• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of resonant magnetic perturbation on blob motion and structure using a gas puff imaging diagnostic on the HL-2A tokamak

    2023-10-08 08:20:40JinbangYUAN袁金榜MinXU許敏YiYU余羿BodaYUAN袁博達LinNIE聶林XiaoquanJI季小全TengfeiSUN孫騰飛AoWANG王傲andJiquanLI李繼全
    Plasma Science and Technology 2023年9期
    關(guān)鍵詞:金榜騰飛

    Jinbang YUAN(袁金榜),Min XU(許敏),?,Yi YU(余羿),Boda YUAN(袁博達),Lin NIE(聶林),Xiaoquan JI(季小全),Tengfei SUN(孫騰飛),Ao WANG(王傲)and Jiquan LI(李繼全)

    1 Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    2 Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-sen University,Zhuhai 519082,People’s Republic of China

    Abstract The impact of resonant magnetic perturbation(RMP)on blob motion and structure in the SOL of the HL-2A tokamak is studied using a gas puff imaging diagnostic.Ellipse fitting is applied to study the structure and motion of blobs quantitatively.The radial locations,amplitudes and scale sizes of blobs are obtained based on the fitted ellipse.Furthermore,based on the measurement of blob location,the radial and poloidal velocities of blobs are calculated.With the application of RMP,the edge poloidal shear flow is significantly weakened and the wave number spectrum changes from quasisymmetric to significantly up-down asymmetric.The application of RMP also causes the detected blob location to be much further into the far scrape-off layer(SOL)and increases the blob amplitude.Blob poloidal velocity in the SOL is slowed.Larger-size and longer-lifetime blobs are observed with RMP.With the application of RMP,stronger-amplitude and larger-size blobs are detected in the far SOL and they may cause a more serious erosion problem to the first wall.

    Keywords: resonance magnetic perturbations,blob structure,blob motion,gas puff imaging

    1.Introduction

    Resonant magnetic perturbation(RMP) coils have been widely used to suppress edge localized modes(ELMs)worldwide since the discovery on DIII-D that the application of RMP can lead to full ELM suppression[1,2].ITER design work proposed the application of RMP to stabilize ELM and feedback stabilization of resistive wall modes and to increase vertical stability [3].In addition,RMP is used to control the vertical plasma position and to control the interaction between plasma and the first wall [4,5].

    The application of RMP is also used to modify edge turbulence and transport.The impact of RMP on edge turbulence is observed to be dependent on RMP generation modes and plasma parameters.On TEXT,experiments found that particle transport increased by typically 30% with magnetic islands created by externally applied resonant magnetic fields [6].Experiments on TEXTOR showed that with RMP the local turbulent flux reversed sign from radially outwards to inwards [7,8].On MAST,the edge turbulence density fluctuation level decreased and the density probability distribution function showed an asymmetrization towards non-Gaussian shapes with RMP [9].In DIII-D H mode plasma,long-wavelength turbulence and transport increased dramatically and global energy confinement decreased with the application of RMP [10].Later work showed an increase in density fluctuations at microturbulent scales with increasing RMP amplitude [11].KSTAR tokamak experiments alsoobserved that application of RMP increased the density fluctuation level [12].Recent experimental studies on DIII-D provided a mechanism for the effect of RMP on turbulence density fluctuations.RMP reduces the flow shear rate and thereby disrupts the turbulence shear suppression mechanism[13].In addition,research on the interaction between magnetic island induced by RMP and turbulence has been widely reported on EAST [14-16],J-TEXT [17-19] and HL-2A[20,21].Furthermore,the impact of RMP on blobs has attracted significant attention.Blobs are isolated high-density structures that are usually formed in the plasma edge or near the separatrix,and move fast and radially towards the first wall [22-25].Separate studies have shown that blobs in the boundary plasma can account for up to 50% of the total transport associated with edge turbulence [26-28],and blobs can significantly increase interactions between the plasma and the first wall by causing non-diffusive plasma transport[29-31].Simulation results predicted that larger-scale blobs can maintain a stable structure for longer [29].However,the blob birth process still remains an open issue [32].

    The impact of RMP on edge poloidal shear flow(also radial electric field)has also been studied on many tokamaks.On TEXTOR,the application of the DED(Dynamic Ergodic Divertor) increases the rotation in the scrape-off layer(SOL)and slows the rotation at the edge [33],and similar experimental phenomena are also observed on MAST [9].

    It is generally believed that poloidal shear flow plays an essential role in controlling turbulence transport for its shearing effects on turbulent eddies,as predicted by theories[34-36].Edge poloidal flow speed varies in the radial direction,perpendicular to the flow direction,and usually has the maximum shearing rate near the separatrix.It is widely accepted that the poloidal shear flow tilts the eddies,decreases their radial extent and elongates them poloidally.In some simulations,the shear flow also breaks up large eddy structures [36].

    Experimental observations on TEXTOR provided evidence of eddy breaking and tilting caused by edge shear flow.Results showed that the magnitude of the flow shearing rate plays a key role in eddy tilting or breaking [37].Further experiments showed that as the poloidal flow is slowly enhanced,thekr-kθspectrum changes from roughly symmetric to elliptic to finally wider and less stretched,where the widening of the spectrum implies the breakup of eddies [38].

    In this paper,the impact of RMP on blob motion and structure on the HL-2A tokamak is studied using a gas puff imaging(GPI) diagnostic.The rest of the paper is organized as follows.Section 2 gives the introduction of the experimental setup.Section 3 presents blob diagnostics and data analysis.High spatial and temporal resolution of plasma turbulence diagnostics-GPI is used to measure the 2D turbulence density fluctuations.Ellipse fitting is applied to study the structure and motion of blobs quantitatively.Section 4 analyzes the impact of RMP on blob motion and size.Finally,in section 6,discussion takes place and the paper is concluded.

    2.Experimental setup

    HL-2A is a medium-size tokamak,which is performed in deuterium plasmas and typically operated under limiter or lower single-null divertor configurations [39-41].Its major radius isR=1.65 m and its minor radius isr=0.4 m.

    The experiment is carried out in Ohmic discharge at lower single-null divertor configuration(shots#37777 and#37778).The time evolution of the main discharge parameters in this experiment is shown in figure 1.The experiment was carried out under Ohmic heating with a plasma current(IP)of 160 kA,a toroidal magnetic field(Bt) of 1.6 T,line-averaged density(ne) of 1.3×1019m-3and horizontal displacement of the magnetic axis(hd)around 0.These parameters remained almost constant without/with the application of RMP.Shot#37777 is the reference shot without RMP and shown by blue color,and shot#37778 is applied with 10 kA RMP(m/n=3/1)during the period oft=1300-1400 ms and shown by red color.The magnetic field perturbation componentm/n=3/1 by RMP is more than 7 Gs on theq95surface andm/n=3/1 magnetic islands are created on theq=3 surface.More details about the RMP coils on HL-2A can be found in [42].These parameters are the common discharge parameters of the HL-2A tokamak and are highly repeatable.The helium gas puff by GPI is initiated at 1250 ms to observe the modification of RMP on poloidal shear flow and blob properties duringt=1300-1400 ms.The results in this paper are calculated from 1300 to 1400 ms of GPI measurements.

    Measurement of the poloidal velocity profile is done by GPI in the middle plane using the time delay estimation method [43].The profiles of poloidal velocity(Vθ) and shearing rate(ωs) ofVθare shown in figure 2,wherer-rseprepresents the distance from the separatrix,andωsis calculated asωs=d(Vθ)/dr.The error bars are shown by corresponding shadow colors.The poloidal velocity is significantly modified with the application of RMP.The poloidal velocity profilebecomes shallower and the maximum shearing rate becomes much weaker from-1.88×105to-0.908×105s-1with the application of 10kA RMP.Similar experimental phenomena were also reported on TEXTOR[33]and MAST[9].Based on these papers,it is proposed that RMP leads to an increased electron loss rate,which charges the plasma edge more positively.This mechanism explains the shallower poloidal velocity profile observed.

    With the application of 10 kA RMP,the poloidal shear flow becomes much weaker.The impact of RMP on blob properties is presented in the following sections.

    3.Blob diagnostics and data analysis

    3.1.GPI diagnostics

    The motion and structure of blobs are observed using GPI diagnostic,which is the same as reported previously[44,45].The set of GPI diagnostics used in this experiment is a viewing area 15 cm×15 cm region in the radial-poloidal plane perpendicular to the localBfield and a fast camera that records at 100 000 frames/s using a 128×128 pixel array.The time interval between two consecutive frames is 10μs,and the spatial resolution of the optical system is around 0.2 cm at the GPI gas cloud.A long nozzle is used to puff the helium gas into the plasma boundary region.

    3.2.Blob data analysis

    In this paper,the blob tracking analysis based on GPI data is done as follows.The GPI data are first normalized to a 1 ms rolling time-average of neighboring images(100 frames) in order to identify the maxima in each normalized image.A blob is defined as the region where the local normalized,smoothed fluctuation intensity exceeds 1.5.A contour line is generated in the region of intensity equal to 1.5 and then an ellipse is fitted to this contour.

    In order to study the structure and motion of blobs quantitatively,ellipse fitting is applied to the 1.5 contour of blobs.An illustration of blob ellipse fitting used in this study is shown in figure 3.Figure 3(a) shows the normalized intensity of a blob in one frame in a 3D coordinate system,wherex,y-direction coordinates represent the radial and poloidal pixel,respectively,and thez-direction coordinate represents the normalized intensity of the GPI data.Figure 3(b) is the projection of(a) on the radial-poloidal plane.The separatrix is shown by the black dashed line,and then an ellipse(in red)is fitted to the contour level of 1.5,and the blob scale lengths(LrandLθ)are defined from the ellipse fitting,as shown in figure 3(c).Based on the ellipse fitting of blobs,the key parameters of each detected blob are obtained:the blob radial location(marked as the center of the ellipse with respect to the separatrix at the radial row),the blob amplitude(defined as the maximum normalized intensity of GPI signal),the radial and poloidal scale length of the blob(LrandLθ,as in figure 3(c)) and the blob area(calculated as the ellipse area).The procedure for calculatingLrandLθof the blob is as follows.First,a rectangular coordinate system is established with the center of the ellipse as the origin,as shown in figure 3(c),and thex-andy-axes are the radial and poloidal directions,respectively.Thex-axis has two intersections with the ellipse,and the distance between these two intersections is defined asLrof the blob.Similarly,the distance between two intersections of they-axis with the ellipse is defined asLθof the blob.

    Figure 3.Illustration of a blob ellipse fitting:(a) normalized intensity of a blob in the 3D coordinate system,(b) the 2D projection on the radial-poloidal plane of(a).Separatrix is shown by the black dashed line,(c)an ellipse(in red)is fitted to the contour level of 1.5(shown by the black dotted line) and blob scale lengths(Lr and Lθ) are defined from the ellipse fitting in(c).

    Figure 4.(a) Typical normalized GPI image without RMP and(b)corresponding 2D wave number spectrum of(a).(c) Typical normalized GPI image with RMP and(d) corresponding 2D wave number spectrum of(c).

    Figure 5.Contour plots of average 2D wave number(kr- kθ)spectra in instances(a) without RMP and(b) with 10 kA RMP situations.

    Figure 6.Detected location of blobs in the SOL in instances(a)without RMP and(b) with RMP.

    Figure 7.PDF of the detected location of blobs in the SOL without(in blue) and with(in red) RMP.

    Figure 8.Radial distributions of individual detected blob amplitude in instances(a) without RMP and(b) with RMP.

    Figure 9.Profiles of average amplitude of blobs in instances(a)without RMP(in blue) and(b) with RMP(in red).

    Figure 10.Velocity of individual blobs in instances of(a)radial velocity without RMP,(b)poloidal velocity without RMP,(c)radial velocity with RMP,(d) poloidal velocity with RMP.

    Figure 11.PDF of blob(a) radial velocity and(b) poloidal velocity without(in blue) and with(in red) RMP.

    Figure 13.Profiles of the average blob lifetime without(in blue)and with(in red) RMP.

    Furthermore,based on the measurement of blob location,the radial and poloidal velocities of blobs are calculated as the radial and poloidal displacements divided by the interval time.

    Typical normalized GPI images without and with RMP are shown in figures 4(a)and(c),respectively.The blob shape in figure 4(a)is close to circular,while in figure 4(c)the blob shape is stretched with a tilted angle.To characterize the turbulence eddy shapes,a 2D space fast Fourier transform(2D-FFT)is performed.Thekrandkθare calculated from the space 2D-FFT of GPI images,and the 2D wave number spectra of figures 4(a) and(c) are shown in figures 4(b) and(d),respectively.The wave number spectrum changes from quasisymmetric to significantly up-down asymmetric with the application of 10 kA RMP,reflecting the modification of blob shape in the corresponding GPI images.

    Contour plots of 2D wave number(kr-kθ) spectra of GPI images are plotted in figure 5.Each spectrum is averaged over 1000 images.With the application of RMP,the wave number spectrum changes from quasisymmetric in figure 5(a)to significantly up-down asymmetric in figure 5(b).The asymmetric wave number spectrum indicates that turbulence structures are stretched with a tilted angle.Similar phenomena were reported on TEXTOR,which used electrode biasing to modify poloidal shear flow [38].More experimental results with respect to the shearing effect on blob size are presented in section 4.3.

    4.Impact of RMP on blob motion and size

    4.1.Impact of RMP on location and amplitude of blobs

    Due to the large measurement area covered by GPI diagnostics,the radial locations of blobs are marked as the center of the fitted ellipse with respect to the separatrix in the radial direction regardless of poloidal position.The number of blobs detected per radial zone is clearly different between without and with RMP cases,as shown in figure 6.

    Without RMP,the largest number of blobs per zone is found around 2-4 cm outside the separatrix and there are few blobs beyond 4 cm.However,with RMP there are very fewblobs near the separatrix,and most of the blobs are detected around 4-7 cm.The number of detected blobs without RMP at 2 cm<r-rsep<4 cm is around 50 per zone,while the number of detected blobs with RMP at 5-7 cm is around 100 per zone.The number of detected blobs increases significantly with the application of RMP.

    Further analysis of the most probable location of the detected blobs is done using statistical methods.The probability density functions(PDFs)of the detected location of the blobs in the SOL without and with RMP are shown in figure 7.The results show that the most probable location of blobs detected moves from 3.2 ± 0.3 to 6.0 ± 0.3 cm in the SOL.In other words,when RMP is applied,there are many more blobs detected in the far SOL.

    The radial distributions of individual detected blob amplitude without RMP and with RMP are shown in figure 8.The detected locations of strong amplitude blobs(amplitude>2)are limited to the range of 2 cm<r-rsep<3 cm without the application of RMP.In other words,no strong amplitude of blobs can propagate into the far SOL.However,whenIRMP=10 kA RMP is applied,the detected locations of strong amplitude blobs(amplitude>2) are distributed in a larger range of 3.2 cm<r-rsep<6.8 cm.The possible physical process can be that as the RMP is applied,the weaker shear flow leads to strong amplitude blobs propagating much further into the far SOL.These blobs may deposit on the first wall and cause a serious erosion problem.

    The profiles of average amplitude of blobs without RMP and with RMP are shown in figure 9.The average amplitude of blobs is enhanced from 1.55 to 1.65 when RMP is applied.

    The impact of RMP on blob location and amplitude is quite clear.The application of RMP causes the detected blob location to be much further into the far SOL and increases the blob amplitude.To summarize,there are more and higher amplitude blobs in the far SOL with RMP.

    4.2.Impact of RMP on blob velocity

    Based on the measured locations of blobs,the radial and poloidal velocities can be calculated as the blob radial and poloidal displacements divided by the interval time between continuous frames.Note that the blob velocity is calculated only when the following two conditions are met: the blob lasts at least two successive frames(20μs) and the furthest displacement of blobs in one dimension in two successive frames is 5 cm,otherwise they are considered to be two independent blobs.In other words,the maximum blob velocity allowed in one dimension is 5 km s-1in this study.

    The radial and poloidal velocities of individual blobs without and with RMP are shown in figure 10.The blob radialvelocities without and with RMP are mostly positive,as shown in figures 10(a) and(c),which means that most blobs are moving radially outwards(to the wall).Most of the blob poloidal velocities are negative,as shown in figures 10(b)and(d),which means that most blobs are moving downwards,which is along the ion-diamagnetic drift velocity direction.The poloidal velocities of most blobs in the SOL are along the direction of poloidal shear flow in the SOL.This may indicate that the poloidal shear flow has significant influence on the poloidal motion of blobs.

    The distributions of radial velocities of blobs with and without RMP are similar and most blob radial velocities are distributed in theVr>0 region.However,the PDF of blob poloidal velocity is clearly different between the without RMP and with RMP cases,as shown in figure 11(b).The distribution of blob poloidal velocity with RMP is shifted to the more positive direction compared with the distribution without RMP,which means that the poloidal velocity of blobs decreases with RMP,which is consistent with the modification of edge shear flow by RMP.It is natural that the most probable poloidal velocity also decreases with RMP.The most probable poloidal velocity of blobs without RMP is-0.46 km s-1and the most probable poloidal velocity of blobs with RMP is-0.22 km s-1.

    In general,RMP has little effect on the blob radial velocity but a noticeable effect on the poloidal velocity.An application of RMP slows blob poloidal velocity in the SOL.

    4.3.Impact of RMP on blob size

    It is generally believed that poloidal flow plays a key role in the turbulent eddy shape and formation.Previous experimental observations on the TEXTOR tokamak prove that whether shear flow tilts or splits the turbulent eddies depends on the magnitude of the flow shearing rate.Increasing the shearing rate changes the mode of effect from tilting to splitting and,consequently,reduces the turbulent transport [38].

    Experiments in this study prove that the RMP weakens the poloidal shear flow discussed in section 2.Furthermore,the impact of weakened shear flow on turbulence blob sizes is studied in this section.

    The profiles of the average blob size:(a)radial length,(b)poloidal length,(c) blob area without(in blue) and with(in red) RMP are shown in figure 12.Blob radial and poloidal sizes increase significantly with the application of RMP,especially near the separatrix.The blob area is also much larger than that without RMP.This observation verifies the assumption that the impact of shear flow on blobs changes from tearing and splitting to tilting only as the poloidal shear flow becomes weakened with RMP,resulting in larger-size blobs being detected.Furthermore,the impact of RMP on blob lifetime is also calculated.

    The profiles of the average blob trail lifetime without(in blue)and with(in red)RMP are plotted in figure 13.It is clear that under the impact of RMP,the average lifetime of blobs ismuch longer.Combined with larger blob size,it can be inferred that the larger the blob size is,the longer the lifetime is,which is consistent with the simulation results [29].This also indicates that as the shearing rate of edge poloidal shear flow becomes weaker with the application of RMP,largersize and longer-lifetime blobs exist in the far SOL.

    5.Conclusion

    In this study,the impact of RMP on blob motion and structure on the HL-2A tokamak is determined using a GPI diagnostic.The edge turbulence fluctuation data by GPI with high spatial(2 mm×2 mm) and temporal(10μs) resolutions guarantee the quantitative measurements of the blob structure and motion in the radial-poloidal plane.A blob is identified when the condition that the normalized amplitude exceeds 1.5 is met and then an ellipse is fitted to the contour of the blob.The radial locations,amplitudes and the scale sizes of blobs are obtained based on the fitted ellipse.Furthermore,with the measurement of blob location,the radial and poloidal velocities of blobs are calculated.

    With the application of RMP,the edge poloidal shear flow is significantly weakened and thekr-kθspectrum shifts from wider and less stretched to clearly tilted.This may imply that as the shear flow becomes weaker,the shearing effect changes from tearing and splitting to tilting only.This can be verified by the increase in blob size with RMP.

    The application of RMP also causes the detected blob location to be much further into the far SOL and increases the blob amplitude and lifetime.The blob poloidal velocity in the SOL is slowed and larger-size and longer-lifetime blobs are observed with RMP.With RMP,stronger amplitude and larger blob size is detected further into the SOL,and these blobs may cause a more serious erosion problem to the firstwall.Thus,enhanced blob transport with the application of RMP needs to be considered for the ITER design work and future operations.

    Acknowledgments

    The authors thank the HL-2A team at SWIP for their assistance with the experiments.This work is supported by the National Key Research and Development Program of China(Nos.2022YFE03100002,2022YFE03010004 and 2019YFE03060002),National Natural Science Foundation of China(Nos.U1867222,U1967206 and 51821005) and the Sichuan Natural Science Foundation(Nos.2022NSFSC1791 and 2020JDTD0030).

    ORCID iDs

    猜你喜歡
    金榜騰飛
    我們的十年,我們的金榜
    悅游金榜
    盧騰飛
    素數(shù)和差之半數(shù)的解析
    小小三雙鞋,見證騰飛路
    快樂語文(2018年25期)2018-10-24 05:39:10
    讓電視的聲音更細致迷人 Canton金榜DM55 Soundbar音箱
    雜詩二首
    黃金時代(2017年3期)2017-06-30 18:49:47
    騰飛在希望的田野上
    三角函數(shù)求值題巧妙變換就容易
    2015高級會計資格考試“金榜”131名考生上榜
    国产成人午夜福利电影在线观看| 黄色毛片三级朝国网站| netflix在线观看网站| 青春草国产在线视频| 日韩精品免费视频一区二区三区| 一级毛片黄色毛片免费观看视频| 99香蕉大伊视频| 在线观看国产h片| 亚洲综合精品二区| av在线老鸭窝| 久热这里只有精品99| 在线天堂最新版资源| bbb黄色大片| 亚洲av电影在线观看一区二区三区| 亚洲四区av| 97在线人人人人妻| 在线天堂最新版资源| 99香蕉大伊视频| 国产黄频视频在线观看| 日韩制服丝袜自拍偷拍| 国产免费又黄又爽又色| 国产在线视频一区二区| 久久久亚洲精品成人影院| 亚洲av男天堂| 亚洲欧洲日产国产| 嫩草影院入口| 国产免费视频播放在线视频| 啦啦啦在线免费观看视频4| 国产精品女同一区二区软件| 日本猛色少妇xxxxx猛交久久| 9色porny在线观看| 中文字幕高清在线视频| 日日啪夜夜爽| 赤兔流量卡办理| a级片在线免费高清观看视频| 99re6热这里在线精品视频| 久久婷婷青草| 91成人精品电影| 成年av动漫网址| 亚洲一区中文字幕在线| 黄频高清免费视频| 国产精品二区激情视频| 日本黄色日本黄色录像| 精品酒店卫生间| 一级毛片电影观看| 大片电影免费在线观看免费| 国产人伦9x9x在线观看| 久久精品亚洲av国产电影网| 亚洲国产中文字幕在线视频| 老司机影院毛片| 国产成人精品久久久久久| 交换朋友夫妻互换小说| 日韩一本色道免费dvd| 一区在线观看完整版| 国产成人欧美在线观看 | 亚洲专区中文字幕在线 | 亚洲美女视频黄频| 国产1区2区3区精品| 999精品在线视频| 一本一本久久a久久精品综合妖精| 18在线观看网站| av一本久久久久| 狂野欧美激情性bbbbbb| 免费在线观看完整版高清| 亚洲人成电影观看| 久久综合国产亚洲精品| 999精品在线视频| 国产探花极品一区二区| 久久天堂一区二区三区四区| 久久免费观看电影| 91老司机精品| 婷婷色av中文字幕| 90打野战视频偷拍视频| 日韩一卡2卡3卡4卡2021年| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 久久这里只有精品19| 久久韩国三级中文字幕| av在线老鸭窝| 亚洲av中文av极速乱| 久久久久人妻精品一区果冻| 999久久久国产精品视频| 黄色一级大片看看| 日本vs欧美在线观看视频| 午夜日韩欧美国产| 女人高潮潮喷娇喘18禁视频| 永久免费av网站大全| 欧美日韩亚洲国产一区二区在线观看 | www.自偷自拍.com| av有码第一页| 大码成人一级视频| 最近2019中文字幕mv第一页| 亚洲精华国产精华液的使用体验| 免费观看a级毛片全部| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精| 欧美日韩视频精品一区| 亚洲 欧美一区二区三区| 亚洲国产欧美日韩在线播放| 在线天堂最新版资源| 777米奇影视久久| 男人爽女人下面视频在线观看| avwww免费| 国产成人精品无人区| 国产精品免费大片| 女人被躁到高潮嗷嗷叫费观| 天天添夜夜摸| 国产亚洲欧美精品永久| 性色av一级| 老汉色av国产亚洲站长工具| 七月丁香在线播放| 免费黄色在线免费观看| 久久久国产精品麻豆| 国产一级毛片在线| 国产精品久久久久久精品电影小说| 91国产中文字幕| 亚洲天堂av无毛| av又黄又爽大尺度在线免费看| 看免费av毛片| 亚洲综合精品二区| 黄色 视频免费看| h视频一区二区三区| 亚洲av日韩精品久久久久久密 | 男女无遮挡免费网站观看| 大香蕉久久网| av在线观看视频网站免费| 精品午夜福利在线看| av国产精品久久久久影院| 亚洲国产精品成人久久小说| 亚洲av成人不卡在线观看播放网 | 国产日韩一区二区三区精品不卡| 免费日韩欧美在线观看| 午夜免费男女啪啪视频观看| 人人妻人人澡人人看| 国语对白做爰xxxⅹ性视频网站| 天天影视国产精品| 看免费av毛片| 黄网站色视频无遮挡免费观看| 捣出白浆h1v1| 国产男人的电影天堂91| 国产亚洲一区二区精品| 久久精品人人爽人人爽视色| 免费av中文字幕在线| 天堂俺去俺来也www色官网| 国产一区二区三区综合在线观看| 性少妇av在线| 97人妻天天添夜夜摸| 国产毛片在线视频| 一本—道久久a久久精品蜜桃钙片| av女优亚洲男人天堂| 亚洲欧美成人精品一区二区| 别揉我奶头~嗯~啊~动态视频 | 人人澡人人妻人| 久久久久久人妻| 男女之事视频高清在线观看 | 国精品久久久久久国模美| 97在线人人人人妻| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 一级爰片在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 又黄又粗又硬又大视频| 中文字幕人妻丝袜一区二区 | 一区二区日韩欧美中文字幕| 亚洲欧洲国产日韩| 在线免费观看不下载黄p国产| 免费看不卡的av| 99精国产麻豆久久婷婷| 狂野欧美激情性bbbbbb| 婷婷色av中文字幕| 宅男免费午夜| 欧美日韩亚洲综合一区二区三区_| 国产一区二区激情短视频 | 一边亲一边摸免费视频| 好男人视频免费观看在线| 天堂俺去俺来也www色官网| 国产精品香港三级国产av潘金莲 | 男女边摸边吃奶| 成人手机av| 69精品国产乱码久久久| 欧美日韩成人在线一区二区| 看非洲黑人一级黄片| 中国国产av一级| a级毛片黄视频| 成年动漫av网址| 国产熟女欧美一区二区| bbb黄色大片| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| 免费少妇av软件| 肉色欧美久久久久久久蜜桃| 99久久精品国产亚洲精品| 精品少妇内射三级| 日韩制服丝袜自拍偷拍| 性高湖久久久久久久久免费观看| 日本av免费视频播放| 午夜久久久在线观看| 丝袜在线中文字幕| 亚洲一码二码三码区别大吗| 国产免费一区二区三区四区乱码| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 国产 精品1| 五月开心婷婷网| 亚洲精品国产一区二区精华液| 超碰97精品在线观看| 一级毛片黄色毛片免费观看视频| 国产av国产精品国产| 男人添女人高潮全过程视频| 精品一区二区免费观看| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 国产av国产精品国产| 精品国产一区二区三区四区第35| 亚洲精品,欧美精品| 美国免费a级毛片| 熟女av电影| 成人国语在线视频| 自线自在国产av| 久久天躁狠狠躁夜夜2o2o | 在线亚洲精品国产二区图片欧美| 亚洲一区二区三区欧美精品| 99久国产av精品国产电影| 欧美黑人欧美精品刺激| 久久久久视频综合| 超碰97精品在线观看| 满18在线观看网站| 高清不卡的av网站| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 久久久久久久国产电影| 欧美精品一区二区免费开放| 丝袜脚勾引网站| 十八禁网站网址无遮挡| 黑人猛操日本美女一级片| av线在线观看网站| 波多野结衣一区麻豆| 国产老妇伦熟女老妇高清| 国产欧美亚洲国产| 两个人看的免费小视频| 黑人巨大精品欧美一区二区蜜桃| 天天添夜夜摸| 成人国产av品久久久| 成人国产av品久久久| 国产男人的电影天堂91| 最近2019中文字幕mv第一页| 午夜福利一区二区在线看| 日韩一本色道免费dvd| 久久久久精品国产欧美久久久 | 在线观看人妻少妇| 满18在线观看网站| 成人影院久久| 黄网站色视频无遮挡免费观看| 熟女av电影| 精品国产乱码久久久久久小说| 亚洲国产日韩一区二区| 热99久久久久精品小说推荐| 看十八女毛片水多多多| 各种免费的搞黄视频| 欧美人与性动交α欧美软件| 新久久久久国产一级毛片| 90打野战视频偷拍视频| 街头女战士在线观看网站| 亚洲欧美一区二区三区黑人| 久久久精品94久久精品| 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 精品国产乱码久久久久久小说| 啦啦啦中文免费视频观看日本| 丝袜脚勾引网站| 99久久人妻综合| 黄色怎么调成土黄色| 中文字幕高清在线视频| 午夜老司机福利片| 国产精品三级大全| 亚洲精品第二区| 熟女av电影| 亚洲天堂av无毛| 9191精品国产免费久久| 高清在线视频一区二区三区| av.在线天堂| 夫妻午夜视频| 精品国产超薄肉色丝袜足j| 大香蕉久久网| 亚洲成国产人片在线观看| 老司机在亚洲福利影院| 亚洲男人天堂网一区| 日韩不卡一区二区三区视频在线| 国产精品久久久久成人av| 午夜福利乱码中文字幕| 中文欧美无线码| 搡老乐熟女国产| 男人爽女人下面视频在线观看| 亚洲少妇的诱惑av| 久久久国产精品麻豆| 黄片无遮挡物在线观看| 免费观看性生交大片5| 韩国精品一区二区三区| 免费观看人在逋| 欧美少妇被猛烈插入视频| 久久久精品区二区三区| 亚洲av日韩精品久久久久久密 | 国产在线视频一区二区| 日韩一卡2卡3卡4卡2021年| a级毛片黄视频| 一本一本久久a久久精品综合妖精| 婷婷色综合大香蕉| 99久久综合免费| 国产日韩欧美亚洲二区| 在线精品无人区一区二区三| 99热国产这里只有精品6| 黄片播放在线免费| 久久久久久人人人人人| 午夜av观看不卡| 欧美成人午夜精品| 欧美亚洲 丝袜 人妻 在线| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 男男h啪啪无遮挡| 高清视频免费观看一区二区| 中文字幕最新亚洲高清| kizo精华| 亚洲av电影在线观看一区二区三区| 精品一品国产午夜福利视频| 国产男女内射视频| h视频一区二区三区| 亚洲av福利一区| 精品亚洲成a人片在线观看| 欧美人与性动交α欧美精品济南到| 日韩一区二区三区影片| 国产黄色免费在线视频| 国产精品免费视频内射| 亚洲精品自拍成人| 韩国av在线不卡| 日韩av不卡免费在线播放| 老司机影院成人| 中文字幕另类日韩欧美亚洲嫩草| 婷婷色综合www| 国产av精品麻豆| 丝袜美足系列| 亚洲成人av在线免费| 中文字幕高清在线视频| 黄色一级大片看看| 嫩草影院入口| 99国产综合亚洲精品| 9191精品国产免费久久| 国产熟女欧美一区二区| 2021少妇久久久久久久久久久| 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看 | 国产欧美亚洲国产| 啦啦啦视频在线资源免费观看| 亚洲在久久综合| 人人澡人人妻人| 亚洲男人天堂网一区| 亚洲国产精品一区三区| kizo精华| 午夜免费鲁丝| 看免费成人av毛片| 亚洲成人手机| 精品国产乱码久久久久久男人| 一区二区三区乱码不卡18| 免费高清在线观看日韩| 啦啦啦在线免费观看视频4| 日韩欧美一区视频在线观看| 久久性视频一级片| 91精品国产国语对白视频| 国产色婷婷99| 只有这里有精品99| 毛片一级片免费看久久久久| 精品亚洲成国产av| 黄片无遮挡物在线观看| 在线观看免费高清a一片| 国产xxxxx性猛交| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 80岁老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三| 各种免费的搞黄视频| 另类精品久久| 99国产综合亚洲精品| 亚洲av电影在线观看一区二区三区| 免费看av在线观看网站| 国产成人精品久久二区二区91 | 97在线人人人人妻| 一区二区三区精品91| 免费日韩欧美在线观看| 久久久国产精品麻豆| 久久精品亚洲av国产电影网| 亚洲av福利一区| 国产一级毛片在线| 成人毛片60女人毛片免费| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 又大又爽又粗| 一级毛片我不卡| 国产毛片在线视频| 亚洲一级一片aⅴ在线观看| 性色av一级| 大话2 男鬼变身卡| 日本av手机在线免费观看| 波多野结衣av一区二区av| 午夜av观看不卡| a级毛片黄视频| 久久精品人人爽人人爽视色| 久久久久人妻精品一区果冻| 91成人精品电影| 国产熟女午夜一区二区三区| 欧美日韩精品网址| 美女脱内裤让男人舔精品视频| 国产免费视频播放在线视频| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 日韩视频在线欧美| 欧美中文综合在线视频| 一本一本久久a久久精品综合妖精| 久久青草综合色| 久久女婷五月综合色啪小说| 99久国产av精品国产电影| 欧美精品一区二区大全| 性色av一级| 99精品久久久久人妻精品| 老熟女久久久| 一本—道久久a久久精品蜜桃钙片| 国产色婷婷99| 国产日韩一区二区三区精品不卡| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 成年美女黄网站色视频大全免费| 免费黄色在线免费观看| 观看av在线不卡| www.自偷自拍.com| xxx大片免费视频| 国产av一区二区精品久久| 久久热在线av| 亚洲成色77777| 超碰成人久久| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲高清精品| 色婷婷av一区二区三区视频| avwww免费| 国产一区二区 视频在线| 看十八女毛片水多多多| 丰满少妇做爰视频| 电影成人av| 亚洲精品在线美女| 极品人妻少妇av视频| 波多野结衣av一区二区av| 亚洲欧洲日产国产| 捣出白浆h1v1| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 建设人人有责人人尽责人人享有的| 亚洲一卡2卡3卡4卡5卡精品中文| 91成人精品电影| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av涩爱| 91精品国产国语对白视频| 国产伦人伦偷精品视频| 日韩一区二区三区影片| 亚洲欧美成人综合另类久久久| 少妇精品久久久久久久| 久久久精品94久久精品| 黄色一级大片看看| 欧美国产精品va在线观看不卡| 国产精品 国内视频| 亚洲av综合色区一区| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 国产亚洲av片在线观看秒播厂| 久久性视频一级片| 一级a爱视频在线免费观看| 久久免费观看电影| www日本在线高清视频| 国产熟女欧美一区二区| 高清不卡的av网站| 九草在线视频观看| 久久青草综合色| 久久精品国产亚洲av涩爱| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 99国产精品免费福利视频| av天堂久久9| 人妻 亚洲 视频| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 成年动漫av网址| 七月丁香在线播放| av在线app专区| 女人精品久久久久毛片| 久久久久久人人人人人| 亚洲天堂av无毛| 最近的中文字幕免费完整| 在线看a的网站| 国产免费一区二区三区四区乱码| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx| 女人高潮潮喷娇喘18禁视频| 亚洲欧洲国产日韩| 亚洲精品中文字幕在线视频| 国产精品国产三级专区第一集| 狂野欧美激情性bbbbbb| 永久免费av网站大全| 老司机影院成人| 国产精品一区二区在线观看99| 日日爽夜夜爽网站| 久久久久精品人妻al黑| 欧美久久黑人一区二区| 午夜免费观看性视频| 色综合欧美亚洲国产小说| 国产免费又黄又爽又色| 美女扒开内裤让男人捅视频| 一区二区日韩欧美中文字幕| 亚洲欧洲精品一区二区精品久久久 | 一区二区日韩欧美中文字幕| 日日爽夜夜爽网站| 欧美在线一区亚洲| 中文字幕制服av| 啦啦啦在线观看免费高清www| 欧美老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 国产黄频视频在线观看| 亚洲成人免费av在线播放| 国产日韩一区二区三区精品不卡| 丝袜美腿诱惑在线| 韩国高清视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美在线精品| www.精华液| 人妻 亚洲 视频| 亚洲精品国产色婷婷电影| 午夜影院在线不卡| 亚洲国产av影院在线观看| 久久精品国产a三级三级三级| 久久99精品国语久久久| 国产1区2区3区精品| 成人免费观看视频高清| 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 制服丝袜香蕉在线| 老司机在亚洲福利影院| 亚洲av国产av综合av卡| 亚洲精品在线美女| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 不卡av一区二区三区| 99精国产麻豆久久婷婷| av电影中文网址| 免费高清在线观看日韩| 亚洲色图综合在线观看| 成人亚洲精品一区在线观看| 水蜜桃什么品种好| 性少妇av在线| 国产毛片在线视频| 国产精品嫩草影院av在线观看| 中文字幕人妻熟女乱码| 在线观看免费视频网站a站| 男男h啪啪无遮挡| 这个男人来自地球电影免费观看 | 欧美另类一区| 国产av精品麻豆| 亚洲成人一二三区av| 一级片'在线观看视频| 性高湖久久久久久久久免费观看| 亚洲欧美日韩另类电影网站| 成人国语在线视频| 亚洲精品美女久久av网站| 老司机在亚洲福利影院| 日韩一卡2卡3卡4卡2021年| 欧美黄色片欧美黄色片| 在线 av 中文字幕| bbb黄色大片| 国产一卡二卡三卡精品 | 久久精品人人爽人人爽视色| 秋霞在线观看毛片| 久久久久视频综合| 国产一区二区激情短视频 | 国产精品熟女久久久久浪| 精品国产乱码久久久久久小说| av视频免费观看在线观看| 一本久久精品| 观看av在线不卡| 午夜福利一区二区在线看| 午夜福利影视在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av一区二区精品久久| 国产在视频线精品| 最黄视频免费看| 两个人免费观看高清视频| 午夜福利影视在线免费观看| 日本午夜av视频| 国产精品国产av在线观看| 一本大道久久a久久精品| 欧美日韩一级在线毛片| 蜜桃在线观看..| 2021少妇久久久久久久久久久| 免费在线观看黄色视频的| 国产又色又爽无遮挡免| 国产精品久久久久成人av| 久久久久精品久久久久真实原创| 18禁国产床啪视频网站| 国产精品嫩草影院av在线观看| 一区二区av电影网| 欧美人与善性xxx| 水蜜桃什么品种好| 亚洲成国产人片在线观看| 女人久久www免费人成看片| 一级黄片播放器|