二区| 一二三四社区在线视频社区8| 亚洲第一青青草原| 午夜免费观看性视频| 19禁男女啪啪无遮挡网站| www.av在线官网国产| 国产欧美日韩综合在线一区二区| 欧美一级毛片孕妇| 亚洲色图综合在线观看| 亚洲中文日韩欧美视频| 精品少妇久久久久久888优播| 久久国产精品人妻蜜桃| 亚洲色图 男人天堂 中文字幕| 91成年电影在线观看| 国产成人精品久久二区二区91| 欧美精品一区二区免费开放| 国产精品成人在线| 亚洲伊人久久精品综合| 高清av免费在线| √禁漫天堂资源中文www| 色视频在线一区二区三区| 黄色毛片三级朝国网站| 一区二区三区乱码不卡18| 丝袜脚勾引网站| 女人被躁到高潮嗷嗷叫费观| 天天躁狠狠躁夜夜躁狠狠躁| 蜜桃在线观看..| 国产一区二区三区综合在线观看| 五月开心婷婷网| 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| www.精华液| 欧美人与性动交α欧美精品济南到| 久久 成人 亚洲| 精品熟女少妇八av免费久了| 午夜免费观看性视频| 国产亚洲欧美在线一区二区| 国产亚洲精品第一综合不卡| 在线观看免费高清a一片| 曰老女人黄片| 亚洲精品国产区一区二| 日韩视频在线欧美| 久久久欧美国产精品| 亚洲国产精品999| 女性生殖器流出的白浆| 1024视频免费在线观看| 高清av免费在线| 精品久久久精品久久久| 亚洲精品中文字幕在线视频| 亚洲全国av大片| 91成人精品电影| a级片在线免费高清观看视频| 精品乱码久久久久久99久播| 国产亚洲精品久久久久5区| av超薄肉色丝袜交足视频| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 亚洲欧美精品综合一区二区三区| 日韩一区二区三区影片| 亚洲精品久久成人aⅴ小说| 国产真人三级小视频在线观看| 热99久久久久精品小说推荐| 日韩视频一区二区在线观看| 人人妻人人澡人人爽人人夜夜| 欧美亚洲 丝袜 人妻 在线| 亚洲国产av影院在线观看| 中文字幕最新亚洲高清| 美国免费a级毛片| 999久久久精品免费观看国产| 国产成人系列免费观看| 国产欧美日韩精品亚洲av| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 国产片内射在线| 在线观看免费高清a一片| 亚洲精品第二区| 久久久久久久大尺度免费视频| 国产一区有黄有色的免费视频| 十八禁网站免费在线| 叶爱在线成人免费视频播放| 日韩有码中文字幕| 国产一区二区在线观看av| 国产成人啪精品午夜网站| 777久久人妻少妇嫩草av网站| 国产日韩欧美在线精品| 国产三级黄色录像| 国产成人av教育| 美女福利国产在线| 久久久久精品国产欧美久久久 | 亚洲av日韩在线播放| 亚洲一码二码三码区别大吗| 日韩有码中文字幕| 国产亚洲午夜精品一区二区久久| 国产精品久久久久成人av| 欧美成人午夜精品| 久久亚洲精品不卡| 俄罗斯特黄特色一大片| 一级,二级,三级黄色视频| 国产熟女午夜一区二区三区| 亚洲欧洲精品一区二区精品久久久| 久久精品久久久久久噜噜老黄| 中亚洲国语对白在线视频| 中文欧美无线码| 夫妻午夜视频| 国产片内射在线| 精品高清国产在线一区| 啦啦啦啦在线视频资源| av天堂在线播放| 亚洲国产精品999| 一区二区三区精品91| 国产一区二区 视频在线| 国精品久久久久久国模美| 亚洲全国av大片| 久久中文看片网| 日本vs欧美在线观看视频| 欧美一级毛片孕妇| 美国免费a级毛片| 亚洲精品国产av蜜桃| 国产精品国产av在线观看| 天天操日日干夜夜撸| 日本一区二区免费在线视频| 久久久精品94久久精品| 又黄又粗又硬又大视频| 精品亚洲成a人片在线观看| 国产男女超爽视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美+亚洲+日韩+国产| 麻豆av在线久日| 天天躁日日躁夜夜躁夜夜| 国产欧美亚洲国产| 美女扒开内裤让男人捅视频| 久久久久久免费高清国产稀缺| 日本a在线网址| 一级毛片精品| 午夜免费观看性视频| 久久久久视频综合| 飞空精品影院首页| 1024视频免费在线观看| 午夜福利影视在线免费观看| 亚洲精品一二三| 99热国产这里只有精品6| 女性被躁到高潮视频| 99re6热这里在线精品视频| 首页视频小说图片口味搜索| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 高清黄色对白视频在线免费看| 我的亚洲天堂| 免费少妇av软件| 国产欧美日韩一区二区精品| 老司机深夜福利视频在线观看 | 国产精品偷伦视频观看了| 天天躁日日躁夜夜躁夜夜| 久久天堂一区二区三区四区| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 一个人免费在线观看的高清视频 | 国产精品1区2区在线观看. | 成人国语在线视频| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 高清黄色对白视频在线免费看| 日日摸夜夜添夜夜添小说| 一区二区日韩欧美中文字幕| 午夜老司机福利片| 一二三四在线观看免费中文在| 久久精品人人爽人人爽视色| 久久久精品94久久精品| videos熟女内射| 日本av免费视频播放| 99国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 老司机在亚洲福利影院| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 在线十欧美十亚洲十日本专区| 精品国产超薄肉色丝袜足j| 成人免费观看视频高清| 视频区图区小说| 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 在线亚洲精品国产二区图片欧美| 日韩制服骚丝袜av| 波多野结衣av一区二区av| 一级片'在线观看视频| 午夜免费观看性视频| 正在播放国产对白刺激| 黄片小视频在线播放| 黄色a级毛片大全视频| 日韩三级视频一区二区三区| 亚洲精品久久午夜乱码| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 亚洲av电影在线进入| netflix在线观看网站| 99国产综合亚洲精品| 色播在线永久视频| 91成年电影在线观看| 一级毛片女人18水好多| 国产一卡二卡三卡精品| 久久久久久亚洲精品国产蜜桃av| 91字幕亚洲| 国产一区二区三区av在线| 亚洲欧美激情在线| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 午夜91福利影院| 乱人伦中国视频| 久久精品成人免费网站| 中文字幕最新亚洲高清| 肉色欧美久久久久久久蜜桃| 高清av免费在线| 亚洲一区中文字幕在线| 午夜福利一区二区在线看| 电影成人av| 男女高潮啪啪啪动态图| 丰满饥渴人妻一区二区三| 一本一本久久a久久精品综合妖精| 国产精品 国内视频| 欧美日韩亚洲国产一区二区在线观看 | av网站在线播放免费| 一级毛片电影观看| 美女福利国产在线| 免费观看av网站的网址| 日本vs欧美在线观看视频| 国产精品一区二区精品视频观看| 国产在线免费精品| 1024视频免费在线观看| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久av美女十八| 一级,二级,三级黄色视频| 一区二区av电影网| 69av精品久久久久久 | 亚洲欧美清纯卡通| 久久狼人影院| 热99re8久久精品国产| av不卡在线播放| 亚洲av美国av| 在线观看免费视频网站a站| 日韩大码丰满熟妇| 精品国产国语对白av| 国产日韩欧美在线精品| 51午夜福利影视在线观看| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 嫁个100分男人电影在线观看| 亚洲情色 制服丝袜| 久久久久久久大尺度免费视频| 国产淫语在线视频| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 久久国产精品影院| 久久久久久久久久久久大奶| 一本综合久久免费| 国产三级黄色录像| √禁漫天堂资源中文www| 亚洲中文字幕日韩| 男女床上黄色一级片免费看| 一级片免费观看大全| 日日摸夜夜添夜夜添小说| 久久国产精品男人的天堂亚洲| 国产欧美日韩综合在线一区二区| 9热在线视频观看99| 高清欧美精品videossex| 国产免费福利视频在线观看| 国产高清videossex| 91成人精品电影| 黄色视频,在线免费观看| 久久午夜综合久久蜜桃| 国产av一区二区精品久久| 日本av手机在线免费观看| 巨乳人妻的诱惑在线观看| 男女下面插进去视频免费观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品一二三| 成人黄色视频免费在线看| 欧美国产精品va在线观看不卡| 视频区欧美日本亚洲| 日韩大片免费观看网站| 欧美国产精品va在线观看不卡| 亚洲精品美女久久久久99蜜臀| 久久这里只有精品19|