• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Double-slot ultra-compact polarization beam splitter based on asymmetric hybrid plasmonic structure

    2023-10-07 07:42:44WANGFangLIUHuaMATaoMAShoudaoLIUYufang
    中國光學(xué) 2023年5期

    WANG Fang,LIU Hua,MA Tao,MA Shou-dao,LIU Yu-fang

    (1.College of Electronic and Electrical Engineering, Henan Normal University, Xinxiang 453007, China;2.Henan Key Laboratory of Optoelectronic Sensing Integrated Application, Xinxiang 453007, China;3.Academician Workstation of Electromagnetic Wave Engineering of Henan Province,Xinxiang 453007, China;4.Henan Engineering Laboratory of Additive Intelligent Manufacturing, Xinxiang 453007, China)

    * Corresponding author,E-mail: lh18237269109@163.com

    Abstract: To improve the extinction ratio of a polarization beam splitter, we propose a dual-slot ultra-compact polarization splitter (PBS) consisting of a hybrid plasma Horizontal Slot Waveguide (HSW) and a silicon nitride hybrid Vertical Slot Waveguide (VSW).The coating material is silicon dioxide, which can prevent the oxidation of the mixed plasma and also facilitate integration with other devices.The mode characteristics of the HSW and VSW are simulated by using the Finite Element Method (FEM).At suitable HSW and VSW widths, the TE polarization modes in HSW and VSW are phase-matched, while the TM polarization modes are phase mismatched.Therefore, the TE mode in an HSW waveguide is strongly coupled with a VSW waveguide by adopting a dual-slot, while the TM mode directly passes through the HSW waveguide.The results show that PBS achieves an Extinction Ratio (ER) of 35.1 dB and an Insertion Loss (IL) of 0.34 dB for the TE mode at 1.55 μm.For the TM mode, PBS reached 40.9 dB for ER and 2.65 dB for IL.The proposed PBS is designed with 100 nm bandwidth, high ER, and low IL, which can be suitable for photonic integrated circuits (PICs).

    Key words: photonic integrated circuits; polarization beam splitter; slot waveguides.

    1 Introduction

    In recent years, sub-micron waveguide devices have been realized using the large difference in refractive index between a Silicon On Insulator (SOI)coating layer and a dielectric waveguide layer in the middle, which is compatible with the CMOS process[1].Because of the high refractive index difference between silicon and silicon dioxide in the SOI waveguide, there is often strong polarization dependence, and the TE and TM modes have different propagation characteristics in the SOI waveguide,which makes the birefringence effect of SOI-based optical waveguide devices significant and gives serious polarization sensitivity[2].The control and manipulation of polarization states in silicon-based photonic integrated circuits are very important.Polarization Beam Splitters (PBS) play a key role in the separation and combination of the TE and TM fundamental modes.Ultra-dense on-chip networks generally need a PBS with a high Extinction Ratio(ER), low loss, and wide bandwidth.

    In recent years, various waveguide structures that achieve polarization beam splitting have been reported, such as MultiMode Interference (MMI) structures[3-4], Mach-Zehnder Interferometers (MZI)[5],Directional Couplers (DC)[6-15], and SubWavelength Grating (SWG) structures[16-17].Among these structures, a directional coupler is widely used because of its superior performance and simple design; especially PBS, which is designed based on Asymmetric Directional Couplers (ADC) and is widely used because of its simple structure and low Insertion Loss (IL).Slot waveguides confine light to the nanoscale region of the low refractive index and guide light propagation[18-20], which is proposed for the use of polarization control devices.Depending on the direction of the electric field mode in slot waveguides, they can be divided into horizontal slot waveguides and vertical slot waveguides.The optical confinement mechanism of slot waveguides is total internal reflection, and the wavelength sensitivity of slot waveguides is lower than that of strip waveguides.

    To solve the polarization problem and realize low loss miniaturization passivity of devices, various waveguide structures based on PBS were studied.The PBSs based on the radiation loss in the bending Hybrid Plasmonic Waveguide (HPW)structure are proposed in Ref.[21], which has low loss characteristics.In Ref.[22], a PBS based on a bent directional coupler is proposed, which has broadband and excellent tolerance to fabrication errors.PBS based on two-dimensional cylindrical PhC was studied.The results show that two beams with different polarization states can be separated in a wide wavelength range with ER greater than 10 dB,however, PBS based on PhC has a complex structure and large scattering loss[23].DAI D Xet al.proposed that PBS based on a bent DC achieves an ultra-small size and high manufacturing tolerance, but the ER of TE polarization is still not high due to some unwanted residual cross-coupling in the DC[24].

    Unlike traditional dielectric waveguide schemes that restrict light to high refractive index media,restricting light to low refractive index regions has been demonstrated in many applications, such as optical communication biosensor modulation and signal processing.In this paper, we propose a hybrid Polarization Beam Splitter (PBS) composed of a plasma Horizontal Slot Waveguide (HSW) and a silicon nitride hybrid Vertical Slot Waveguide (VSW).The design includes not only a horizontal slot waveguide, but also a vertical slot waveguide transmission TE mode so that the TE0and TM0modes are located in different low exponent regions of the PBS.The rest of the paper is organized as follows:the second part is the design of the PBS; the third part is the mode properties of the PBS with various structural parameters.In the fourth part, the polarization beam splitter simulation results are presented and discussed.

    2 Waveguide structure

    The three-dimensional schematic and crosssectional views of the PBS are shown in Fig.1 (a)and (b) (color online).As shown in Fig.1 (a), the PBS adopts an asymmetric directional coupler and consists of a mixed plasma HSW and a mixed VSW from a silicon nitride structure.As can be seen from the top view of Fig.1 (c) (color online), the HSW waveguide can act as an input port and bar port.The VSW waveguide, on the other hand, acts as a cross port.HSW is a sandwich structure composed of the silicon layer and silver (Ag) cladding on a silicon oxide substrate.The VSW waveguide consists of two core layers: two thin Si waveguides at the bottom, whose width is denoted asW4, and a thicker Si3N4core layer at the top, whose thickness is denoted asH3and represents a tradeoff between low limiting loss and simplified fabrication.The total VSW waveguide’s width is denoted asW3.When the working wavelength is 1.55 μm, the refractive index of Si, SiO2, Si3N4, and Ag is 3.455, 1.445, 2,and 0.145 3 + 11.3587i, respectively.The thicker silicon nitride waveguide above the VSW structure is eliminated by etching to further suppress IL between the straight and cross ports[25].

    Fig.1 (a) 3D schematic diagram, (b) cross-section and(c) top-view of the proposed PBS device

    To evaluate the polarization beam splitting performance of the PBS, typical indicators include bending radius (r1), coupling length (LC), operating wavelength (λ), waveguide spacing (G), the total length of the device (L1), insertion loss (IL) and extinction ratio (ER).

    The extinction ratio (ER) of the PBS can be defined as[26]:

    This work proposes a dual-slot ultra-compact PBS consisting of a hybrid plasma HSW and a silicon nitride hybrid VSW.The structural parameters of the HSW and VSW are optimized by using a mode analysis of FEM based COMSOL multi-physics.The HSW and VSW waveguides are arranged into non-uniform triangular grids according to their optical field characteristics.The PBS uses a physically-controlled triangular mesh throughout the domain with a minimum mesh size of 2 nm for input and output ports.The minimum mesh value of other computational domains is 5 nm, respectively.The scattering boundary condition is used, which reduces the reflected energy.

    3 Mode characteristics

    According to the phase matching conditions,the widths of the VSW and HSW (W2,W3) are optimally selected so that the effective refractive index real parts of the TE mode are equal.Then, the TE polarized light incident from the input port is effectively coupled to the adjacent VSW through the coupling region, while the TM polarized light is outputted from the bar port with almost no coupling.

    As mentioned above, the widths of the VSW and HSW should only meet the phase-matching conditions of TE polarization and maximize the phase mismatch of TM polarization.It can be seen from Fig.2 (a) (color online) that the effective refractive index of the mode varies with the waveguide width.The widths of the VSW and HSW are optimized for phase matching between TE modes,while Re (neff) of the TE and TM modes increases gradually as the widths of the HSW and VSW (W2orW3) increase and while the increased rate of the TE mode is larger than that of the TM mode.The results show that when the HSW width and VSW width are 302 nm and 550 nm, the real part of the effective refractive index for the TE mode in the HSW and VSW satisfying the phase matching condition are 2.382 and 2.377, respectively.The effective refractive index of the TM mode is 2.46 and 2.72, indicating that there is a large phase mismatch of TM modes in the two waveguides.

    Fig.2 Influence of waveguide width on the effective refractive index.(a) The real part of the refractive index of TE mode and TM mode varying with width in the HSW and VSW; the field distribution of the TE mode in the (b) HSW and (c) VSW, and the field distribution of the TM mode in the (d) HSW and (e) VSW

    The electric field profiles of dominant supermodes are held in the coupling region at a 1 550 nm working wavelength using the optimized structural parameter, as shown in Fig.2(b)-(e) (color online).For the TE and TM modes in the HSW and VSW,the distribution of the TE mode in the two waveguides is also very similar.

    The supermodes are excited at corresponding arms when the polarized light enters the coupling region by satisfying the phase-matching condition.Henceforth, the required minimum length called the coupling length (Lc) is used to represent the coupling of the injected polarized beams from the input port to the cross port.It is an essential parameter to evaluate the compactness of the device.The selection of structural parameters plays a vital role in obtaining the minimumLcthat depends on effective index difference.In the proposed PBS, the phase matching criteria is planned only for TE mode.Hence,Lc[27-28]is expressed as

    whereλrepresents the working wavelength, andnTE0andnTE1are the effective indices of TE polarized supermodes.The shorter coupling length (LC) is achieved for device compactness when the TE modes’ index difference is larger.For designing the proposed PBS,Gplays a significant role between the two arms, whereas the coupling length is also one ofG’s parametric functions, as shown in Fig.3.

    Fig.3 Effect of waveguide spacing G.The effect of G on (a) the effective refractive index and (b) the coupling length p.Electric field profile of supermodes at 90 nm of G, (c) TE0, and (d) TE1

    When the distance between two waveguides in the coupling region is large, the mode optical signals are transmitted independently in their corresponding waveguides.At this time, there is no mode coupling between the parallel waveguides in the coupling region.The two parallel waveguides are close to each other and form a coupling system when the distance between the waveguides is close to the magnitude of the wavelength.Due to the action of the evanescent wave, the light signals of two adjacent parallel waveguides will be transformed into energy.When the waveguide meets the phase matching condition, the energy of the signal in the HSW waveguide can be completely converted to another waveguide by selecting the optimal coupling length.The HSW is equal to that of a mode in the coupled waveguide, which is to say that the phasematching condition is satisfied and the specific model in the coupled waveguide can be precisely excited.By selecting the optimized coupling length,the energy of the signal in the HSW can be completely converted to another waveguide.

    4 Simulation results and discussions

    To further study the polarization beam splitting characteristics of the PBS, several geometric parameters (waveguide spacingG, bending radiusr1, the total length of the deviceL1, operating wavelengthλ) are discussed.The influences of the waveguide dimension parameters onG,r1,L1, andλare studied as shown in Figs.4 ~ 6 (color online).Figs.4 ~ 6 show ER and IL at the bar and cross ports when the input light is the TE and TM modes,respectively.Here,W2=302 nm,W3=550 nm,H1=560 nm,H2=60 nm,H3=180 nm andH4=460 nm.

    The influences ofGon ER and IL are shown in Fig.4 (color online).In Fig.4(a) and 4(b), ER in the TE mode first increases and then decreases with an increase ofG.The ER value increases from 30.35 dB to 31.79 dB and then decreases to 16.89 dB,while IL in the TE mode decreases first and then increase.ER of the TM mode first increased and then decreased with an increase ofG.The ER value increased from 22.6 dB to 35.9 dB and then decreased to 17.97 dB, while IL of the TM mode showed a decreasing trend.To reach a compromise between ER and IL,G=90 nm was selected.The coupling length (Lc) is identified by using the theoretical Eq.(5), the obtainedLcvalue for the proposed PBS is 5.2 μm whenG=90 nm.

    Fig.4 The influence of G on ER and IL at the cross and bar ports.Here, W2 = 302 nm, W3 = 550 nm, r1 =4 μm, λ=1.55 μm and G= 90 nm

    The curved part is connected to the tail of the straight HSW to prevent the coupling of two adjacent waveguides.As can be seen from Fig.5 (a) and(b), ER in the TE mode and ER in the TM mode first increase and then decrease withL1, while IL in the TE mode and IL in the TM mode first decrease and then increase.To reach a compromise between ER and IL,L1=9 μm was chosen.

    Fig.5 The influence of L1 on ER and IL at the cross and bar ports.Here, W2=302 nm, W3=550 nm, r1=4 μm,λ=1.55 μm and G= 90 nm

    It can be seen from Fig.6 (a) and 6(b) that ER in the TE mode is greater than 27 dB and IL is less than 1.1 dB at the wavelength of 1 525~1 625 nm.ER of the TM mode was greater than 16 dB and IL was less than 4.2 dB.To reach a compromise between ER and IL, we chose the wavelengthλ=1 550 nm.The calculated PER value in both inputs of ER is high at the operating wavelength of 1 550 nm, and the ER value of the TE input(35.1 dB) is lower than the TM input (40.9 dB).

    Fig.6 The influence of λ on ER and IL at the cross and bar ports.Here, W2=302 nm, W3=550 nm, r1=4 μm,λ=1.55 μm and G= 90 nm

    Fig.7 (a) and 7(b) (color online) show the propagation for the TE and TM modes.When the TE mode is inputted at the input port, it is strongly coupled in the coupling region and finally outputted from the cross port.However, it can also be observed from Fig.7 (b) that when launching a TM mode, it will propagate along the HSW waveguide and directly output at the bar port.Therefore, the two modes are well separated.

    Fig.7 The light propagations in the designed PBS of the(a) TE-Ey, (b) TM-Ez

    After the above discussion, it can be seen that whenL1=9 μm,r1=4 μm, andG=90 nm are selected, the PBS has the best performance, which is shown in Fig.8 (color online).Here, the length of the PBSL1=9 μm and the wavelength is 1 550 nm.As can be seen from Fig.8 (a) ~ 8(e), when TE polarized light in the HSW is emitted to the input port,the TE mode is mostly concentrated in the silicon layer of the HSW in section (c).In section (d), the TE mode is transmitted to the coupling region, and part of the waveguide is coupled from the HSW to the VSW.In section (e), almost all the light fields have been cross-coupled to the VSW.Similarly, it can be seen from Fig.9 when the TM polarization mode is inputted in the HSW.This is because the metal is sensitive to the TM mode in the HSW, and is not conducive to the standardized power of the TE mode.The ER and IL of the TE and TM modes were 35.1 dB, 40.9 dB, 0.34 dB, and 2.85 dB,respectively.In addition, the designed PBS has a bandwidth of 100 nm, which provides a promising platform for increasing communication capacity.

    Fig.8 TE polarization beam splitting and electric field distribution at the corresponding position for the TE mode

    Fig.9 TM polarization beam splitting and electric field distribution at the corresponding position for the TM mode

    A comparison of the designed PBS with other PBSs is shown in Table 1.PBS proposed in this paper has performed well compared with the references, as mentioned in the above table.For both polarizations of input, the IL and ER are much better than the existing works.

    5 Proposed fabrication process and fabrication tolerances

    In the experiment, the polarization beam splitter based on the asymmetric mixed plasma structure can be realized using the proposed manufacturing process, as shown in Fig.10 (color online).First, theSOI substrate is cleared and rotated and coated with a resist by using Electron Beam Lithography(EBL).Secondly, the pattern is transferred to the Si layer by Inductively Coupled Plasma (ICP) dry etching to realize the waveguide coupler.The Ag layer was deposited by vacuum evaporation to generate the HSW waveguide[36-37].The same approach implements the VSW waveguide.The Si3N4filmwas deposited by ICP Chemical Vapor Deposition(ICPCVD), scale resistance was removed by Plasma Enhanced Chemical Vapor Deposition (PECVD),and 2 μm thick SiO2cladding was deposited[38].

    Tab.1 Performance comparison of the polarization

    Fig.10 The fabrication process of the designed polarization beam splitter

    The size deviation provides great reference value to manufacture a polarization beam splitter with a mixed plasma structure.The size of the HSW waveguide (W1,H1,H2) is analyzed, as shown in Figs.11 (a)-11 (c) (color online).In Fig.11 (a),ΔERand ΔILis less than 5.8 dB and 0.47 dB withW1in the range of 292 nm to 312 nm.Because the TE mode propagates in the Si layer, the Si thicknessH1has a great influence on TE mode transmission.In Fig.11 (b), withH1in the range of 550 nm to 570 nm, TE changes more than TM with the change ofH1.For the TE mode, ΔERis less than 8.7 dB,while for the TM mode, ΔERis less than 3.6 dB.H2is closely related to ohmic loss due to the Ag layer’s thickness.In Fig.11 (c),H2ranges from 50 nm to 70 nm.With the change ofH2, ΔILfor TE mode is less than 0.4 dB, while that for TM mode is less than 0.6 dB.

    Fig.11 Effects of different dimensional tolerances on ER and IL.(a) W1=302 nm, (b) H1=560 m and (c)H2=60 nm

    The dimensions of the VSW (H3,H4) are analyzed, as shown in Fig.12 (a) and (b) (color online).In Fig.12 (a),H3ranges from 170 nm to 190 nm.For the TE mode, ΔERis less than 2 dB and ΔILis less than 0.02 dB.For the TM mode, ΔERis less than 4.8 dB and ΔILis less than 0.04 dB.In the VSW, the TM mode mainly exists in the Si.In Fig.12 (b),H4varies from 450 nm to 470 nm, and the TE mode changes little withH4.For the TM mode, ΔILis less than 2.4 dB.

    Fig.12 Effects of different dimensional tolerances on ER and IL.(a) H3=180 nm and (b) H4=460 m

    6 Conclusion

    In summary, a hybrid plasma HSW and silicon nitride hybrid VSW Polarization Beam Splitter(PBS) is proposed.According to the mode characteristics of the TM and TE modes at a 1.55 μm wavelength, the PBS is realized by phase matching the TE mode and phase mismatching the TM mode.By optimizing the parameters, ER and IL are 35.1 dB and 0.34 dB for the TE mode, 40.9 dB and 2.65 dB for the TM mode asW2= 302 nm,W3=550 nm,r1=4 μm,G=90 nm,L1=9 μm.At the same time, the PBS has a working bandwidth of 100 nm,providing a promising platform for improving communication capabilities.

    h日本视频在线播放| av天堂中文字幕网| 美女cb高潮喷水在线观看| 国产一区二区亚洲精品在线观看| 一级a爱片免费观看的视频| 中文字幕av成人在线电影| 午夜福利在线在线| 欧美日本亚洲视频在线播放| 国产一区二区三区av在线 | 久久久久性生活片| 一级毛片我不卡| 婷婷亚洲欧美| 亚洲图色成人| 国产亚洲欧美98| 一级av片app| 久久草成人影院| 成人二区视频| 国产精品久久电影中文字幕| 国产精品伦人一区二区| 中文字幕免费在线视频6| 久久久久精品国产欧美久久久| 天堂影院成人在线观看| 黄色欧美视频在线观看| 日韩在线高清观看一区二区三区| 国产成人freesex在线 | 少妇猛男粗大的猛烈进出视频 | 国产免费男女视频| 亚洲精品一卡2卡三卡4卡5卡| 熟妇人妻久久中文字幕3abv| 久久这里只有精品中国| 精品一区二区三区人妻视频| 国产熟女欧美一区二区| 老熟妇仑乱视频hdxx| 我的老师免费观看完整版| 波多野结衣高清无吗| 亚洲真实伦在线观看| 国产一区二区三区av在线 | 欧美日韩在线观看h| 亚洲精品成人久久久久久| 日韩制服骚丝袜av| 国产亚洲91精品色在线| a级毛片免费高清观看在线播放| а√天堂www在线а√下载| 久久国内精品自在自线图片| 国产精品一区二区免费欧美| 欧美一区二区精品小视频在线| 亚洲精品色激情综合| 一边摸一边抽搐一进一小说| 一本精品99久久精品77| 小说图片视频综合网站| 成人三级黄色视频| 国产高清有码在线观看视频| 精品99又大又爽又粗少妇毛片| 久久久久免费精品人妻一区二区| 最好的美女福利视频网| 午夜亚洲福利在线播放| 精品久久久久久成人av| 在线观看66精品国产| 国产不卡一卡二| 亚洲av一区综合| 久久精品国产亚洲网站| 91狼人影院| 国产三级中文精品| 观看美女的网站| 美女高潮的动态| 国产精品不卡视频一区二区| 少妇人妻一区二区三区视频| 舔av片在线| 国产日本99.免费观看| 日日摸夜夜添夜夜添小说| 国产成人精品久久久久久| 五月玫瑰六月丁香| 午夜激情福利司机影院| 两性午夜刺激爽爽歪歪视频在线观看| 少妇丰满av| 久久韩国三级中文字幕| 又黄又爽又刺激的免费视频.| 国产精品久久久久久久电影| 国产一区二区在线av高清观看| 可以在线观看的亚洲视频| 可以在线观看毛片的网站| 久久久久久九九精品二区国产| 天堂√8在线中文| 亚洲国产精品成人久久小说 | 在线观看av片永久免费下载| 亚洲av第一区精品v没综合| 欧美成人精品欧美一级黄| 久久精品国产亚洲av涩爱 | 91久久精品国产一区二区成人| 晚上一个人看的免费电影| 在线播放无遮挡| 欧美日韩在线观看h| 91在线精品国自产拍蜜月| 国产91av在线免费观看| 99视频精品全部免费 在线| 国产精品免费一区二区三区在线| 亚洲国产色片| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 嫩草影院入口| 99热精品在线国产| 亚洲欧美精品自产自拍| 97在线视频观看| 麻豆av噜噜一区二区三区| 国产成人freesex在线 | 国产成人一区二区在线| 婷婷六月久久综合丁香| 亚洲最大成人手机在线| 91在线观看av| 婷婷六月久久综合丁香| 成人av在线播放网站| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 美女xxoo啪啪120秒动态图| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 村上凉子中文字幕在线| 亚洲内射少妇av| 国产精品人妻久久久影院| 国产黄色视频一区二区在线观看 | 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 一级毛片久久久久久久久女| 亚洲精品国产av成人精品 | 国产伦精品一区二区三区视频9| 黄色视频,在线免费观看| 午夜精品在线福利| 国产成人a区在线观看| 波野结衣二区三区在线| 国产精品一区二区三区四区久久| 毛片一级片免费看久久久久| 色尼玛亚洲综合影院| 国产免费男女视频| 国产av在哪里看| 亚洲乱码一区二区免费版| 日本爱情动作片www.在线观看 | 在线a可以看的网站| 亚洲精品日韩在线中文字幕 | av在线天堂中文字幕| 久久九九热精品免费| 亚洲精品乱码久久久v下载方式| 精品人妻一区二区三区麻豆 | 99久久中文字幕三级久久日本| 久久6这里有精品| 可以在线观看的亚洲视频| 少妇人妻精品综合一区二区 | 内地一区二区视频在线| 久久久国产成人精品二区| videossex国产| 卡戴珊不雅视频在线播放| 午夜福利在线观看吧| 欧美日韩乱码在线| 一区二区三区四区激情视频 | 国产av不卡久久| 久久久久久九九精品二区国产| 婷婷精品国产亚洲av在线| 精品人妻视频免费看| 久久精品国产自在天天线| 国产精品人妻久久久影院| 午夜福利在线观看吧| 最新在线观看一区二区三区| 国产成人一区二区在线| 天天躁夜夜躁狠狠久久av| 十八禁网站免费在线| 日日摸夜夜添夜夜爱| 啦啦啦啦在线视频资源| av在线蜜桃| 国产高清激情床上av| av在线天堂中文字幕| 熟女人妻精品中文字幕| 亚洲欧美日韩高清在线视频| 国产成人精品久久久久久| 国产精品免费一区二区三区在线| 春色校园在线视频观看| 午夜日韩欧美国产| 亚洲精品在线观看二区| 女生性感内裤真人,穿戴方法视频| 插阴视频在线观看视频| 欧美另类亚洲清纯唯美| 黄色配什么色好看| 黄片wwwwww| 99九九线精品视频在线观看视频| 精品一区二区三区视频在线| 亚洲最大成人中文| 热99在线观看视频| 性插视频无遮挡在线免费观看| 如何舔出高潮| 又黄又爽又免费观看的视频| 亚洲精品成人久久久久久| 日本欧美国产在线视频| 免费人成在线观看视频色| 12—13女人毛片做爰片一| АⅤ资源中文在线天堂| 99久国产av精品国产电影| 欧洲精品卡2卡3卡4卡5卡区| 日本免费一区二区三区高清不卡| 日韩成人av中文字幕在线观看 | 国产熟女欧美一区二区| 精品乱码久久久久久99久播| 免费看日本二区| 亚洲,欧美,日韩| 免费看a级黄色片| or卡值多少钱| 性色avwww在线观看| 91久久精品国产一区二区成人| 国产人妻一区二区三区在| 久久午夜亚洲精品久久| 赤兔流量卡办理| av在线蜜桃| 国产男人的电影天堂91| 成人性生交大片免费视频hd| 亚洲丝袜综合中文字幕| 国产乱人视频| 综合色av麻豆| 老司机影院成人| 日韩精品中文字幕看吧| 国产不卡一卡二| 日日摸夜夜添夜夜爱| 成人亚洲精品av一区二区| 国内精品一区二区在线观看| 一区福利在线观看| 一本久久中文字幕| 日韩精品中文字幕看吧| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 老师上课跳d突然被开到最大视频| 老熟妇乱子伦视频在线观看| 久久久久久久久久黄片| 高清毛片免费观看视频网站| 成人综合一区亚洲| 日日啪夜夜撸| 俺也久久电影网| 亚洲美女搞黄在线观看 | 国产一区二区亚洲精品在线观看| 三级毛片av免费| 日韩一区二区视频免费看| 美女免费视频网站| 97热精品久久久久久| 午夜久久久久精精品| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 亚洲欧美成人综合另类久久久 | 国产探花极品一区二区| 美女免费视频网站| 岛国在线免费视频观看| 偷拍熟女少妇极品色| 日本-黄色视频高清免费观看| 如何舔出高潮| 国产乱人偷精品视频| 国产久久久一区二区三区| 久久久a久久爽久久v久久| 精品久久久久久久人妻蜜臀av| 91狼人影院| 九九在线视频观看精品| 成年av动漫网址| 99久国产av精品| 91精品国产九色| 成人亚洲精品av一区二区| 日韩大尺度精品在线看网址| 国产高清三级在线| 又爽又黄无遮挡网站| 欧美色欧美亚洲另类二区| a级毛色黄片| 国产成人福利小说| 日本精品一区二区三区蜜桃| 成人特级av手机在线观看| 18禁在线播放成人免费| 成年女人永久免费观看视频| 俄罗斯特黄特色一大片| 久久韩国三级中文字幕| 最近在线观看免费完整版| 97超级碰碰碰精品色视频在线观看| 国产视频内射| 99热这里只有精品一区| 又黄又爽又刺激的免费视频.| 久久久久久久久中文| 国产精品1区2区在线观看.| 两个人的视频大全免费| 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区视频9| 国产欧美日韩精品亚洲av| 国产欧美日韩精品亚洲av| 久久精品影院6| 亚洲av成人av| 搡女人真爽免费视频火全软件 | 亚洲在线观看片| 日韩欧美国产在线观看| 人妻丰满熟妇av一区二区三区| 不卡视频在线观看欧美| 精品少妇黑人巨大在线播放 | 国内精品一区二区在线观看| 亚洲色图av天堂| 免费在线观看影片大全网站| 国产 一区精品| 国产精品久久久久久精品电影| 哪里可以看免费的av片| 综合色丁香网| 国产亚洲av嫩草精品影院| 国产日本99.免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲av电影不卡..在线观看| av黄色大香蕉| 给我免费播放毛片高清在线观看| 狂野欧美白嫩少妇大欣赏| 成年av动漫网址| 日韩欧美国产在线观看| 尾随美女入室| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 91av网一区二区| 久久婷婷人人爽人人干人人爱| 少妇猛男粗大的猛烈进出视频 | 国产男人的电影天堂91| 国产精品爽爽va在线观看网站| 狠狠狠狠99中文字幕| 91在线精品国自产拍蜜月| 国产真实乱freesex| 美女高潮的动态| 久久久久免费精品人妻一区二区| 亚洲欧美成人综合另类久久久 | 国产亚洲精品av在线| 成年女人看的毛片在线观看| 欧美日韩在线观看h| 美女免费视频网站| 99热网站在线观看| 国产精品一及| 深夜a级毛片| 亚洲精品色激情综合| 亚洲性夜色夜夜综合| 日韩欧美精品免费久久| 日本在线视频免费播放| 日本黄色视频三级网站网址| 久久久久久大精品| 蜜桃久久精品国产亚洲av| 国产熟女欧美一区二区| av在线播放精品| 天堂影院成人在线观看| 成年女人看的毛片在线观看| 亚洲无线在线观看| 日韩欧美在线乱码| 一进一出好大好爽视频| 夜夜夜夜夜久久久久| 赤兔流量卡办理| 老熟妇仑乱视频hdxx| 国产伦精品一区二区三区视频9| 欧美性猛交╳xxx乱大交人| 美女cb高潮喷水在线观看| aaaaa片日本免费| 欧美成人免费av一区二区三区| 成人一区二区视频在线观看| 免费无遮挡裸体视频| 婷婷精品国产亚洲av| 亚洲自拍偷在线| 国产私拍福利视频在线观看| 我要看日韩黄色一级片| 国产精华一区二区三区| 欧美3d第一页| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 寂寞人妻少妇视频99o| 丰满的人妻完整版| 日本爱情动作片www.在线观看 | 两个人视频免费观看高清| av女优亚洲男人天堂| 日本黄色片子视频| 日韩一区二区视频免费看| 色在线成人网| 91在线观看av| 你懂的网址亚洲精品在线观看 | 成年免费大片在线观看| 中文字幕久久专区| 国产精品亚洲一级av第二区| 国产一区二区在线观看日韩| 久久人人精品亚洲av| 亚洲一级一片aⅴ在线观看| 午夜亚洲福利在线播放| 少妇人妻精品综合一区二区 | 国产亚洲精品av在线| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 国产69精品久久久久777片| 国产av一区在线观看免费| 熟妇人妻久久中文字幕3abv| 老熟妇仑乱视频hdxx| 久久婷婷人人爽人人干人人爱| 97在线视频观看| 简卡轻食公司| 国内精品久久久久精免费| 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| 久久久久久国产a免费观看| 给我免费播放毛片高清在线观看| 国内久久婷婷六月综合欲色啪| 国产亚洲精品综合一区在线观看| 身体一侧抽搐| 99热只有精品国产| 久久午夜福利片| 晚上一个人看的免费电影| 欧美成人免费av一区二区三区| 天天一区二区日本电影三级| 黄片wwwwww| 69av精品久久久久久| 少妇熟女欧美另类| 真人做人爱边吃奶动态| 99久久九九国产精品国产免费| 一进一出抽搐gif免费好疼| 黑人高潮一二区| 日日摸夜夜添夜夜爱| 国产视频内射| 99热这里只有精品一区| 久久久欧美国产精品| 国产视频一区二区在线看| 国产伦精品一区二区三区视频9| av在线播放精品| 亚洲欧美清纯卡通| 成年av动漫网址| 色5月婷婷丁香| 日韩欧美精品v在线| 中文字幕熟女人妻在线| 岛国在线免费视频观看| 国产精品久久久久久久久免| 中文资源天堂在线| 亚洲精品日韩av片在线观看| 久久综合国产亚洲精品| 可以在线观看的亚洲视频| 老女人水多毛片| av.在线天堂| 五月伊人婷婷丁香| 久久久精品欧美日韩精品| 三级毛片av免费| 观看免费一级毛片| 人妻制服诱惑在线中文字幕| 国产真实伦视频高清在线观看| 亚洲最大成人av| 精品一区二区三区视频在线| 最近最新中文字幕大全电影3| 又黄又爽又免费观看的视频| 色在线成人网| 久久精品综合一区二区三区| 久久久色成人| 校园春色视频在线观看| 欧美日韩国产亚洲二区| 日本与韩国留学比较| 精品一区二区免费观看| 精品久久国产蜜桃| 99久国产av精品国产电影| 高清日韩中文字幕在线| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久久免费视频| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 12—13女人毛片做爰片一| 亚洲18禁久久av| 亚洲五月天丁香| 少妇人妻精品综合一区二区 | 成人高潮视频无遮挡免费网站| 神马国产精品三级电影在线观看| 免费高清视频大片| 男插女下体视频免费在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产高清不卡午夜福利| 十八禁网站免费在线| 亚洲国产色片| 99热这里只有是精品在线观看| 亚洲人成网站在线观看播放| 99视频精品全部免费 在线| 亚洲精品成人久久久久久| 久久午夜福利片| 国产精品久久电影中文字幕| 国产精品一区二区三区四区免费观看 | 欧美成人精品欧美一级黄| 国产精品久久久久久亚洲av鲁大| 久久久国产成人免费| h日本视频在线播放| 在线观看美女被高潮喷水网站| 国产探花在线观看一区二区| 丰满人妻一区二区三区视频av| 精品久久久久久成人av| 久久国产乱子免费精品| 一进一出抽搐动态| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 免费av观看视频| 久久99热这里只有精品18| 最近在线观看免费完整版| 亚洲成av人片在线播放无| 精品久久久久久久久亚洲| 一级毛片我不卡| 久久精品夜色国产| 尾随美女入室| 日韩一本色道免费dvd| 舔av片在线| 色av中文字幕| 精品一区二区三区视频在线观看免费| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品粉嫩美女一区| 欧美一级a爱片免费观看看| 日日撸夜夜添| 国产又黄又爽又无遮挡在线| 国产亚洲91精品色在线| 伊人久久精品亚洲午夜| 在现免费观看毛片| 97人妻精品一区二区三区麻豆| 久久人妻av系列| 中国国产av一级| 三级男女做爰猛烈吃奶摸视频| 给我免费播放毛片高清在线观看| 久久精品91蜜桃| 精品欧美国产一区二区三| 亚洲电影在线观看av| 六月丁香七月| 久久久久精品国产欧美久久久| 亚洲欧美精品自产自拍| 亚洲18禁久久av| 给我免费播放毛片高清在线观看| 亚洲国产精品合色在线| 97人妻精品一区二区三区麻豆| 搡女人真爽免费视频火全软件 | 伊人久久精品亚洲午夜| 国产不卡一卡二| 毛片女人毛片| 搞女人的毛片| 99热只有精品国产| 中文字幕精品亚洲无线码一区| 色5月婷婷丁香| 在线观看一区二区三区| 亚洲欧美清纯卡通| 免费看日本二区| 看免费成人av毛片| 高清日韩中文字幕在线| 最近的中文字幕免费完整| 亚洲国产日韩欧美精品在线观看| 亚洲成人中文字幕在线播放| 九九热线精品视视频播放| 国产亚洲欧美98| 日本熟妇午夜| 男女之事视频高清在线观看| 国产激情偷乱视频一区二区| 亚洲av成人av| 国产色爽女视频免费观看| 亚洲熟妇熟女久久| 欧美一级a爱片免费观看看| 十八禁网站免费在线| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 亚洲av成人精品一区久久| 国产亚洲91精品色在线| 日韩大尺度精品在线看网址| 精品一区二区三区视频在线观看免费| 国产成人91sexporn| 国产人妻一区二区三区在| 日韩欧美在线乱码| 午夜影院日韩av| 久久久精品94久久精品| 美女 人体艺术 gogo| 亚洲最大成人中文| 免费不卡的大黄色大毛片视频在线观看 | 免费av不卡在线播放| 美女内射精品一级片tv| av福利片在线观看| 97热精品久久久久久| 国产精品亚洲一级av第二区| 久久久久九九精品影院| ponron亚洲| 一进一出抽搐动态| 91在线观看av| 国产精品,欧美在线| 久久精品国产亚洲网站| 午夜视频国产福利| 午夜福利在线在线| 夜夜爽天天搞| 国产亚洲欧美98| 国产一区二区三区av在线 | 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 我的女老师完整版在线观看| 国产单亲对白刺激| 亚洲丝袜综合中文字幕| 亚洲成人av在线免费| 亚洲18禁久久av| 麻豆精品久久久久久蜜桃| 亚洲国产精品合色在线| 亚洲激情五月婷婷啪啪| 春色校园在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 在线天堂最新版资源| 丝袜美腿在线中文| 国产亚洲精品综合一区在线观看| 一区福利在线观看| 日本一二三区视频观看| 亚洲av五月六月丁香网| a级毛片免费高清观看在线播放| 久久久久久久久久久丰满| 亚洲成人精品中文字幕电影| 日韩 亚洲 欧美在线| 你懂的网址亚洲精品在线观看 | 亚洲熟妇熟女久久| 蜜桃久久精品国产亚洲av| 黄色一级大片看看| 变态另类丝袜制服| 久久久久久久久久久丰满| 午夜福利高清视频| 少妇猛男粗大的猛烈进出视频 | 六月丁香七月| 天堂网av新在线|