• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure

    2023-10-07 07:42:44WANGFangLIUHuaMATaoMAShoudaoLIUYufang
    中國光學(xué) 2023年5期

    WANG Fang,LIU Hua,MA Tao,MA Shou-dao,LIU Yu-fang

    (1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China;2.Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China;3.Academician Workstation of Electromagnetic Wave Engineering of Henan Province,Xinxiang 453007, China;4.Henan Engineering Laboratory of Additive Intelligent Manufacturing, Xinxiang 453007, China)

    * Corresponding author,E-mail: lh18237269109@163.com

    Abstract: To improve the extinction ratio of a polarization beam splitter, we propose a dual-slot ultra-compact polarization splitter (PBS) consisting of a hybrid plasma Horizontal Slot Waveguide (HSW) and a silicon nitride hybrid Vertical Slot Waveguide (VSW).The coating material is silicon dioxide, which can prevent the oxidation of the mixed plasma and also facilitate integration with other devices.The mode characteristics of the HSW and VSW are simulated by using the Finite Element Method (FEM).At suitable HSW and VSW widths, the TE polarization modes in HSW and VSW are phase-matched, while the TM polarization modes are phase mismatched.Therefore, the TE mode in an HSW waveguide is strongly coupled with a VSW waveguide by adopting a dual-slot, while the TM mode directly passes through the HSW waveguide.The results show that PBS achieves an Extinction Ratio (ER) of 35.1 dB and an Insertion Loss (IL) of 0.34 dB for the TE mode at 1.55 μm.For the TM mode, PBS reached 40.9 dB for ER and 2.65 dB for IL.The proposed PBS is designed with 100 nm bandwidth, high ER, and low IL, which can be suitable for photonic integrated circuits (PICs).

    Key words: photonic integrated circuits; polarization beam splitter; slot waveguides.

    1 Introduction

    In recent years, sub-micron waveguide devices have been realized using the large difference in refractive index between a Silicon On Insulator (SOI)coating layer and a dielectric waveguide layer in the middle, which is compatible with the CMOS process[1].Because of the high refractive index difference between silicon and silicon dioxide in the SOI waveguide, there is often strong polarization dependence, and the TE and TM modes have different propagation characteristics in the SOI waveguide,which makes the birefringence effect of SOI-based optical waveguide devices significant and gives serious polarization sensitivity[2].The control and manipulation of polarization states in silicon-based photonic integrated circuits are very important.Polarization Beam Splitters (PBS) play a key role in the separation and combination of the TE and TM fundamental modes.Ultra-dense on-chip networks generally need a PBS with a high Extinction Ratio(ER), low loss, and wide bandwidth.

    In recent years, various waveguide structures that achieve polarization beam splitting have been reported, such as MultiMode Interference (MMI) structures[3-4], Mach-Zehnder Interferometers (MZI)[5],Directional Couplers (DC)[6-15], and SubWavelength Grating (SWG) structures[16-17].Among these structures, a directional coupler is widely used because of its superior performance and simple design; especially PBS, which is designed based on Asymmetric Directional Couplers (ADC) and is widely used because of its simple structure and low Insertion Loss (IL).Slot waveguides confine light to the nanoscale region of the low refractive index and guide light propagation[18-20], which is proposed for the use of polarization control devices.Depending on the direction of the electric field mode in slot waveguides, they can be divided into horizontal slot waveguides and vertical slot waveguides.The optical confinement mechanism of slot waveguides is total internal reflection, and the wavelength sensitivity of slot waveguides is lower than that of strip waveguides.

    To solve the polarization problem and realize low loss miniaturization passivity of devices, various waveguide structures based on PBS were studied.The PBSs based on the radiation loss in the bending Hybrid Plasmonic Waveguide (HPW)structure are proposed in Ref.[21], which has low loss characteristics.In Ref.[22], a PBS based on a bent directional coupler is proposed, which has broadband and excellent tolerance to fabrication errors.PBS based on two-dimensional cylindrical PhC was studied.The results show that two beams with different polarization states can be separated in a wide wavelength range with ER greater than 10 dB,however, PBS based on PhC has a complex structure and large scattering loss[23].DAI D Xet al.proposed that PBS based on a bent DC achieves an ultra-small size and high manufacturing tolerance, but the ER of TE polarization is still not high due to some unwanted residual cross-coupling in the DC[24].

    Unlike traditional dielectric waveguide schemes that restrict light to high refractive index media,restricting light to low refractive index regions has been demonstrated in many applications, such as optical communication biosensor modulation and signal processing.In this paper, we propose a hybrid Polarization Beam Splitter (PBS) composed of a plasma Horizontal Slot Waveguide (HSW) and a silicon nitride hybrid Vertical Slot Waveguide (VSW).The design includes not only a horizontal slot waveguide, but also a vertical slot waveguide transmission TE mode so that the TE0and TM0modes are located in different low exponent regions of the PBS.The rest of the paper is organized as follows:the second part is the design of the PBS; the third part is the mode properties of the PBS with various structural parameters.In the fourth part, the polarization beam splitter simulation results are presented and discussed.

    2 Waveguide structure

    The three-dimensional schematic and crosssectional views of the PBS are shown in Fig.1 (a)and (b) (color online).As shown in Fig.1 (a), the PBS adopts an asymmetric directional coupler and consists of a mixed plasma HSW and a mixed VSW from a silicon nitride structure.As can be seen from the top view of Fig.1 (c) (color online), the HSW waveguide can act as an input port and bar port.The VSW waveguide, on the other hand, acts as a cross port.HSW is a sandwich structure composed of the silicon layer and silver (Ag) cladding on a silicon oxide substrate.The VSW waveguide consists of two core layers: two thin Si waveguides at the bottom, whose width is denoted asW4, and a thicker Si3N4core layer at the top, whose thickness is denoted asH3and represents a tradeoff between low limiting loss and simplified fabrication.The total VSW waveguide’s width is denoted asW3.When the working wavelength is 1.55 μm, the refractive index of Si, SiO2, Si3N4, and Ag is 3.455, 1.445, 2,and 0.145 3 + 11.3587i, respectively.The thicker silicon nitride waveguide above the VSW structure is eliminated by etching to further suppress IL between the straight and cross ports[25].

    Fig.1 (a) 3D schematic diagram, (b) cross-section and(c) top-view of the proposed PBS device

    To evaluate the polarization beam splitting performance of the PBS, typical indicators include bending radius (r1), coupling length (LC), operating wavelength (λ), waveguide spacing (G), the total length of the device (L1), insertion loss (IL) and extinction ratio (ER).

    The extinction ratio (ER) of the PBS can be defined as[26]:

    This work proposes a dual-slot ultra-compact PBS consisting of a hybrid plasma HSW and a silicon nitride hybrid VSW.The structural parameters of the HSW and VSW are optimized by using a mode analysis of FEM based COMSOL multi-physics.The HSW and VSW waveguides are arranged into non-uniform triangular grids according to their optical field characteristics.The PBS uses a physically-controlled triangular mesh throughout the domain with a minimum mesh size of 2 nm for input and output ports.The minimum mesh value of other computational domains is 5 nm, respectively.The scattering boundary condition is used, which reduces the reflected energy.

    3 Mode characteristics

    According to the phase matching conditions,the widths of the VSW and HSW (W2,W3) are optimally selected so that the effective refractive index real parts of the TE mode are equal.Then, the TE polarized light incident from the input port is effectively coupled to the adjacent VSW through the coupling region, while the TM polarized light is outputted from the bar port with almost no coupling.

    As mentioned above, the widths of the VSW and HSW should only meet the phase-matching conditions of TE polarization and maximize the phase mismatch of TM polarization.It can be seen from Fig.2 (a) (color online) that the effective refractive index of the mode varies with the waveguide width.The widths of the VSW and HSW are optimized for phase matching between TE modes,while Re (neff) of the TE and TM modes increases gradually as the widths of the HSW and VSW (W2orW3) increase and while the increased rate of the TE mode is larger than that of the TM mode.The results show that when the HSW width and VSW width are 302 nm and 550 nm, the real part of the effective refractive index for the TE mode in the HSW and VSW satisfying the phase matching condition are 2.382 and 2.377, respectively.The effective refractive index of the TM mode is 2.46 and 2.72, indicating that there is a large phase mismatch of TM modes in the two waveguides.

    Fig.2 Influence of waveguide width on the effective refractive index.(a) The real part of the refractive index of TE mode and TM mode varying with width in the HSW and VSW; the field distribution of the TE mode in the (b) HSW and (c) VSW, and the field distribution of the TM mode in the (d) HSW and (e) VSW

    The electric field profiles of dominant supermodes are held in the coupling region at a 1 550 nm working wavelength using the optimized structural parameter, as shown in Fig.2(b)-(e) (color online).For the TE and TM modes in the HSW and VSW,the distribution of the TE mode in the two waveguides is also very similar.

    The supermodes are excited at corresponding arms when the polarized light enters the coupling region by satisfying the phase-matching condition.Henceforth, the required minimum length called the coupling length (Lc) is used to represent the coupling of the injected polarized beams from the input port to the cross port.It is an essential parameter to evaluate the compactness of the device.The selection of structural parameters plays a vital role in obtaining the minimumLcthat depends on effective index difference.In the proposed PBS, the phase matching criteria is planned only for TE mode.Hence,Lc[27-28]is expressed as

    whereλrepresents the working wavelength, andnTE0andnTE1are the effective indices of TE polarized supermodes.The shorter coupling length (LC) is achieved for device compactness when the TE modes’ index difference is larger.For designing the proposed PBS,Gplays a significant role between the two arms, whereas the coupling length is also one ofG’s parametric functions, as shown in Fig.3.

    Fig.3 Effect of waveguide spacing G.The effect of G on (a) the effective refractive index and (b) the coupling length p.Electric field profile of supermodes at 90 nm of G, (c) TE0, and (d) TE1

    When the distance between two waveguides in the coupling region is large, the mode optical signals are transmitted independently in their corresponding waveguides.At this time, there is no mode coupling between the parallel waveguides in the coupling region.The two parallel waveguides are close to each other and form a coupling system when the distance between the waveguides is close to the magnitude of the wavelength.Due to the action of the evanescent wave, the light signals of two adjacent parallel waveguides will be transformed into energy.When the waveguide meets the phase matching condition, the energy of the signal in the HSW waveguide can be completely converted to another waveguide by selecting the optimal coupling length.The HSW is equal to that of a mode in the coupled waveguide, which is to say that the phasematching condition is satisfied and the specific model in the coupled waveguide can be precisely excited.By selecting the optimized coupling length,the energy of the signal in the HSW can be completely converted to another waveguide.

    4 Simulation results and discussions

    To further study the polarization beam splitting characteristics of the PBS, several geometric parameters (waveguide spacingG, bending radiusr1, the total length of the deviceL1, operating wavelengthλ) are discussed.The influences of the waveguide dimension parameters onG,r1,L1, andλare studied as shown in Figs.4 ~ 6 (color online).Figs.4 ~ 6 show ER and IL at the bar and cross ports when the input light is the TE and TM modes,respectively.Here,W2=302 nm,W3=550 nm,H1=560 nm,H2=60 nm,H3=180 nm andH4=460 nm.

    The influences ofGon ER and IL are shown in Fig.4 (color online).In Fig.4(a) and 4(b), ER in the TE mode first increases and then decreases with an increase ofG.The ER value increases from 30.35 dB to 31.79 dB and then decreases to 16.89 dB,while IL in the TE mode decreases first and then increase.ER of the TM mode first increased and then decreased with an increase ofG.The ER value increased from 22.6 dB to 35.9 dB and then decreased to 17.97 dB, while IL of the TM mode showed a decreasing trend.To reach a compromise between ER and IL,G=90 nm was selected.The coupling length (Lc) is identified by using the theoretical Eq.(5), the obtainedLcvalue for the proposed PBS is 5.2 μm whenG=90 nm.

    Fig.4 The influence of G on ER and IL at the cross and bar ports.Here, W2 = 302 nm, W3 = 550 nm, r1 =4 μm, λ=1.55 μm and G= 90 nm

    The curved part is connected to the tail of the straight HSW to prevent the coupling of two adjacent waveguides.As can be seen from Fig.5 (a) and(b), ER in the TE mode and ER in the TM mode first increase and then decrease withL1, while IL in the TE mode and IL in the TM mode first decrease and then increase.To reach a compromise between ER and IL,L1=9 μm was chosen.

    Fig.5 The influence of L1 on ER and IL at the cross and bar ports.Here, W2=302 nm, W3=550 nm, r1=4 μm,λ=1.55 μm and G= 90 nm

    It can be seen from Fig.6 (a) and 6(b) that ER in the TE mode is greater than 27 dB and IL is less than 1.1 dB at the wavelength of 1 525~1 625 nm.ER of the TM mode was greater than 16 dB and IL was less than 4.2 dB.To reach a compromise between ER and IL, we chose the wavelengthλ=1 550 nm.The calculated PER value in both inputs of ER is high at the operating wavelength of 1 550 nm, and the ER value of the TE input(35.1 dB) is lower than the TM input (40.9 dB).

    Fig.6 The influence of λ on ER and IL at the cross and bar ports.Here, W2=302 nm, W3=550 nm, r1=4 μm,λ=1.55 μm and G= 90 nm

    Fig.7 (a) and 7(b) (color online) show the propagation for the TE and TM modes.When the TE mode is inputted at the input port, it is strongly coupled in the coupling region and finally outputted from the cross port.However, it can also be observed from Fig.7 (b) that when launching a TM mode, it will propagate along the HSW waveguide and directly output at the bar port.Therefore, the two modes are well separated.

    Fig.7 The light propagations in the designed PBS of the(a) TE-Ey, (b) TM-Ez

    After the above discussion, it can be seen that whenL1=9 μm,r1=4 μm, andG=90 nm are selected, the PBS has the best performance, which is shown in Fig.8 (color online).Here, the length of the PBSL1=9 μm and the wavelength is 1 550 nm.As can be seen from Fig.8 (a) ~ 8(e), when TE polarized light in the HSW is emitted to the input port,the TE mode is mostly concentrated in the silicon layer of the HSW in section (c).In section (d), the TE mode is transmitted to the coupling region, and part of the waveguide is coupled from the HSW to the VSW.In section (e), almost all the light fields have been cross-coupled to the VSW.Similarly, it can be seen from Fig.9 when the TM polarization mode is inputted in the HSW.This is because the metal is sensitive to the TM mode in the HSW, and is not conducive to the standardized power of the TE mode.The ER and IL of the TE and TM modes were 35.1 dB, 40.9 dB, 0.34 dB, and 2.85 dB,respectively.In addition, the designed PBS has a bandwidth of 100 nm, which provides a promising platform for increasing communication capacity.

    Fig.8 TE polarization beam splitting and electric field distribution at the corresponding position for the TE mode

    Fig.9 TM polarization beam splitting and electric field distribution at the corresponding position for the TM mode

    A comparison of the designed PBS with other PBSs is shown in Table 1.PBS proposed in this paper has performed well compared with the references, as mentioned in the above table.For both polarizations of input, the IL and ER are much better than the existing works.

    5 Proposed fabrication process and fabrication tolerances

    In the experiment, the polarization beam splitter based on the asymmetric mixed plasma structure can be realized using the proposed manufacturing process, as shown in Fig.10 (color online).First, theSOI substrate is cleared and rotated and coated with a resist by using Electron Beam Lithography(EBL).Secondly, the pattern is transferred to the Si layer by Inductively Coupled Plasma (ICP) dry etching to realize the waveguide coupler.The Ag layer was deposited by vacuum evaporation to generate the HSW waveguide[36-37].The same approach implements the VSW waveguide.The Si3N4filmwas deposited by ICP Chemical Vapor Deposition(ICPCVD), scale resistance was removed by Plasma Enhanced Chemical Vapor Deposition (PECVD),and 2 μm thick SiO2cladding was deposited[38].

    Tab.1 Performance comparison of the polarization

    Fig.10 The fabrication process of the designed polarization beam splitter

    The size deviation provides great reference value to manufacture a polarization beam splitter with a mixed plasma structure.The size of the HSW waveguide (W1,H1,H2) is analyzed, as shown in Figs.11 (a)-11 (c) (color online).In Fig.11 (a),ΔERand ΔILis less than 5.8 dB and 0.47 dB withW1in the range of 292 nm to 312 nm.Because the TE mode propagates in the Si layer, the Si thicknessH1has a great influence on TE mode transmission.In Fig.11 (b), withH1in the range of 550 nm to 570 nm, TE changes more than TM with the change ofH1.For the TE mode, ΔERis less than 8.7 dB,while for the TM mode, ΔERis less than 3.6 dB.H2is closely related to ohmic loss due to the Ag layer’s thickness.In Fig.11 (c),H2ranges from 50 nm to 70 nm.With the change ofH2, ΔILfor TE mode is less than 0.4 dB, while that for TM mode is less than 0.6 dB.

    Fig.11 Effects of different dimensional tolerances on ER and IL.(a) W1=302 nm, (b) H1=560 m and (c)H2=60 nm

    The dimensions of the VSW (H3,H4) are analyzed, as shown in Fig.12 (a) and (b) (color online).In Fig.12 (a),H3ranges from 170 nm to 190 nm.For the TE mode, ΔERis less than 2 dB and ΔILis less than 0.02 dB.For the TM mode, ΔERis less than 4.8 dB and ΔILis less than 0.04 dB.In the VSW, the TM mode mainly exists in the Si.In Fig.12 (b),H4varies from 450 nm to 470 nm, and the TE mode changes little withH4.For the TM mode, ΔILis less than 2.4 dB.

    Fig.12 Effects of different dimensional tolerances on ER and IL.(a) H3=180 nm and (b) H4=460 m

    6 Conclusion

    In summary, a hybrid plasma HSW and silicon nitride hybrid VSW Polarization Beam Splitter(PBS) is proposed.According to the mode characteristics of the TM and TE modes at a 1.55 μm wavelength, the PBS is realized by phase matching the TE mode and phase mismatching the TM mode.By optimizing the parameters, ER and IL are 35.1 dB and 0.34 dB for the TE mode, 40.9 dB and 2.65 dB for the TM mode asW2= 302 nm,W3=550 nm,r1=4 μm,G=90 nm,L1=9 μm.At the same time, the PBS has a working bandwidth of 100 nm,providing a promising platform for improving communication capabilities.

    黄色女人牲交| 国产精品一区二区精品视频观看| 久久久久久久久中文| 国内久久婷婷六月综合欲色啪| 久久久久国产一级毛片高清牌| 亚洲免费av在线视频| 亚洲人成伊人成综合网2020| 97超级碰碰碰精品色视频在线观看| 成人国语在线视频| e午夜精品久久久久久久| a在线观看视频网站| 午夜福利视频1000在线观看| 满18在线观看网站| 啪啪无遮挡十八禁网站| 国产精品久久视频播放| 视频在线观看一区二区三区| www.www免费av| 俺也久久电影网| 这个男人来自地球电影免费观看| 99riav亚洲国产免费| 午夜福利视频1000在线观看| 禁无遮挡网站| 给我免费播放毛片高清在线观看| 最近最新免费中文字幕在线| 亚洲欧美一区二区三区黑人| av超薄肉色丝袜交足视频| 中亚洲国语对白在线视频| 国产精华一区二区三区| 香蕉国产在线看| 动漫黄色视频在线观看| 国产亚洲精品综合一区在线观看 | 亚洲五月天丁香| 一边摸一边抽搐一进一小说| 国产伦人伦偷精品视频| 亚洲国产欧美一区二区综合| 最近最新免费中文字幕在线| 青草久久国产| 1024手机看黄色片| 欧美日韩一级在线毛片| 日韩一卡2卡3卡4卡2021年| 精品久久蜜臀av无| 国产av一区在线观看免费| 中文字幕久久专区| 在线国产一区二区在线| 91在线观看av| 亚洲午夜精品一区,二区,三区| 岛国在线观看网站| 一级a爱视频在线免费观看| 女同久久另类99精品国产91| 亚洲精品在线美女| 亚洲av成人不卡在线观看播放网| www.自偷自拍.com| 人人妻人人澡欧美一区二区| 午夜影院日韩av| 一区福利在线观看| 亚洲精品美女久久久久99蜜臀| 俄罗斯特黄特色一大片| cao死你这个sao货| 桃红色精品国产亚洲av| bbb黄色大片| 亚洲av电影不卡..在线观看| 亚洲男人的天堂狠狠| 国产av一区在线观看免费| 可以在线观看毛片的网站| 一区二区三区国产精品乱码| 曰老女人黄片| 亚洲熟女毛片儿| 午夜影院日韩av| 久久99热这里只有精品18| 日韩三级视频一区二区三区| 日日干狠狠操夜夜爽| 国产精华一区二区三区| 国产区一区二久久| www国产在线视频色| 精品日产1卡2卡| 正在播放国产对白刺激| 久久国产亚洲av麻豆专区| 白带黄色成豆腐渣| 日本黄色视频三级网站网址| 伊人久久大香线蕉亚洲五| 亚洲国产精品sss在线观看| 99re在线观看精品视频| 深夜精品福利| 亚洲狠狠婷婷综合久久图片| 男女视频在线观看网站免费 | 操出白浆在线播放| 亚洲成a人片在线一区二区| 亚洲成a人片在线一区二区| 亚洲天堂国产精品一区在线| 男男h啪啪无遮挡| 曰老女人黄片| 999精品在线视频| 亚洲国产精品999在线| 久久精品国产清高在天天线| 色综合站精品国产| 狠狠狠狠99中文字幕| 99riav亚洲国产免费| 免费在线观看亚洲国产| 国产激情久久老熟女| 成人一区二区视频在线观看| 中文资源天堂在线| 老司机在亚洲福利影院| 日韩欧美 国产精品| 国产真人三级小视频在线观看| 欧美午夜高清在线| 宅男免费午夜| 嫩草影院精品99| 久久精品成人免费网站| 三级毛片av免费| 午夜久久久在线观看| 一级毛片高清免费大全| 777久久人妻少妇嫩草av网站| 日韩免费av在线播放| 国产欧美日韩一区二区三| 欧美+亚洲+日韩+国产| 国产野战对白在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲精品久久久久久毛片| 午夜免费成人在线视频| 久久精品国产亚洲av香蕉五月| 变态另类丝袜制服| 欧美成人一区二区免费高清观看 | 亚洲国产欧洲综合997久久, | 欧美国产精品va在线观看不卡| 在线观看免费视频日本深夜| 国产精品久久久av美女十八| 男女床上黄色一级片免费看| 制服丝袜大香蕉在线| 视频在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 成人18禁高潮啪啪吃奶动态图| 亚洲午夜理论影院| 黄网站色视频无遮挡免费观看| 欧美绝顶高潮抽搐喷水| 欧美三级亚洲精品| 精华霜和精华液先用哪个| 亚洲精品粉嫩美女一区| 亚洲五月天丁香| xxxwww97欧美| 精品一区二区三区av网在线观看| 欧美乱色亚洲激情| 亚洲中文字幕一区二区三区有码在线看 | 久热爱精品视频在线9| 91字幕亚洲| 欧美黑人欧美精品刺激| 成人午夜高清在线视频 | 亚洲成人久久性| 草草在线视频免费看| 黄色视频,在线免费观看| 久久精品成人免费网站| 亚洲成人久久爱视频| 国产片内射在线| 一本大道久久a久久精品| 欧美日韩黄片免| 久久婷婷人人爽人人干人人爱| 香蕉丝袜av| 国产成人av教育| 成人18禁高潮啪啪吃奶动态图| 美女国产高潮福利片在线看| 久久精品人妻少妇| 在线永久观看黄色视频| 日韩欧美免费精品| 精品熟女少妇八av免费久了| 国产精品永久免费网站| 亚洲专区字幕在线| 18禁观看日本| 亚洲片人在线观看| 午夜亚洲福利在线播放| 亚洲人成电影免费在线| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 啦啦啦观看免费观看视频高清| 色婷婷久久久亚洲欧美| 伊人久久大香线蕉亚洲五| 国产精品久久久久久精品电影 | 可以在线观看毛片的网站| 一区二区三区激情视频| 国产又爽黄色视频| 亚洲性夜色夜夜综合| 99精品久久久久人妻精品| 级片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美国产日韩亚洲一区| 热re99久久国产66热| 天天躁夜夜躁狠狠躁躁| 久久精品国产清高在天天线| 色播亚洲综合网| 亚洲第一欧美日韩一区二区三区| 9191精品国产免费久久| 成人特级黄色片久久久久久久| 亚洲国产看品久久| 欧美日韩亚洲综合一区二区三区_| 久久久精品国产亚洲av高清涩受| 日本一本二区三区精品| 又紧又爽又黄一区二区| 国产不卡一卡二| 性色av乱码一区二区三区2| 中文字幕精品亚洲无线码一区 | 亚洲三区欧美一区| 国产主播在线观看一区二区| 精品免费久久久久久久清纯| 日韩一卡2卡3卡4卡2021年| 亚洲免费av在线视频| 精品第一国产精品| 国产激情欧美一区二区| 不卡av一区二区三区| 亚洲美女黄片视频| 露出奶头的视频| 非洲黑人性xxxx精品又粗又长| 窝窝影院91人妻| 国产爱豆传媒在线观看 | 波多野结衣高清作品| 国产精品久久视频播放| 午夜福利成人在线免费观看| 99久久99久久久精品蜜桃| 老熟妇仑乱视频hdxx| 岛国视频午夜一区免费看| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 99精品在免费线老司机午夜| 亚洲三区欧美一区| 香蕉av资源在线| 大香蕉久久成人网| 国产久久久一区二区三区| 亚洲午夜精品一区,二区,三区| 欧美在线黄色| 中文字幕另类日韩欧美亚洲嫩草| 国产97色在线日韩免费| 久久久久免费精品人妻一区二区 | 亚洲无线在线观看| 人人妻人人澡人人看| 丁香六月欧美| 嫩草影视91久久| 91成年电影在线观看| 国产成人av教育| 99精品在免费线老司机午夜| 一区二区三区高清视频在线| 欧美激情极品国产一区二区三区| 一级作爱视频免费观看| 精品第一国产精品| 黑人巨大精品欧美一区二区mp4| 久久99热这里只有精品18| 欧美zozozo另类| √禁漫天堂资源中文www| 一级毛片女人18水好多| 777久久人妻少妇嫩草av网站| 草草在线视频免费看| 亚洲一码二码三码区别大吗| 国产久久久一区二区三区| 欧美日韩精品网址| 国产高清激情床上av| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕| 亚洲最大成人中文| 波多野结衣av一区二区av| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 好男人电影高清在线观看| 淫秽高清视频在线观看| 性欧美人与动物交配| 757午夜福利合集在线观看| 国产主播在线观看一区二区| 丝袜人妻中文字幕| 久久人妻av系列| 亚洲 欧美 日韩 在线 免费| 亚洲熟妇中文字幕五十中出| 午夜精品久久久久久毛片777| 亚洲国产欧美网| 亚洲精品一区av在线观看| 日日干狠狠操夜夜爽| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 变态另类丝袜制服| 久久这里只有精品19| 久久久久免费精品人妻一区二区 | 免费女性裸体啪啪无遮挡网站| 色av中文字幕| 在线观看免费视频日本深夜| 国产精品一区二区三区四区久久 | 日日爽夜夜爽网站| 国产精品影院久久| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 又黄又爽又免费观看的视频| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 国产亚洲精品久久久久5区| 精品久久久久久成人av| 国产视频一区二区在线看| 免费高清视频大片| 99久久精品国产亚洲精品| 国产精品国产高清国产av| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 亚洲av第一区精品v没综合| 高清在线国产一区| 大型黄色视频在线免费观看| 性色av乱码一区二区三区2| 国产av一区在线观看免费| 久久香蕉精品热| 亚洲精品美女久久久久99蜜臀| 午夜老司机福利片| 国产精品乱码一区二三区的特点| 一区福利在线观看| 香蕉国产在线看| 午夜日韩欧美国产| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 久久国产精品人妻蜜桃| 精品电影一区二区在线| 国产精品爽爽va在线观看网站 | 99国产精品一区二区三区| 国产免费av片在线观看野外av| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 国产不卡一卡二| 两性夫妻黄色片| 日日夜夜操网爽| 国产男靠女视频免费网站| 久久亚洲真实| 欧美一级a爱片免费观看看 | 国产主播在线观看一区二区| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 国产主播在线观看一区二区| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看| av在线播放免费不卡| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 久久久久亚洲av毛片大全| 欧美成人性av电影在线观看| 欧美久久黑人一区二区| 波多野结衣高清无吗| 日韩av在线大香蕉| 淫妇啪啪啪对白视频| 一进一出抽搐gif免费好疼| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 日韩欧美 国产精品| 久久精品国产亚洲av高清一级| 国产精品一区二区免费欧美| 日本五十路高清| 一级片免费观看大全| 亚洲精品av麻豆狂野| 午夜福利欧美成人| 久久香蕉激情| 女性被躁到高潮视频| 长腿黑丝高跟| 狂野欧美激情性xxxx| 亚洲精品中文字幕在线视频| 日本免费a在线| 天堂影院成人在线观看| 亚洲中文字幕一区二区三区有码在线看 | 99久久精品国产亚洲精品| 婷婷精品国产亚洲av| 欧美激情极品国产一区二区三区| 老司机午夜福利在线观看视频| 欧美日韩黄片免| 嫩草影院精品99| 亚洲天堂国产精品一区在线| ponron亚洲| 亚洲五月天丁香| 色播在线永久视频| 久久婷婷人人爽人人干人人爱| 操出白浆在线播放| 岛国在线观看网站| 国产欧美日韩精品亚洲av| 免费看日本二区| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 欧美大码av| 最好的美女福利视频网| 日韩大码丰满熟妇| 亚洲午夜理论影院| 免费在线观看完整版高清| 国产成人欧美在线观看| 一级a爱视频在线免费观看| 国产一区二区三区在线臀色熟女| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 日本免费a在线| 欧美最黄视频在线播放免费| 美女大奶头视频| 欧美成狂野欧美在线观看| 成人永久免费在线观看视频| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 嫩草影视91久久| 欧美成人一区二区免费高清观看 | 夜夜爽天天搞| 一区二区三区国产精品乱码| 日韩 欧美 亚洲 中文字幕| 三级毛片av免费| 国产亚洲av高清不卡| 国产亚洲精品久久久久5区| 正在播放国产对白刺激| 欧美日本亚洲视频在线播放| 久久九九热精品免费| 欧美激情久久久久久爽电影| 亚洲精品国产精品久久久不卡| 午夜成年电影在线免费观看| 2021天堂中文幕一二区在线观 | 欧美精品啪啪一区二区三区| 变态另类丝袜制服| 亚洲男人的天堂狠狠| av中文乱码字幕在线| 制服诱惑二区| 免费在线观看视频国产中文字幕亚洲| 亚洲熟妇熟女久久| 成人18禁在线播放| 美女大奶头视频| 国产成人av教育| 女同久久另类99精品国产91| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 亚洲国产欧美一区二区综合| av电影中文网址| 亚洲中文av在线| 人人澡人人妻人| 美女午夜性视频免费| 亚洲人成伊人成综合网2020| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影| 人成视频在线观看免费观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 桃红色精品国产亚洲av| www日本在线高清视频| 午夜福利免费观看在线| 黄色a级毛片大全视频| 亚洲精品久久成人aⅴ小说| 亚洲免费av在线视频| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站| 又黄又爽又免费观看的视频| 久久久久久大精品| 欧美大码av| av在线播放免费不卡| 欧美丝袜亚洲另类 | 国产亚洲欧美在线一区二区| 国内久久婷婷六月综合欲色啪| 亚洲国产毛片av蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| av免费在线观看网站| 日本免费a在线| 久久青草综合色| 色综合亚洲欧美另类图片| 亚洲精品国产一区二区精华液| 91成人精品电影| 国产国语露脸激情在线看| 国产成人欧美| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 亚洲av熟女| 日本熟妇午夜| 久久中文字幕人妻熟女| 国产1区2区3区精品| 国产精品一区二区三区四区久久 | 亚洲精品中文字幕在线视频| 最近最新免费中文字幕在线| 亚洲最大成人中文| 日韩欧美免费精品| 在线观看舔阴道视频| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全电影3 | a在线观看视频网站| 美国免费a级毛片| 久久99热这里只有精品18| 十分钟在线观看高清视频www| 中文亚洲av片在线观看爽| 国产精品日韩av在线免费观看| www.熟女人妻精品国产| 草草在线视频免费看| 欧美一级毛片孕妇| 2021天堂中文幕一二区在线观 | 大型黄色视频在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久免费高清国产稀缺| 丝袜人妻中文字幕| 国产精品免费视频内射| av视频在线观看入口| 免费在线观看视频国产中文字幕亚洲| 极品教师在线免费播放| 在线国产一区二区在线| 女性生殖器流出的白浆| 久久国产亚洲av麻豆专区| 免费高清视频大片| 久久午夜综合久久蜜桃| 草草在线视频免费看| 伦理电影免费视频| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美98| 成人av一区二区三区在线看| 久久久久国内视频| 久热爱精品视频在线9| av超薄肉色丝袜交足视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情高清一区二区三区| 亚洲午夜理论影院| or卡值多少钱| 精品卡一卡二卡四卡免费| 91成年电影在线观看| 国产激情欧美一区二区| 国产精品九九99| 精品国内亚洲2022精品成人| 亚洲,欧美精品.| 国产高清videossex| 欧美黑人精品巨大| svipshipincom国产片| avwww免费| 校园春色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 给我免费播放毛片高清在线观看| 在线观看免费视频日本深夜| 嫁个100分男人电影在线观看| 精品少妇一区二区三区视频日本电影| 一边摸一边抽搐一进一小说| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 特大巨黑吊av在线直播 | АⅤ资源中文在线天堂| 欧美成狂野欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 中出人妻视频一区二区| 亚洲欧美精品综合久久99| 中文资源天堂在线| 亚洲第一青青草原| 久久热在线av| 国产91精品成人一区二区三区| 中文字幕最新亚洲高清| 国产欧美日韩一区二区三| 黄色丝袜av网址大全| 精品国产美女av久久久久小说| 久久伊人香网站| 午夜福利一区二区在线看| 欧洲精品卡2卡3卡4卡5卡区| av在线播放免费不卡| 久久伊人香网站| 午夜免费观看网址| 国产又黄又爽又无遮挡在线| 久久中文看片网| 精品一区二区三区av网在线观看| 国产一卡二卡三卡精品| 夜夜躁狠狠躁天天躁| 91麻豆精品激情在线观看国产| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 日本三级黄在线观看| 久久婷婷人人爽人人干人人爱| 国内久久婷婷六月综合欲色啪| 精品国产美女av久久久久小说| 久久久久久久久免费视频了| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 99在线人妻在线中文字幕| 国产精品野战在线观看| 午夜福利免费观看在线| 亚洲av成人一区二区三| 香蕉丝袜av| 在线十欧美十亚洲十日本专区| 母亲3免费完整高清在线观看| 国语自产精品视频在线第100页| 色综合站精品国产| 成人欧美大片| 成在线人永久免费视频| 美国免费a级毛片| cao死你这个sao货| 亚洲精品一卡2卡三卡4卡5卡| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三 | 我的亚洲天堂| 国产精品日韩av在线免费观看| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 老司机在亚洲福利影院| 国产亚洲av嫩草精品影院| 亚洲精品中文字幕在线视频| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 亚洲人成伊人成综合网2020| 亚洲国产毛片av蜜桃av| 亚洲男人的天堂狠狠| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| a级毛片a级免费在线| 色婷婷久久久亚洲欧美| 精品久久久久久久末码| 国产一区二区三区视频了| 操出白浆在线播放| 欧美av亚洲av综合av国产av| 成熟少妇高潮喷水视频| 国产私拍福利视频在线观看| 91老司机精品| 淫秽高清视频在线观看| av电影中文网址| 亚洲av熟女| 久久久久久免费高清国产稀缺| 国产国语露脸激情在线看| 亚洲美女黄片视频| 国产精品 欧美亚洲| 亚洲熟妇熟女久久| av电影中文网址|